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388 estimates out of 827 models

Performance
and
Efficiency
Matters

Algorithmic
Advancements

Scale Out
$5%

Packaging

Source: Epoch Al
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Al Model Evolution

Multilayer Perceptrons (pre-2012)
CNNs (AlexNet 2012) and LSTMs (2014)

Transformers (2017)
o  Self-Attention Mechanism Compound Al system example:

o Parallelizable (faster), Scalable (-> LLMs)

‘ Perception ‘ ’ Planning & Action
Beyond Transformers e.g. | e
o  Hybrid SSM Attention Architecture ﬁ Moo
Ooo| Tokenizer || | Perception | |
Retriev LLM
Compound Al Systems ou (74 Rou [ —=| Text Oon
Combination of Al models with different Oo N . g | | Spoecn °O
functionality and sizes. hing ! - o
o  Caching, routing. E %, T = B e I o] Ve |
o Retrieval from vector databases, knowledge \

graphs. Web search.

o  Combined with SW functions. APIs.

o  Can be multimodal: text, images, audio, video,
other sensor data.

o Can be used for agentic systems. ZYPHRA



Al Silicon Evolution

Disaggregated:
e CPUs (pre-2012)
e GPUs (AlexNet, NVIDIA, 2012), GPUs with Al HW (TensorCore, 2017)
e TPU (Google, 2016), FPGA
e Variants: Cerebras, Tenstorrent, SambaNova, Graphcore, MatX...
Inference only: Groq, d-Matrix, Positron, Etched...

Integrated:
e On-device, Al PC (2017 Apple Neural Engine)
e Edge SOCs (2018 NVIDIA Xavier)

Characteristics e.g.:
e Numerics:
FP32 (AlexNet) -> Float16 or Int8 (Apple Neural Engine, TPUv1, GPU) ->
Bfloat16 (Google) -> FP8 -> Custom low precision with block scaling
factors.
e Memory technology for efficient inference (SRAM, DDR, HBM, others)
e Chiplets and Packaging



NVIDIA Blackwell Rack-scale design

|

Al Systems - Cloud

Originally CPU based (pre-2012).

GPU cluster, first with central parameter server.

TPU 3D torus.

Silicon photonics for cross rack communication.

OCS - Optical Circuit Switch - for fast reconfiguration.
Towards liquid cooling.

Advanced compiler & algorithms for data & tensor parallelism,
pipelining, sharding.

e Asynchronous training across clusters. Google TPU Pod
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Al Dataset Advancements IMAGENET

Small datasets (pre-2012, curated like MNIST, CIFAR)
ImageNet dataset (2012, large)

Massive datasets (2018, common crawl, multimodal)

Current Trend: Optimized datasets for pretraining, finetuning, retrieval

o Data curation tools: deduplication, removal of low quality data, debiasing
o Synthetic data

ZYPHRA




Al Key Elements Epredicm. cOmputej

Trends, Next Wave

. Increase
E Numerics, Sparsity, j computational
Compression efficiency.

Heterogenous Compute Optimized
Domain Specific efficient compute
close to the data.
Compute In/Near Mem

L: Compiler, Runtime j SW Infrastructure
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Beyond Dense Matrix
Compute

Heterogenous Compute

Domain Specific

Compute In/Near Mem
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Silicon Photonics, Memory
Technology, Process, Chiplets,
Packaging
e e

Power Mgmt, Cooling

Predict Al Compute Workloadg beyo.nd L!‘MS'
Trends. Next W Towards higher intelligence
rends, Next vvave and future applications.

Scalable

performance. E Dataset Quality j Data
Increase

computational

efficiency. |
Scalable Algorithms

performance beyond
dense matrix WLs.

Optimized
efficient compute
close to the data.

L: Compiler, Runtime :/l SW Infrastructure

New technologies and
optimizations.

HW Infrastructure ZYPHRA



Google TPUv4

4096 TPU chips per Pod
64 TPU racks, deployed 8x8
Total compute >1ExaFLOP BF16
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Sizing TPU Chip and System

Predict future workload mix. Use case and workload analysis.
Size BW paths, memory capacity, TPU FLOPS, host compute, various features.
Optimizing Performance/TCO. TCO is Total Cost of Ownership.

