
Never too late with Formal: Stepwise Guide for
Applying FV in Post-Si Phase to Avoid Re-spins
Anshul Jain, Aarti Gupta, Achutha KiranKumar V M, Bindumadhava Ss,

Shivakumar S Kolar, Siva Gadey NV

Intel Corporation

Overview of the Presentation
• Problem statement

• Proposed methodology

• Case Study

• Summary

• Questions

Time-to-market

Post-Silicon Design Bugs
• Embrace of formal verification grown over last decade

• Simulation still the main workhorse for pre-silicon functional sign-off

Post-Silicon
Bugs

Verification
Scaling

Challenges

Design Features

High Stakes Need Absolute Assurance

Specification Architecture RTL Design Pre-Si Verification Physical Design Post-Si Validation

Ta
p

e
-i

n

Late-stage functional bugs demands high-confidence fixes

Solution: FV -- Enable Proof-based Assurance

Challenging to apply FPV in Post-Si? Yes!

Get the Myths Out of your Way!

FA
C

TS Will take unreasonably
long time to bring-up
FV env from scratch

FV will need intricate
signal-level details of
post-Si issue for
reproducing it

FV is usually not run at
large boundaries in pre-Si

phase; stable env is not
available for reuse

Not all signals can be
probed from post-Si

debug; Only high-level
details of failure is known

Post-Si issues are
isolated on huge block

boundaries

FV will not be
manageable at huge
block-boundaries

M
Y

TH
S

Stepwise Approach – UNEARTH

NAIL-DOWN THE

FORMAL PROPERTY

ETCH THE DESIGN

BOUNDARY FOR
FORMAL SEARCH

ASSESS

REACHABILITY BY
COVERING YOUR

WAY TO SOURCE OF
THE BUG

REGULATE

CONSTRAINTS TO
STRIKE A BALANCE

B/W OVER-
CONSTRAINTS &

UNDER-CONSTRAINTS

TAP DETAILS FROM

SIM WAVES TO START
FORMAL SEARCH

UNDERSTAND THE

PROBLEM & COLLECT
ALL THE COLLATERAL

HARNESS FULL

POTENTIAL OF
FORMAL

TECHNOLOGY

1. Understand Problem & Collect Collaterals

Description of the failure/problem seen in post-silicon testing

Design documentation & source code files

Existing formal verification environments (if exists)

Waveform and register dumps from pre/post-silicon verif/val

Sample waveforms from pre-silicon dynamic simulations

2. Nail-down the Formal Property

Capture a crisp and clear description of post-silicon failure; validate with other
stakeholders from design, pre-silicon verification, post-silicon validation teams

Brainstorm properties (from spec) of the DUT that could be violated in post-silicon
failure; Start with general properties, move towards specific properties gradually

For example, responses should be in same order as request, buffer should always
have N free entries for pointer management, preemptions should be finite

Note down properties in plain, simple, human-readable language without worrying
about implementation details

Engage architects, micro-architects, to identify observation points for the property;
implement them using light-weight instrumentation code and SVA

3. Etch Design Boundary for Formal Search

Run Formal Proof
Block boundary with IOs to

observe target property
Counterexample

Design Scope Defined OR
DUT Identified

Yes

Cross-prove constraints in
neighboring blocks

No

Design Bug Yes

No

Identify Missing
Constraint

Model Input Constraint OR
Include neighboring block

4. Assess Reachability of Source of the Bug

1

R

11

1 1

1

22

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

4

5

5

5

5

5

5

5

5

3

3

3

6

6

6

6

6

6

6

3

3

3

4

4

7

7

7

7

7

7

8

8

8

8

8

8

8

9

9

9

9

9

9

C1

C3

C2

States where property

does *not* hold true

Witness states for

intermediate covers

5. Regulate Constraints (Over/Under)

DUT

Config
Registers

Init
Logic

Core Logic

Config RD/WR Interface

1. Signals should stay stable ($stable(cr_sig))
2. Signals tied to specific values (cr_sig == 0xN)

rdy
vld

Initialization Interface
Flow

Controldone wait

Output Interface

Unconstrained
interface

cutpoints

5. Regulate Constraints (Over/Under)

Start with no
constraints

Run sanity covers to
ensure clocks and
reset setup is okay

Add over-constraints
as per the failure

signature

Run target property
and analyze

counterexample
Design Bug

Add constraint(s) to
disallow illegal

scenario(s)

