
Model-Based Approach for Developing Optimal
HW/SW Architectures for AI systems

Petri Solanti, Siemens EDA

Russell Klein, Siemens EDA

Artificial Intelligence in System Context

One system can have multiple AI algorithms

• Dedicated algorithms for different
purposes

• Nested algorithms to provide complex
functions, e.g.,
• Filtering and FFT

• Object recognition

• Sensor fusion

Vehicle

Object

Detector

Camera

System

Front Camera

Radar

System

Rear Camera

Assistant

Source: https://eclipse.dev/capella/arcadia.html

Deploying Inferencing Systems, where and how

The Cloud1 A Gateway2 The Edge3

Higher Latency/Lower development costs

CPU4 GPU5 TPU/NPU6 Edge TPU6 FPGA or ASIC7

Higher specialization/Lower energy

Highest performance and efficiency
are achieved with specialized ASIC

implementation running on the edge

W
h

e
re

H
o

w

Sources: 1Getty Images, 2Stereolabs, 3ems1.com, 4intel.com, 5wolfadvancedtechnology.com, 6google.com, 7Adobe Stock

System Architecture Considerations

AI algorithms can be implemented in many different ways:
• Pure software implementation
• Very flexible and easy to update

• Performance and timing issues in timing critical applications

• Software with generic hardware accelerator (GPU, NPU)
• Relies on standard HW

• Limited flexibility

• Power consumption and timing issues

• Software with bespoke hardware accelerator
• Requires development of custom HW

• Low power and predictable timing

Centralized or Distributed Computation

Centralized computation
• Uncompressed data through network
• High computational load on HPC
• Flexible
• High power consumption

Distributed computation
• Pre-processing data in its‘ origin
• Load shared across multiple components
• Data amount reduced by pre-processing and

compression
• Low power consumption through dedicated HW

Sensor 1

Sensor 2

Gateway

Central
HPC

AI

Sensor 1

Sensor 2

Gateway Central
HPC

AI (2)

AI (1)

AI (1)

Comp

Model-Based AI System Design

Neural Network
Architecture

Synthesizable
RTLC++

Algorithm

C++
Architected

Implementation

C++
Quantized
Algorithm

High-Level
Synthesis

System Architecture

Logical Architecture

Implementation:
• PCB
• PCB/FPGA
• SoC

Software codeVirtual
Platform

Final Logical ArchitecturePerformance Analysis Physical Architecture

Model-Based Architecture Exploration

Model-Based Architecture Exploration

Model-Based Systems Engineering (MBSE)
• Formalized application of modeling to support system design
• Covers design, analysis, verification and validation activities throughout

development

MBSE enables abstract level system architecture exploration
• Functional analysis
• Mapping functions to architectural elements
• Architecture performance analysis
• Subsystem transitioning of system components
• Several formalized approaches available

ARCADIA Methodology

Tooled method to define, analyze, design &
verify system, SW and HW architectures

• Operational Analysis
• What the users of the system need to accomplish

• System Analysis
• What the system has to accomplish for the user

• Logical Architecture
• How the system will work to fulfill expectations

• Physical Architecture
• How the system will be developed and built Source: https://eclipse.dev/capella/arcadia.html

Top-Level System Exploration

System functional
architecture

System logical architecture

System Physical architecture

Subsystem
transition

Subsystem Transition and Decomposition
Subsystem
transition

Functional
breakdown

Subsystem logical architecture

Transitioned subsystem
functional architecture

Subsystem detailed functional architecture

Subsystem Architecture Exploration

Manual
design
step

Subsystem performance model

Subsystem performance simulation model

Automatic
model
creation

Analyzing Performance Simulation Results

Full SW implementation with 3 CPU cores Accelerated implementation with 2 CPU cores

Analyzing Performance Simulation Results contd

Architecture with 2 HW accelerators and
one CPU core

• Clock frequency: 500 MHz
• Interval between inferences: 20ms

Final Subsystem Architecture

Logical architecture is updated based on the simulation results and
transitioned to Physical Architecture