DRAM
ca i
Host

DRAM
DRAM H

Networking
E

BW

FESPS

TensorCore

Source: M Hutton, TPU V4 and
ty Trends in Accelerator Hardware

Neighboring TPU Chips




Transformer

Transformers are currently the main building block in
many areas such as text generation, summarization,
vision, speech recognition, ...

e Next token prediction (decoder)

e Primarily composed of alternating multi-head
self-attention and multilayer perceptron (MLP)
blocks.

e Self-attention helps the model understand the
relationships between different tokens in a sentence

e Linear and Softmax layers: translate the internal
representation into the next token.
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Flash Attention

A tiling and fusion optimization of the attention algorithm to minimize HBM bandwidth by avoiding
materialization of intermediate results to HBM. There is no loss in quality. Flash attention helps
balance HBM bandwidth and compute. This specifically helps with large input sequence lengths.

Outer Loop
K:dxN 5
* F Attention on GPT-2
Copy Block to SRAM
Q:Nxd B LS . BARE 15 IMatmul
- ke n B al e et a
GPU o
e SRAM: 19TB/s (20 MB) EI i o .,r Dropout
§ I an — |
LA HEM: 1.5TB/s (40 GB) o S 4y | copy [l | © | 104 3
HBM k] oo Compute Block [ 7l o Softmax
; g Copy | TG | § —o’l .§ b
LUETLRE LIS DRAM: 12.8 GB/s £ | 2 g|F 5. Fused
(CPU DRAM) (>17TB) | | g Kernel
I 1§°
Memory Hierarchy with & Output to e 04
Bandwidth & Memory Size sm(QKV: Nxd PyTorch FlashAttention
Inner Loop
FlashAttention

Left: FlashAttention uses tiling to prevent materialization of the large N x N attention matrix (dotted box) on (relatively) slow GPU HBM. In the outer
loop (red arrows), FlashAttention loops through blocks of the K and V matrices and loads them to fast on-chip SRAM. In each block, FlashAttention
loops over blocks of Q matrix (blue arrows), loading them to SRAM, and writing the output of the attention computation back to HBM. Right: Speedup
over the PyTorch implementation of attention on GPT-2. FlashAttention does not read and write the large N x N attention matrix to HBM resulting in an
7.6x speedup on the attention computation. Source: Flash Attention paper ZYPHRA



Zyphra Tree Attention

Topology-Aware Decoding for Long-Context Attention on GPU Clusters

IAIReduce
across NVLINK

Redicon Opatirs

—>  IAlReduce across 1B

“ InfiniBand (1B) Network
Interface Card (NIC)

—

(a)Multi Node Tree Attention (Ours) (b)Multi Node Ring Attention
FIG. 1: Ring and Tree Attention Topologies. Due to the associative properties of the logsumexp and max operations of Tree

Attention (Fig. 1(a)), is possible to structure the reduction across the sequence as a tree, requiring asymptotically fewer
communication steps than Ring Attention (Fig. 1(b)) as well as less memory and communications volume.
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Zamba2-2.7B

6x Mamba2

Beyond Transformers: Zyphra Zamba2

Hybrid SSM Attention Model, trained with custom dataset
] Attention, |

Quality vs. Inference Speed
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Beyond Transformers: Zyphra Zamba2-7B

ZAMBA2 7B - QUALITY VS INFERENCE SPEED
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Zyphra Zyda-2 Dataset

e Open 5T-Token Dataset
Processed with NVIDIA NeMo
Curator.

e Outperforms existing
state-of-the-art open-source
language modeling datasets
in aggregate evaluation
scores.

e Study based on
Zamba2-2.7B.

e Aggregate score is a mean of
MMLU, Hellaswag, Piqa,
Winogrande, Arc-Easy, and
Arc-Challenge.