No

Under-constraint Over-constraint Under-constraint

Over-constraints can be used to restrict non-participating
interfaces and values of configuration registers

Constraints refinement to keep inputs relevant to failure under-
constrained, may flag other failure manifestations/sister-bugs

Post-silicon issue
reproduced

New design issue
found

Yes

6. Tap Details from Sims for Formal Search

Formal Tool

Assertions &
Assumptions

wave
timestamp

CounterexamplesReset Sequence Credit Initialization Sequence

7. Harness Full Potential of Formal Technology

Specification Architecture RTL Design Pre-Si Verification Physical Design Post-Si Validation

Root-cause Post-Silicon Bugs
Enhance FV environment to verify bug-fixes
Scale FV environment with following for Sign-Off
• Abstraction Techniques
• Proof-accelerating Techniques
• Bug-hunting Techniques

B
U

G
S

Reactive Formal

Formal Verification
Environment

Proactive Formal

Case Study
Post-silicon bug in Scheduler

Scheduler: Design & Bug Details

Scheduler

Queues & Control Logic

Packet Parser

Address Map
& Config
Registers

Header Data

In
te

rf
a

ce
 X

In
te

rf
a

ce
 Y

In
te

rf
a

ce
 Z General Functionality:

• Predefined transformations of Packets

• Routing : Interface X -> Interface Y/Z

• Routing based on resource availability and rules

Verification Challenges:

• Huge Design Size: ~4M gates

Bug Synopsis

Txn C parameters
overwritten by Txn D

UNDERSTAND THE

PROBLEM & COLLECT
ALL THE COLLATERAL

Studied
Simulation traces
& specifications

Created basic
Flow Diagram

Transaction
“N” received

on Interface X

Transaction
scheduled to

go on
Interface Y

Transaction
“N” qualified

to go on
Interface Z?

Transaction “N”
scheduled to go on

Interface Z

Transaction “N”
arrives in a

window when Txn
“N-1” rejection is

getting processed?

Transaction
“N” accepted

to advance

Transaction
“N” sent on
Interface Z

Transaction
“N” sent on
Interface Y

Transaction
“N” to be
replayed

No

Yes

Yes

Yes No

No

Scheduler: Routing Flow

NAIL-DOWN THE

FORMAL PROPERTY

 -> ->

 -> ->

Transactional
Order

Checking

Transaction “N”
received on
Interface X

Transaction
scheduled to

go on
Interface Y

Transaction
“N” qualified

to go on
Interface Z?

Transaction “N”
scheduled to go on

Interface Z

Transaction “N”
arrives in a window

when Txn “N-1”
rejection is getting

processed?

Transaction “N”
accepted to

advance

Transaction “N”
sent on Interface

Z

Transaction “N”
sent on Interface

Y

Transaction
“N” to be
replayed

No

Yes

Yes

Yes No

No

1

2

3 4

6

5

Scheduler: Formal Property (Checker)

DUT

Scheduler

Queues & Control Logic

Packet Parser

Address Map
& Config
Registers

Header Data

In
te

rf
a

ce
 X

In
te

rf
a

ce
 Y

In
te

rf
a

ce
 Z

ETCH THE DESIGN

BOUNDARY FOR
FORMAL SEARCH

Pro:

• Smaller Size (~1.5M
gates)

Con:

• Assumption modeling
required on internal
non-standard interfaces

Scheduler: DUT

ASSESS

REACHABILITY BY
COVERING YOUR

WAY TO SOURCE OF
THE BUG

• Transaction
reachability at each
event 1-6

• Reachability of a state
where a new
transaction conflicts
with a replayed
instruction

Relevant Covers:

Transaction
“N” received

on Interface X

Transaction
scheduled to

go on
Interface Y

Transaction
“N” qualified

to go on
Interface Z?