Assisted Transition

Model-Based Design Process

HW/SW Co-Architecting

Iterative multi-abstraction level process

1. Individual pieces of algorithm developed separately

2. Complete functional model in C/C++

3. Architecture exploration

4. Partitioned HW/SW model

5. Virtual Hardware model with custom accelerators

6. Partitioning optimization

7. High-Level Synthesis of custom accelerators

Continuous verification throughout the process

Complete

Functional

Model
(C/C++/SysC)

Requirements Algorithm

Algorithm

Algorithm

Architecture

exploration

High-Level

Synthesis

V
e

rific
a

tio
n

 T
h

re
a

d

RTL/Hybrid

Verification

Partitioned

HW/SW

Model
(C/C++/SysC)

Virtual Platform

(SysC)

Model

Library

Model-Based AI System Design

Neural Network
Architecture

Synthesizable
RTLC++

Algorithm

C++
Architected

Implementation

C++
Quantized
Algorithm

High-Level
Synthesis

System Architecture

Implementation:
• PCB
• PCB/FPGA
• SoC

Software codeVirtual
Platform

Logical Architecture Final Logical ArchitecturePerformance Analysis Physical Architecture

Optimize Neural Network

• In the datacenter, size and speed are secondary
considerations

• On the edge we need to be fast and compact
• Fewer layers

• Fewer channels

Original MNIST network Optimized MNIST network

Neural Network
Architecture

Create an equivalent C++ model

• To use co-architecting flow we need
to convert the algorithm to C++

• Only include programmability in the
C++ for parameters you will vary

C++
Algorithm

Create System (Functional) Architecture

• Specifies different functions and their
dependencies

• Levels of details depends on the system
hierarchy level

• Relevant parameters attached to functions
as properties

• Functional breakdown needed, when
moving down in subsystem hierarchy

Neural Network
Architecture

C++
Algorithm

System Architecture

Functional Breakdown and Parameterization
Subsystem
transition

Functional
breakdown

Transitioned subsystem
functional architecture

Subsystem functional breakdown

Subsystem detailed parameterized functional architecture

Create Initial Logical Architecture

• Initial system architecture

• Group system functions into logical
components based on
• Performance metrics (MAC operations,

profiling data, etc.)

• Data sizes of the function exchanges

• Allocate function exchanges to
component exchanges

Neural Network
Architecture

C++
Algorithm

System Architecture

Logical Architecture

Explore Different Architecture Options

• Create initial performance analysis model
based on the logical architecture

• Explore different allocations
• Multi-core

• Multi-cluster

• Architectures with hardware accelerators

• Multi-chip

• Multiboard

• ...

Neural Network
Architecture

C++
Algorithm

System Architecture

Logical Architecture Performance Analysis

Runtime and Data Communication Analysis

Analyzing performance simulation results

Full SW implementation
With 3 CPU cores

Accelerated implementation
With 2 CPUs and accelerator

Accelerated function

Quantize HW Functions & Update Logical Arch.

• Update logical architecture based
on performance results

• Quantize functions that are
allocated to hardware accelerators

• Functional verification of
quantized functions

Neural Network
Architecture

C++
Algorithm

C++
Quantized
Algorithm

System Architecture

Logical Architecture Final Logical ArchitecturePerformance Analysis

Quantization of HW Functions

• Optimizing hardware word lengths to minimize HW area
• Ideally every variable individually

• Fixed-point data types ideal
• ac_fixed

• sc_(u)fixed

• Several analysis methods available
• Value Range Analysis -based (simulation based)

• Static Analysis

• Brute force

integer bits fractional bitssign

Any size you want

Create Physical Architecture Model

• Assisted transition of
model

• Non-functional
components added
manually
• Memories

• Interconnects

• Peripherals

Neural Network
Architecture

C++
Algorithm

C++
Quantized
Algorithm

System Architecture

Logical Architecture Final Logical ArchitecturePerformance Analysis Physical Architecture

