
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

Modeling Analog Devices using SV-RNM
Mariam Maurice

Siemens EDA, Mariam_Maurice@mentor.com

Abstract

Nowadays, both analog and digital system blocks are located on the

same chip. Most digital design engineers want to verify digital

modeled blocks along with analog models for ensuring the

functionality of both systems together. This paper describes how

analog devices such as DACs, ADCs, LDOs, Filters, and PhotoDiodes

can be modeled from user-defined resolved nets, boundary elements,

and interconnects. Debugging and visualization of RNM constructs

are important during the integration of a complete analog device and

during connecting an analog device modeled with SV-RNM language

to a digital one.

User-Defined Net-types and Resolved Nets (UDN-UDRN)

Boundary Elements (BEs)

Most simulators support the automatic insertion of BEs by providing

the MS-Net hierarchical path. The inserted BE can be defined as a 1-

bit ADC (in the case of R2L) or as a 1-bit DAC (in the case of L2R)

and it is expected in the future that EDA tools will insert n-bit

ADC/DAC automatically. The n-bit generic ADC/DAC, generic

meaning without a specific topology to ADC/DACs, can be supported

by the following equation

The SystemVerilog code that supports an n-bit ADC/DAC can be

shown in the following table

Debugging BEs

▪ The tool should define it as a separate instance. This helps to

know how many BEs are inserted, where they are inserted and

what type of the BE is inserted (R2L, L2R) as shown in Figure 6.

▪ The BE parameters must be well understood because the

designer can change the default values of the BE inserted through

configurable files and these values will be propagated through all

the design. The highest and the lowest BE parameters values are

easily visualized but the values between need smart schematic

tools to simply give hints when the ‘x’ propagates as shown in

Figure 7.

▪ Adding the BE input/output to windows like wave window or smart

window for debugging event-driven orders will be very helpful as

there are a lot of real values changed to logic ‘1’, logic ‘0’ and

some can be changed to ‘x’ as shown in Figure 8.

Interconnects

Some devices are structurally wire-based, or the extracted netlist

connections of a device are wire-based. If the system is of real

datatype, then there will be incompatibility errors during the simulation

process. The solution could be:

▪ Insert two BEs, one R2L and one L2R, so that the wire is between

the two inserted BEs (real -- R2L -- wire -- L2R -- real). Only two

real values for the highest and lowest data will be received.

▪ Include n-bit ADC and n-bit DAC. This solution will have information

loss according to the number of levels of conversion. It is a hard

solution if the tool does not support the automatic insertion of n-bit

ADC/DAC and will also change the design hierarchy.

▪ Convert these wires to interconnect. Interconnect can hold any

value according to the type of data connected to it. Therefore, it is

the best solution as shown in Figure 9.

Debugging Interconnects

▪ Differentiate between interconnects implicitly defined by the tool

and those explicitly defined by the user as in Figure 10.

▪ Highlight the data type driven by the interconnect, the red box in

Figure 10 shows the data type that will be driven by the

interconnect between brackets ‘()’.

▪ Show the drivers/receivers of interconnect. Notice that this

interconnect connects UDRN because the datatype of the port has

a resolution function as shown in Figure 11.

DUT (Generator)

The function generator is used to generate electrical waves such as

sine, square, sawtooth, and triangular waves. These waves can be

modeled according to the following equations. Any of these waves will

be connected to another analog block, for that reason considering its

loading effect could be important.

As shown in Figure 12, the tool can provide information about

frequency, max/min amplitude, and the offset of the wave. The

random Generator can be useful for modeling the noise input wave or

adding an amount of noise to the input wave.

DUT (ADC/DACs)

DUT (LDOs) / (PhotoDiodes)

Conclusion

Figure 14: The concept of LDO (Low Drop-Out voltage) can be simply

modeled as a resistive voltage divide. The LDO reduces the value of

the supply battery to the desired analog system supply voltage. It can

be modeled with UDRN.

Figure 15: PhotoDiode (PD) can be modeled as a current source with

approximate infinity resistance (rsh) and small capacitor due to the

effect of the materials (cs). The photodiode is then connected to a

trans-impedance amplifier to convert current into voltage. The trans-

impedance amplifier has an impedance effect of (cf//rf).

User-Defined Nets (UDN) hold the values of voltage, current, and

resistance in only one net. New UDN can also support the

capacitance value. Figure 1, illustrates that these nets will be resolved

by an impedance voltage division. The output voltage and the current

are resolved by the following equations.

This resolved net can model a Low Pass (LP)/High Pass (HP) filtering

effect and a resistance-voltage/capacitance-voltage divider effect.

Figure 2, shows which capacitor and resistor need to be set for

reaching the desired effect. Figure 3, shows the effect of low and high

filtering using this resolved net.

Figure 1: Impedance Voltage Division Figure 2: The components of the resolved net that need to be set

Figure 3: HP & LP filtering effect using resolved net.