Transaction “N”
scheduled to go on

Interface Z

Transaction “N”
arrives in a

window when Txn
“N-1” rejection is

getting processed?

Transaction
“N” accepted

to advance

Transaction
“N” sent on
Interface Z

Transaction
“N” sent on
Interface Y

Transaction
“N” to be
replayed

No

Yes

Yes

Yes No

No

1

2

3 4

6

5Transaction
“N” getting
replayed

New
Transaction
“N+1”
arrives

Scheduler: Helper Covers

Scheduler: FV Environment
REGULATE

CONSTRAINTS TO
STRIKE A BALANCE

B/W OVER-
CONSTRAINTS &

UNDER-CONSTRAINTS

Under-
constraints

•Reset abstractions
on critical resource
counters

Over-
constraints

•Fixed Configuration
Register Values

•Reduced Number
of Physical
Channels

A valid reset
state loaded
from a
simulation
trace (initially);
Later replaced
with
abstraction

More
properties
added for full
functionality
check of DUT

TAP DETAILS FROM

SIM WAVES TO START
FORMAL SEARCH

HARNESS FULL

POTENTIAL OF
FORMAL

TECHNOLOGY

Scheduler: Results

Post-silicon bug was reproduced in 4 weeks

4 other failing scenarios were detected

FV helped in determining a robust fix

Two fixes verified and compared

FV environment reused in next project as pro-active FV

Key Takeaway: Design size not a limiting factor in Post-Silicon FV

Summary

UNEARTH – Comprehensive guide for Post-Silicon FV

Impactful results seen in the case-study shared

Apart from this case study, several other successful applications

Simple checks can find deep issues in complex designs

Post-Silicon FV motivates transition from reactive to proactive approach

• Identifies more design candidates for FV Signoff

• Targets bug prone designs for next generations

Recommendation

• All post-silicon issues in control-logic should be reproduced in FV

Questions?

Backup
Not included in oral presentation

Case Study
Post-silicon bug in Bridge

Bridge: Design & Bug Details

Bridge
Mainband
Endpoint

Sideband
Endpoint

Register
Endpoint

0

Register
Endpoint

N

Register
Endpoint

1

Registers Registers Registers

Multiple
Register

Endpoints

REQ,
RSP (dummy)

RSP

REQ,
RSP (dummy)

REQ (loopback),
RSP

Registers

REQ,
RSP (dummy)

RSP

Channel

Register RD/WR
Access

HDR DATAWR REQ

HDRWR RSP

HDRRD REQ

HDR DATARD RSP

Register Data Corruption

UNDERSTAND THE

PROBLEM & COLLECT
ALL THE COLLATERAL

Bridge: Formal Property (Checker)NAIL-DOWN THE

FORMAL PROPERTY

SVA Property

Bridge

Mainband
Endpoint
Formal
model

REQ,
RSP (dummy)

RSP

FSM based reference model

IDLE

WR_REQ RD_REQ

REQ (WR)

WR_RSP

Dummy RSP (w/o
data)

RSP (w/o
data)

RD_RSP

REQ (RD)

Dummy RSP (w/
data)

RSP (w/
data)

bridge_to_mainband_no_spurious_rsp: assert property (

@(posedge clk) disable iff (rst)

(state == RD_REQ) ||

(state == WR_REQ) ||

(state == IDLE) |-> !b2m_rsp_vld

);

Bridge: DUT & FV Environment

Bridge

Mainband
Endpoint
Formal
model

Sideband
Endpoint
Formal
Model

Register
Endpoint

0

Register
Endpoint

N

Register
Endpoint

1

Registers Registers

Multiple
Register

Endpoints

REQ,
RSP (dummy)

RSP

REQ,
RSP (dummy)