Create Virtual Platform from Physical Architecture

• Create SystemC
model of hardware
platform

• SW functions
mapped to
processors

• Initial drivers

Neural Network
Architecture

C++
Algorithm

C++
Quantized
Algorithm

System Architecture

Logical Architecture

Virtual
Platform

Final Logical ArchitecturePerformance Analysis Physical Architecture

Creating Virtual Platform

Subsystem Virtual Platform Model

Subsystem Physical Architecture Model

Custom Virtual
Component

Custom Virtual
Component

SystemC
Model
Library

Creating Custom Virtual Component

High-Level
Synthesis

Synthesizable Component
C++/SystemC

Synthesizable SystemC
Wrapper

Synthesizable IP Block
C++

Bus slave

Bus
master

RW Logic

P1
P2
P3

signal1

signal2

signal3

Synthesizable SystemC Wrapper

Synthesizable
Component

IP Block 1

IP Block 2

Processor

Low
Memory

High
Memory

Catapult
Accelerator

UART

Bus Fabric

Timer

Target
Optimized

RTL
(ASIC, FPGA)

Optimize accelerator model for HLS

• Some code restructuring may be needed for optimal synthesis results
• Block-level architecture

• Loop order

• Internal storages

• Reusable functions

• Code modifications may influence algorithm accuracy
• Continuous verification required

Update Virtual Platform with detailed Accelerator

Neural Network
Architecture

C++
Algorithm

C++
Architected

Implementation

C++
Quantized
Algorithm

System Architecture

Logical Architecture

Virtual
Platform

Final Logical ArchitecturePerformance Analysis Physical Architecture

• No need to change
platform
architecture

• Bit-accurate function
of accelerator

• Final platform for
SW development

Implement and Integrate HW and SW Modules

Neural Network
Architecture

Synthesizable
RTLC++

Algorithm

C++
Architected

Implementation

C++
Quantized
Algorithm

High-Level
Synthesis

System Architecture

Logical Architecture

Implementation:
• PCB
• PCB/FPGA
• SoC

Software codeVirtual
Platform

Final Logical ArchitecturePerformance Analysis Physical Architecture

Hardware Implementation

Optimization
for HLS

High-Level
Synthesis

RTL IP
Library

SoC Implementation

Synthesized RTL

Validation and Verification of
HW/SW AI System

Validation vs. Verification

• Validation == Are we doing the right thing?
• Performed during design phase of the project
• Comparing the model to higher abstraction level or requirement
• Usually simulation between consecutive design steps

• Verification == Did we implement it correctly?
• Performed during implementation/integration phase of the project
• Implementation vs. requirements at the same level
• Implementation vs. model at the same level
• Test coverage, corner cases, etc.
• Simulations, formal analysis, emulation, prototyping

Validation and Verification

CNN Architecture

HW/SW
Partitioning

Quantization

HW
Architecture

RTL Creation

Accelerator
Verification

Inference
Verification

System
Verification

Python ML Framework

Virtual Prototype

Bit Accurate Model

Architected C++

Catapult ->Verilog

Logic simulation

Emulation

FPGA Prototype

Validation
Loop

Multi-Abstraction-Level Verification Challenges

• Requirements driven
verification with
• Parameterizable requirements

• Verification requirements

• Requirement refinement

• Hierarchical requirements

• Continuous verification and
requirements tracing
• Multi-layer verification concept

Requirement
Verification

Requirement

System
Model

HW/SW
Architecture

HW Imple-
mentation

SW Imple-
mentation

System
Integration

Requirement
Requirement

Requirement

Requirement
Requirement

Requirement
Requirement

Requirement
Verification

Requirement

Requirement
Requirement

Verification
Requirement

Verification
Event

Verification
Event

Verification
Event

Verification
Event Requirement

Requirement
Verification

Requirement

Verification Process in Model-Based Design

• Requirements driven process:
• Verification requirement defines test event

• Test procedure

• Test activity

• Test configuration

• Refined and hierarchical requirements need their own test events

• Verification Capture Point (VCP)
• Bundles all test events related to one test requirement together