Debugging UDN-UDRN

▪ Understand the functionality of the resolution function, this is

done when the debugging tools can distinguish between UDN

and UDRN by declaring the resolution function as a variable

of the UDRN as illustrated in Figure 4.

▪ Have a strong builder expression that can construct complex

functions equivalent to the functionality of the resolution

function because this helps in comparing the outputs from the

resolution functions to those generated from the builder

expression as shown in Figure 5.

Figure 4: Difference between UDN & UDRN

Figure 5: Values of LP filtering effect from UDRN and created expression

n-bit_ADC.sv n-bit_DAC.sv

// n to befine resolution (accuray)

// number of levels = 2**n

// delta = (high supply voltage) / (number

of levels)

module R2L #(parameter n = 3) (input real

R, output wire [0:(n-1)] L);

parameter real vsup = 2.5;

parameter real vsuplow = 0;

parameter real nlevels = 2**n;

parameter real delta = vsup / nlevels;

reg [0:n-1] R_conv;

always @ (R) begin

if (R === `wrealZState)

R_conv = 'Z;

else if (R >= vsup)

R_conv = '1;

else if (R === vsuplow)

R_conv = '0;

else if ((vsuplow < R) && (R < vsup))

R_conv = R / delta;

else

R_conv = 'X;

end

assign L = R_conv;

endmodule

// n to befine resolution (accuray)

// number of levels = 2**n

// delta = (high supply voltage) / (number

of levels)

module L2R #(parameter n = 3) (input wire

[0:(n-1)] L, output real R);

parameter real vsup = 2.5;

parameter real vsuplow = 0;

parameter real nlevels = 2**n;

parameter real delta = vsup / nlevels;

real L_conv;

always @ (L) begin

if (L === 'Z)

L_conv = `wrealZState;

else if (L === '1)

L_conv = vsup;

else if (L === '0)

L_conv = vsuplow;

else if (('0 < L) && (L < '1))

L_conv = L * delta;

else

L_conv = `wrealXState;

end

assign R = L_conv;

endmodule

Figure 6: Searching for an instance BE Figure 7: Schematic guiding tools to trace ‘x’

Figure 8: The event order for a ‘real’ variable

Figure 9: Wire to Interconnect

Figure 10: Explicit/Implicit interconnects

Figure 11: Debugging drivers and receivers of an interconnect

Figure 12: Waves and getting info from their waveforms

The DUT in Figure 13 has the following devices: two Generators, two

ADCs of 4-bit FLASH_ADC, Logical Unit (LU), Arithmetic Unit (AU),

one DAC of 4-bit R_STRING DAC and 4-bit generic DAC.

▪ Wave1 and wave2 are driven by resolved net-types to model the

load effect at the analog part, and this loading can reduce the

value of the analog voltage that will be driven by ADC.

▪ Inside the FLASH_ADC there are BEs inserted of R2L type, to

convert the real output voltage value of the comparator to the

digital input logic value of the encoder. The ADC sub-blocks are

structurally wire-based connections, so a wire to interconnect is

needed to receive the desired real data between sub-blocks.

▪ The outputs of the two ADCs will go through the Logical Unit (LU)

and the Arithmetic Unit (AU) which are purely digital devices.

Then, the LU output will go through the R_STRING_DAC and the

DAC’s output is a resolved net. Inside the DAC there are BEs

inserted of L2R type. The DAC sub-blocks are structurally wire-

based connections, so a wire to interconnect is now required. The

AU output will go through the n-bit DAC acts as a generic DAC

and its output is also resolved net.

Figure 13: Analog-Mixed Signal DUT, the structure of FLASH_ADC & R_STRING_DAC

Photodiode.sv

module beh_pd (vout, vin);

output vout; input vin;

real vout; real vin;

real vout_prev; real vin_prev;

// Parameters of photodiode

parameter real id = 50E-6;

parameter real cs = 100E-12; // series capacitance

parameter real rsh = 1E9; // shunt resistance

// Parameters of feedback

parameter real rf = 20E3; // feedback resistance

parameter real cf = 10E-12; // feedback capacitance

//

parameter real TS = 1;

parameter real TU = 1E-9;

real dt = TS * TU;

// Constants

real A, B, C, D;

always @(vin, samplying_clock) begin

A = 1/rf;

B = 1/rsh;

C = cf/dt;

D = cs/dt;

vin_prev = vin;

vout_prev = vout;

vout = (1/(A+C)) * (((A+C+B+D) * vin) + (-(D+C) * vin_prev)

+ (C * vout_prev) + id);

end

endmodule

Figure 14: LDO

Figure 15: PhotoDiode and its SystemVerilog code.

A lot of analog devices can be modeled using SV-RNM and in the

future much of the technical thinking will be towards modeling analog

complex devices in the digital environment and will be reflected in the

EDA tools from simulation, debugging, and verification of such

complex devices. Future work will be on how to verify these devices

from UVM-based verification, assertions, and functional coverage.

