SIEMENS

Abstract

Nowadays, both analog and digital system blocks are located on the same chip. Most digital design engineers want to verify digital modeled blocks along with analog models for ensuring the functionality of both systems together. This paper describes how analog devices such as DACs, ADCs, LDOs, Filters, and PhotoDiodes can be modeled from user-defined resolved nets, boundary elements, and interconnects. Debugging and visualization of RNM constructs are important during the integration of a complete analog device and during connecting an analog device modeled with SV-RNM language to a digital one.

User-Defined Net-types and Resolved Nets (UDN-UDRN)

User-Defined Nets (UDN) hold the values of voltage, current, and resistance in only one net. New UDN can also support the capacitance value. Figure 1, illustrates that these nets will be resolved by an impedance voltage division. The output voltage and the current are resolved by the following equations.

$V = \frac{1}{(A+B+C+D)}$	$((B + D)^* vin - D^*)$	vin _{prev} + (C +	-D)*vout _{prev})
$I = \frac{A+C}{A+B+C+D} \left(\right)$	(B+D) * vin - (D) + (C+D) * vin + (C+D) * vin + (C+D) * vin + vi	$\left. igcap_{prev}^{D} ight angle * vin_{prev}^{prev} ight angle - out_{prev}^{prev}$	- C * vout _{prev}
where $A = \frac{1}{R_{Load}}$,	$B = \frac{1}{R_{src}},$	$C=\frac{C_{Load}}{dt},$	$D = \frac{C_{src}}{dt}$

This resolved net can model a Low Pass (LP)/High Pass (HP) filtering effect and a resistance-voltage/capacitance-voltage divider effect. Figure 2, shows which capacitor and resistor need to be set for reaching the desired effect. Figure 3, shows the effect of low and high filtering using this resolved net.

typedef struct {			Effect	R _{Load}	R _{src}	C _{Load}	C _{src}
	V	1	High Pass (HP)	Desired Value	≈ ∞	≈ 0	Desired Value
	V _{out}	2	Low Pass (LP)	≈ ∞	Desired Value	Desired Value	≈ 0
		3	Capacitive	≈ ∞	≈ ∞	Desired Value	Desired Value
real I; // CURRENT	<u>.o </u> <u>4</u> <u>7</u>		voltage division				
real <u>R;</u> // RESISTANCE		4	Resistive	Desired Value	Desired Value	≈ 0	≈ 0
real C; // CAPACITANCE			voltage division				
EE struct; // "EE struct" (UDT)	<u> </u>	5	Capacitive	≈ ∞	≈ 0	Desired Value	≈ 0
	=	6	Resistive	Desired Value	≈ 0	≈ 0	≈ 0
Figure 1: Impedance Voltage Division		Fig	ure 2: The c	omponents	of the resolv	ved net that	need to be set
ਆ 🖉 🍮 🔍 🔍 🛤 🚺 🖉	N ैL ± 1 ₹ ₹	t 🗜		€ € 200			
💠 🛛 Signal Name 🛛 V	alues C1 V	alues	s C2 0	100	200		
VIN	1 0 0		1 1 0				
	0.907441 0 00.	. 907	7441				
📲 r2_udr(hpf)rcv2.V	ΘΘ.	899	707				
	0.8997070	. 899	9707				
T r2_udr_lpf rcv2.V	0.991524 0 0.0 0	. <mark>99</mark> 1)994	1524 1412 0				
Figure 3: HP & LP filtering (offect using	rac	olved net				
	eneor using	103					

Debugging UDN-UDRN

- Understand the functionality of the resolution function, this is done when the debugging tools can distinguish between UDN and UDRN by declaring the resolution function as a variable of the UDRN as illustrated in Figure 4.
- Have a strong builder expression that can construct complex functions equivalent to the functionality of the resolution function because this helps in comparing the outputs from the resolution functions to those generated from the builder expression as shown in Figure 5.

