NRFs Identification & Signoff 5022

acce//era with GLS Validation SIYreTE T

Rohit Kumar Sinha CONFERENCE AND EXHIBITION

SYSTEMS INMATIVE Rakesh Misra, Samir Nagesh Kulkarni

Problem Statement/Introduction Proposed Methodology/Advantages

NRF Definition i P
Domain Description

NRF Bugs Why NRF P
. . . Flip-flops without a set/reset pin Accounts for 20% Area Saving
Design1> Defslgn-AO Si hangs due to resulting output/q in undetermined Routing Congestion due to
scan logicin functional path state. Flops which can't be initialized set/reset; Direct Positive impact Design SpyGlass Lint Rules ResetFlop-ML and UnlinitializedReset-ML rules
Yield impact 8% &1 man-year debug in the HDL on Area and Power with NRF
effort usage.
Design2-> Si punit pwrgood not
getting asserted due to NRF on X-Prop Validation Comprehensive x-prop verification at RTL
scan_en pathYield impact 20% 5 man-
months debug effort

Challenges
NRF’s undeterminism NRF 0/1/random/no-value deposit in GLS for key
behavior causes control blocks such as punit, boot path (first step)

Innvoation multiple silicon failure GLS Sdeposit mechanism
Innovation is to mduging few P Final step: minimum NRFs in SOC which have been

|Nden||fy the critical functional bugs or reviewed and documented in HSDs
on—rese?tab\e dead-on-arrival

registers in the boot silicon. Mainly post-
partitions in Intel FCO and Scan- Assertion based methodology to validate and verify

Architecture. Assertion methodolo X X X K
Secondly, to validate sertions &Y small pieces of design for full functionality

those NRFs using
dynamic simulation;
on the netlist

NRF non scan cells x-injection and observing critical

Evil Validation X
signals

NRF Overview

Implementation Details/Diagram Implementation Details/Flow Chart
J—
Early detection of functional failures due to NRFs and left shift
for NRF signoff at SD 0.8 / SD 1.0 milestone (SD — Structural
Design Flow)
Scales up for different Intel architectures along with different N " R
technology nodes or different foundries
‘Add checers in PA-GLS{without forces) to validate NRF ” . . .
T RN e b Nullifies the probability of functional failures due to NRFs
Promotes better architecture/design optimization with the use
1] of NRFs and its integration
i NRF Detection Strateay
Engineering community can ramp-up quickly
lops and need to check in Implementation Flow and
Review the wavefoms n PA-GLS for x propagation Optimizes the manual efforts to signoff the NRFs and sets a
standard process
\ J
s n
Results Table Conclusion
PA-GLS Validation Coverage helps to identify critical NRF in boot partitions due to various logical addition and logic
optimization
Program Total NRFs | Critical NRFs | Signoff Duration Impacted Area
Name
Each partitions have high number of NRFs (>5000) leading to increased validation complexity. Total
SoC Designl [EPELEFE] YES @ SD1.0 2 Weeks number of NRFs in client SoC is ~120K. Covering all combinations on NRF through Dynamic Simulation is
a challenge.
Speed of Execution Table shows almost 0.7%
Ll 1588147 Analysis is under progress; arelcritical NREs Which
e were ;f':heA r;:l;wand The validation of the non-resettable flops and all aspects of the verification flow enables a correct and complete
Senofmton Aot i on and ionality in any SoC for 100% percent silicon success.
program part.
Quality The entire outcome of
these techniques enabled X-prop enabled RTL validation uses RTL for simulations with all register elements initialized to ‘X’ value. Due to the
Critical Architecture and Design way RTL construct used and coded, it is tough to create a true x-propagation behavior in RTL and PAGLS compliments
W team to focus on critical x-prop feature.
RF? NRFs and review them
for signoff.
Integration It is evident that having a In the mentioned approach, we will start with all NRFs and run the simulations to see which flip-flops needs reset for
correctness and NRF in the design is not correct functionality
Learnings an issue but what makes
the difference is NRFs
integrations
This method guarantees to generate critical list of NRFs that designers need to review and focus on those that can
cause a failure in silicon, thus saving the efforts in design cycle and saving re-spins (Time & Money).
\ J
f REFERENCES)
References
= ADL-N Power-up Sequence: ADLN-Rail sequencing.pptx (sharepoint.com
* Rohit Kumar Sinha(s), Late Silicon Bug — Formal comes to Rescue, Design Automation
Conference, 2020
\ v,

© Accellera Systems Initiative