Aggregate Evaluation Score On Leading Benchmarks

64%

63%

62%

stt
re/easedl

61.87%
61.62%
61.25%

FineWeb Zyda 1 Dolma-CC v1.7

Zyda-2

DCLM FineWeb-Edu +

DCLM mix

FineWeb-Edu

Dataset Name

ZYPHRA



Retrieval-Augmented Transformers: RAG

Plain Text

5 3
Passage Encoder
(BERT)
Wikipedia, ... }-.__ - =
______________________ Retrieve top k

Passages:
passages: MIPS

Answer

(e.g. SCaNN or
FAISS)

Reader (BERT) or
Generator (BART or
RETRO Transformer)

The middle ear

includes the
tympanic
cavity and the
three

Query Encoder
(BERT)

Query
Define

“‘middle
ear”

Augmenting an LLM with a large text database
from which additional tokens can be retrieved via
nearest neighbor search to enhance the next
token.

Information is split into deep learning parameters
and the database (e.g. plain text or knowledge
graph) to create a more effective and efficient
system.

ossicles.




LLM Optimization Flow

All of the above

Add HyDE retrieval + ]
fact-checking step

B Fine-tune model
Add simple retrieval [l

Context
optimization

What the model Prompt engineering Fine-tuning

needs to know / B Add few shot

B Prompt

——
LLM optimization

How the model needs to act

ZYPHRA

Source: OpenAl, A Survey of Techniques for Maximizing LLM Performance



Compound Model

Planning & Action

Perception
Database
. - T
Ooeo| Tokenizer c py Perception
@, ®
S 2 LLM
= @ f
O o}
Speech Speech o
Query ©?  Encoder = large
Q@ LLM
Py
2 I |
I:“ Visual =3 e
Encoder @ LM

Bunnoy

Planning
& Action
Gen

Code Gen

Text Gen

Speech
Gen

Visual
Gen

o0
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Platform Across Devices

Connected Devices,
streaming and

|

App on Mobile Device
iPhone, Android, Linux
Home loT, Glasses, Watch

non-streaming

L

App on Laptop/Desktop
- LLM Compute
- Cache/Storage

:

Streaming: e.g. video, audio
Non-streaming: e.g. photos, sensor
data like temperature, position etc.
Compression

Multimodal User Interface
Personalization

Compression

Basic Voice/Audio/small LLMs

Small and larger GenAl models
Personalization, Agents
Storage

Optional Hub Functionality

Service in Cloud

- Recommendations

- LLM Compute Offload
- Storage

Recommendations (Ads etc.)
For subscribers only:
- Small to largest GenAl models
- Extended Storage, Backup™ """ "




Multimodal Agentic Systems

e Planning:
o  Chain-of-thought,
tree-of-thought
o ReACT, self-reflection
e Memory
o In-context, vector
database, knowledge
graph, external files
e APl access to tools

o Calculator, task specific
tools

Phases Design | © Coding () Testing
Subtasks [ Design E> [ Coding ] Lf} | Coc::dtheI Q RZ(\;:?N $ Testing
CEO ' c10 cTo Reviewer Tester

Instructor g ﬁ
— ’L—»

Chat Chain {task} — J‘—» {ideas}— J‘—» {code} — ’L—> {code} — J"‘—» {code} {code}

CTO Programmer Programmer Programmer Programmer

Example: chain of agents for SW development

Source: C. Qian et al, ChatDev: Communicative Agents for Software Development

ZYPHRA



Generative Al for Chip Design

e Increasing efforts in academia and industry
e LLM models and agents to significantly improve chip design productivity by
providing design assistance as chatbots and copilots and automating more

manual design tasks
o Engineering chat bot to answer questions on how to do certain tasks incl. specific command
line generation
o Assistance on resolving bug reports, assistance on PPA improvements
o Copilot for design space exploration, hardware code generation, documentation generation
e More domain specific datasets and benchmarks needed

o Specifications, code, databases, PPA metrics
o So that LLM models and agents can be trained and optimized.

ZYPHRA



Conclusions

* (Goals: Advance generative Al serving in cloud, edge, on-device. Towards
AGI. Advance LLM training in the cloud.

* Model: Beyond transformers e.g. Zamba2 hybrid SSM attention model

Data: Advanced datasets for pretraining, fine-tuning, retrieval

Advanced Co-design - e.g. Tree-attention

* Compound systems — multi-modal, Graph-RAG, multi-hop reasoning

Applications - towards multimodal agentic systems

* |nnovation across domains is critical to get to the next 10x in generative Al.

ZYPHRA
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