Figure 5: Values of LP filtering effect from UDRN and created expression

Modeling Analog Devices using SV-RNM Mariam Maurice

Siemens EDA, Mariam_Maurice@mentor.com

Boundary Elements (BEs)

Most simulators support the automatic insertion of BEs by providing the MS-Net hierarchical path. The inserted BE can be defined as a 1bit ADC (in the case of R2L) or as a 1-bit DAC (in the case of L2R) and it is expected in the future that EDA tools will insert n-bit ADC/DAC automatically. The n-bit generic ADC/DAC, generic meaning without a specific topology to ADC/DACs, can be supported by the following equation

For $n - bit ADC: L(output_{logic}) = \frac{R(input_{real})}{delta}$, For $n - bit DAC: L(output_{logic}) = R(input_{real}) * delta$

where L:Logic, R:Real, delta = $\frac{v_{sup}}{2^n}$, v_{sup} : supply value, 2^n : number levels of conversion, n: define resolution The SystemVerilog code that supports an n-bit ADC/DAC can be shown in the following table

n-bit_ADC.sv	n-bit_DAC.sv
 // n to befine resolution (accuray) // number of levels = 2**n // delta = (high supply voltage) / (number 	 // n to befine resolution (accuray) // number of levels = 2**n // delta = (high supply voltage) / (number
of levels) module R2L #(parameter n = 3) (input real	of levels) module L2R #(parameter n = 3) (input wire
R, output wire $[0:(n-1)]$ L);	[0:(n-1)] L, output real R);
parameter real vsup = 2.5 ; parameter real vsuplow = 0 ;	parameter real vsup = 2.5; parameter real vsuplow = 0;
parameter real nlevels = 2^{**} n;	parameter real nlevels = 2^{**} n;
parameter real delta = vsup / nlevels;	parameter real delta = vsup / nlevels;
reg [0:n-1] R_conv;	real L_conv;
always @ (R) begin	always @ (L) begin
if (R === `wrealZState)	if $(L === 'Z)$
$R_{conv} = 'Z;$	L_conv = `wrealZState;
else if (R >= vsup)	else if (L === '1)
$R_{conv} = '1;$	$L_{conv} = vsup;$
else if (R === vsuplow)	else if (L === '0)
R_conv = '0; else if ((vsuplow < R) && (R < vsup))	L_conv = vsuplow; else if (('0 < L) && (L < '1))
$R_{conv} = R / delta;$	$L_{conv} = L^* \text{ delta;}$
else	else
R conv = 'X;	L_conv = `wrealXState;
end	end
assign L = R_conv;	assign R = L_conv;
endmodule	endmodule

Debugging BEs

- The tool should define it as a separate instance. This helps to know how many BEs are inserted, where they are inserted and what type of the BE is inserted (R2L, L2R) as shown in Figure 6.
- The BE parameters must be well understood because the designer can change the default values of the BE inserted through configurable files and these values will be propagated through all the design. The highest and the lowest BE parameters values are easily visualized but the values between need smart schematic tools to simply give hints when the 'x' propagates as shown in Figure 7.
- Adding the BE input/output to windows like wave window or smart window for debugging event-driven orders will be very helpful as there are a lot of real values changed to logic '1', logic '0' and some can be changed to 'x' as shown in Figure 8.