REQ (loopback),
RSP

REQ,
RSP (dummy)

RSP

DUT

FSM based reference model

IDLE

WR_REQ RD_REQ

REQ (WR)

WR_RSP

Dummy RSP (w/o
data)

RSP (w/o
data)

RD_RSP

REQ (RD)

Dummy RSP (w/
data)

RSP (w/
data)

Ring Formal Model

Since the target property does *not*
depend on the correctness of register

read data, register interfaces were
kept un-constrained

ETCH THE DESIGN

BOUNDARY FOR
FORMAL SEARCH

Bridge: Helper Covers
ASSESS

REACHABILITY BY
COVERING YOUR

WAY TO SOURCE OF
THE BUG

Bridge

Mainband
Endpoint
Formal
model

Sideband
Endpoint
Formal
Model

Register
Endpoint

0

Register
Endpoint

N

Register
Endpoint

1

Registers Registers

Multiple
Register

Endpoints

REQ,
RSP (dummy)

RSP

REQ,
RSP (dummy)

REQ (loopback),
RSP

REQ,
RSP (dummy)

RSP

DUT

FSM based reference model

IDLE

WR_REQ RD_REQ

REQ (WR)

WR_RSP

Dummy RSP (w/o
data)

RSP (w/o
data)

RD_RSP

REQ (RD)

Dummy RSP (w/
data)

RSP (w/
data)

Ring Formal Model

Since the target property does *not*
depend on the correctness of register

read data, register interfaces were
kept un-constrained

C3: REQ w/ DATA 0x20_QQQQ
C4: RSP w/ HDR 0x20_QQQQ

C5: RSP w/ HDR
0x20_QQQQ

C1: REQ w/ HDR 0x20_PPQQ
C2: REQ w/ DATA 0x20_QQQQ

Bridge: Constraints Strategy

Bridge

Mainband
Endpoint
Formal
model

Sideband
Endpoint
Formal
Model

Register
Endpoint

0

Register
Endpoint

N

Register
Endpoint

1

Registers Registers

Multiple
Register

Endpoints

REQ,
RSP (dummy)

RSP

REQ,
RSP (dummy)

REQ (loopback),
RSP

REQ,
RSP (dummy)

RSP

DUT

FSM based reference model

IDLE

WR_REQ RD_REQ

REQ (WR)

WR_RSP

Dummy RSP (w/o
data)

RSP (w/o
data)

RD_RSP

REQ (RD)

Dummy RSP (w/
data)

RSP (w/
data)

Ring Formal Model

Since the target property does *not*
depend on the correctness of register

read data, register interfaces were
kept un-constrained

REGULATE

CONSTRAINTS TO
STRIKE A BALANCE

B/W OVER-
CONSTRAINTS &

UNDER-CONSTRAINTS

Under-constraint

Over-constraint
Disabled link re-initialization,

power optimization
(sleep/nap/wake)

Bridge: Bug Repro (1 of 6 manifestations)
WR REQ

HDR DW – 0x0001_PPQQ
(opcode=0x01, src=0xPP, dst=0xQQ)

DATA DW – 0x0020_QQQQ

WR RSP (dummy)
HDR DW – 0x0020_QQQQ
(opcode=0x20, src=0xQQ,

dst=0xQQ)

WR REQ (loopback)
HDR DW – 0x0001_PPQQ

DATA DW – 0x0020_QQQQ
Supposed to be discarded by Bridge

WR RSP (actual)
HDR DW –

0x0020_QQQQ
To be routed to

mainband

WR RSP
(fake)

WR RSP
(actual)

Bridge: Results

Post-silicon bug was reproduced in 3 engineer days weeks on 25K Gates DUT

4 new bug manifestations were detected (not yet seen in Silicon)

FV environment helped evaluating workarounds and bug-fixes

Comprehensive FV environment was created for sign-off

FV environment reused in next 2 project; Found 8 new bugs in pre-Silicon

Key Takeaway: Verifying post-Silicon bug-fixes offers huge ROI