Module Scope	All 🔹 🔐 🛞 🗟 🛛 Object Types F	Filter:	+ > 7	▼ Trace X on var t	op_param.R2	L_inst_5.L	. at time 1		_
ime /		Count Descriptior Scope	File	Signal		Time R	emark	File 🛆	Line
L2R_inst_13 L2R inst 14	top_lr Instance 33 1 top_lr Instance 33 1		BE_auto_LR.sv BE auto LR.sv	top_param.R2L	_inst_5.L	1 N(ot an X	nm.sv	118
R2L_inst_0	top_param Instance 78 1	R2L top_param	BE_auto_param_RL.s	* Schematic : top_param.					+ ≥ 2
R2L_inst_1 R2L_inst_10	top_param Instance 78 1 top_rl Instance 94 1		BE_auto_param_RL.s [.] BE_auto_RL.sv	· · · · · · · · · · · · · · · · · · ·	l 🕕 🖸 🔠 🎇 🔛 🕹	: 🛪 🕕 💰 🚺 🖯		nem 🔽 F0 🕚	<u>}</u>
R2L_inst_11 R2L_inst_12	K Options		? ×		RTL		_3 ™L	Change ti	▼ me to 2ns
R2L_inst_2 R2L_inst_3	Variable Type Sta	tement Type	rred Type	□ _ 0.4 0.4 F	dly 26		BL	JF	
R2L_inst_4	All None	All None	All None s		<u> </u>	nv x x R	_conv) > L
R2L_inst_5 R2L_inst_6			ACB			01 inst El		0	
R2L_inst_7 R2L_inst_8	Class Definition	Loop 🏹 📮 🗆 F	FSM s	▼ Trace X on var t	·			1	1
R2L_inst_9			Latch	Signal	T	ime Rema	ark	File 🛆	Line
		ОК	Cancel Apply	top_param.R2L	. inst 5.L 2	Finish	ned Tracin	ngm.sv	118
nure 6: Se	arching for an instan	ice BF		Figure 7: Scher	natic quidin	a tools to	trace 'x	,	
	a ching for an inotal			0	0	0			
		Event Order0			+ ≥ 7 ×				
		Event Order0 C ¹ 4.837 C ²	7.667 🖨 Begin	:0 🖨 End:1000					
			7.667 🗘 Begin Delta	:0 🗘 End:1000					
		C¹ 4.837 € C ²							
		C ¹ 4.837 ‡ C ² Time(1ns) 0.000	Delta 0		L X				
		C ¹ 4.837 ‡ C ² Time(1ns) 0.000 0.000	Delta 0 1	R	÷ •				
		C ¹ 4.837 ‡ C ² Time(1ns) 0.000 0.000 4.837	Delta 0 1 3		L X				
		C ¹ 4.837 ‡ C ² Time(1ns) 0.000 0.000 4.837 4.837	Delta 0 1 3 5	R - 2.5 -	L K				
	C) 9 🗨 🎗 Q 🐹 🚺	C ¹ 4.837 ‡ C ² Time(1ns) 0.000 0.000 4.837 4.837	Delta 0 1 3	R - 2.5 -	L L - 1 iff 2.83 1ns		53.357 MI		
	Signa	C ¹ 4.837 C ² Time(1ns) 0.000 0.000 4.837 4.837 4.837 4.837 A.837 A.837	Delta 0 1 3 5 5 4.837 Values C:	R - - 2.5 - € 7.667 € D	L L - 1 iff 2.83 1ns	▼ Freq 3	53.357 MI	Hz V	
*	, ,	C ¹ 4.837 C ² Time(1ns) 0.000 0.000 4.837 4.837 4.837 4.837 A.837 A.837	Delta 0 1 3 5 5 4.837 Values C:	R - - 2.5 - - - - - - - - - - - - - - - - - - -	L L - 1 iff 2.83 1ns				
	Signa	C ¹ 4.837 C ² Time(1ns) 0.000 0.000 4.837 4.837 4.837 X N 1 1 1 1 1 1 1 1 1 1	Delta 0 1 3 5 F ≤ C 4.837 Values C 32. R 2.	R - - 2.5 - - - - - - - - - - - - - - - - - - -	L L V O - 1 iff 2.83 1ns	10		20	

Interconnects

Some devices are structurally wire-based, or the extracted netlist connections of a device are wire-based. If the system is of real datatype, then there will be incompatibility errors during the simulation process. The solution could be:

- Insert two BEs, one R2L and one L2R, so that the wire is between the two inserted BEs (real -- R2L -- wire -- L2R -- real). Only two real values for the highest and lowest data will be received.
- Include n-bit ADC and n-bit DAC. This solution will have information loss according to the number of levels of conversion. It is a hard solution if the tool does not support the automatic insertion of n-bit ADC/DAC and will also change the design hierarchy.
- Convert these wires to interconnect. Interconnect can hold any value according to the type of data connected to it. Therefore, it is the best solution as shown in Figure 9.

Debugging Interconnects

- Differentiate between interconnects implicitly defined by the tool and those explicitly defined by the user as in Figure 10.
- Highlight the data type driven by the interconnect, the red box in Figure 10 shows the data type that will be driven by the interconnect between brackets '()'.
- Show the drivers/receivers of interconnect. Notice that this interconnect connects UDRN because the datatype of the port has a resolution function as shown in Figure 11.

DUT (Generator)

The function generator is used to generate electrical waves such as sine, square, sawtooth, and triangular waves. These waves can be modeled according to the following equations. Any of these waves will be connected to another analog block, for that reason considering its loading effect could be important.

> $sine_{wave} = offset + ampl * $sin(2 * pi * freq * $time * unit_{time})$ $square_{wave} = offset + ampl * (sgn(\$sin(2 * pi * \$time * unit_{time})))$ $sawtooth_{wave} = offset + ((2 * ampl)/pi) * \frac{1}{\tan(pi * freq * time * unit_{time})}$

> $triangular_{wave} = offset + ((2 * ampl)/pi) * \$asin (1/\$sin(pi * freq * \$time * unit_{time}))$

As shown in Figure 12, the tool can provide information about frequency, max/min amplitude, and the offset of the wave. The random Generator can be useful for modeling the noise input wave or adding an amount of noise to the input wave.

C 0	C ² 25	Ciff 25 1ns	▼ Freq 40.000 MHz ▼	2
💠 Signal Name	Values C1	Values C2	0	<
sine	2.9 0 -2.1	2.9 0.4 -2.1	Offset = 0.4	
square	1.2 0 -1.2	1.2 1.2 -1.2	Bi-Polar square wave	
sawtooth	1.2 0 -1.2	1.2	Max-amp. = 1.2 Min. amp. = -1.2	
triangular	1.4 0 -2.2	1.4	Offset = -0.4	
Figure 12: W	laves and	getting info	from their waveforms	

•				
🗙 🖱 🎒 🕕 🕀 🖓 🤤 🚺	L 🖌 🕅 🤁 🛨	┶₹ ₣ ≰ C	1 16.56 C 44	.094 🛟
🧇 Signal Name	Values C1	Values C2	0	5
	2.9	2.9	\land	
<pre>sine_wave.sine_out</pre>	-1.73078	-2.09066	/	\setminus
	-2.1	-2.1		\bigvee
	0.497341		A A	AN AN
🕞 Noise	0.140817	-0.238773	₩₩₩₩₽₩₽	\mathbb{W}
	-0.496427	-0.496427	. 1 1 .V V I	'
	3.38565	3.38565	May Mary	
🏂 🟂 🏂 🏂 🏂 🏂	-1.58996	-2.32944		
	-2.57128	-2.57128	UT VI	"\v

A lot of analog devices can be modeled using SV-RNM and in the future much of the technical thinking will be towards modeling analog complex devices in the digital environment and will be reflected in the EDA tools from simulation, debugging, and verification of such complex devices. Future work will be on how to verify these devices from UVM-based verification, assertions, and functional coverage.

DUT (ADC/DACs)

The DUT in Figure 13 has the following devices: two Generators, two ADCs of 4-bit FLASH_ADC, Logical Unit (LU), Arithmetic Unit (AU), one DAC of 4-bit R_STRING DAC and 4-bit generic DAC.

Wave1 and wave2 are driven by resolved net-types to model the load effect at the analog part, and this loading can reduce the value of the analog voltage that will be driven by ADC.

Inside the FLASH_ADC there are BEs inserted of R2L type, to convert the real output voltage value of the comparator to the digital input logic value of the encoder. The ADC sub-blocks are structurally wire-based connections, so a wire to interconnect is needed to receive the desired real data between sub-blocks.

The outputs of the two ADCs will go through the Logical Unit (LU) and the Arithmetic Unit (AU) which are purely digital devices. Then, the LU output will go through the R_STRING_DAC and the DAC's output is a resolved net. Inside the DAC there are BEs inserted of L2R type. The DAC sub-blocks are structurally wirebased connections, so a wire to interconnect is now required. The AU output will go through the n-bit DAC acts as a generic DAC and its output is also resolved net.

DUT (LDOs) / (PhotoDiodes)

Figure 14: The concept of LDO (Low Drop-Out voltage) can be simply

Conclusion