• Contains test events in different design phases and abstraction levels

Verification Capture Point

Verification Capture Point

Requirement
Verification

Requirement

Verification
Event

System Model

Subsystem
Model

Component
Implementation

Verification
Event

Verification Event

Test
Configuration

Test
Procedure

Test
Activity

Verification Threader

RTL Simulation √

VP Simulation √

System Simulation √

Validation and Verification of MNIST System

Neural Network
Architecture

Synthesizable
RTLC++

Algorithm

C++
Architected

Implementation

C++
Quantized
Algorithm

High-Level
Synthesis

System Architecture

Logical Architecture

Implementation:
• PCB
• PCB/FPGA
• SoC

Software codeVirtual
Platform

Final Logical ArchitecturePerformance Analysis Physical Architecture

Validating Python to C++ Translation Consistency

• Import a C++ node into Python
and compare the outputs

• Start with one node

• Then one layer

• Then the whole network

• Should match Python results
except for bottom 2 or 3 bits

• Variance results from order of
operations

Python to C++

==

C++ node Comparator

Node by node compare
Python with C++

Python CNN

Neural Network
Architecture

C++
Algorithm

Validation and Verification of C++ Code

• Functional validation in Tensorflow
• Possibly modify the network architecture for better PPA

• Verification of quantized and architected C++ code
• Ensure that implementation meets requirements

• In C++ domain with translated testbench

• Coverage analysis needed to ensure test quality

Neural Network
Architecture

C++
Algorithm

C++
Architected

Implementation

C++
Quantized
Algorithm

Verification of MNIST System Architecture

Neural Network
Architecture

C++
Algorithm

C++
Architected

Implementation

C++
Quantized
Algorithm

System Architecture

Logical Architecture Final Logical ArchitecturePerformance Analysis Physical Architecture

Functionality

Performance Integrity

Verification of MNIST System Architecture

Neural Network
Architecture

C++
Algorithm

C++
Architected

Implementation

C++
Quantized
Algorithm

System Architecture

Logical Architecture

Virtual
Platform

Final Logical ArchitecturePerformance Analysis Physical Architecture

Functionality

Performance Integrity

Functionality
Timing

Performance
Integrity

Verification of MNIST System Implementation

Neural Network
Architecture

Synthesizable
RTLC++

Algorithm

C++
Architected

Implementation

C++
Quantized
Algorithm

High-Level
Synthesis

System Architecture

Logical Architecture

Hybrid or RTL
Verification Flow

Software codeVirtual
Platform

Final Logical ArchitecturePerformance Analysis Physical Architecture

Page 48

Verification – Before HLS

Static Design Checks

Coverage Analysis

C++ Architected CNN

Static code analysis and synthesis
checks. Find coding errors and
problem constructs

Determine completeness of test
cases. Statement, branch and
expression coverage as well as
covergroups, coverpoints, bins and
crosses

Page 49

C++ to RTL consistency

Formal

RTL Coverage

UVM

C++ Architected CNN

Using formal techniques, prove as
much equivalency as possible

Determine remaining verification
effectiveness through RTL coverage
metrics

Architected C++ is used as a
predictor for RTL verification

Block Level Verification

Synthesized
RTL

C++ | SystemVerilog
Testbench

• Re-use C++ or employ new
System Verilog testbench

• Prove correctness
• Cover corner and exception

conditions

• Repeat for each accelerator

Block Level Verification - HLS Flow Tools

Area, Timing &
Power Optimized

RTL

Catapult
Design Checker

C++/SystemC
Design

HLS
Verification

Find language and
coding bugs

without simulation Ensure code/functional
coverage of HLS Code

Run in a wide
variety of

environments

Verify post-HLS RTL
leveraging existing

testbench

Catapult
Coverage

C++/ SysC/
UVM

Testbench

Catapult
HLS

Sub-System Verification
C

o
n

v2
d

sy
n

th
 R

TL
C++ | SystemVerilog

Testbench

• Prove the correctness of a
collection of accelerator

• Exercise larger functions
• In this case inference

• Low level coverage is not important
here

• Run times could be impractical for
logic simulation
• May require acceleration

(emulation | FPGA prototype)

D
en

se
sy

n
th

 R
TL

D
en

se
sy

n
th

 R
TL

System Verification

Conv2d
synth RTL

• Includes processors, software,
interconnect
• Exercises HW and SW interfaces

• Execute typical and exceptional
use cases

• Testbench drives I/O, clock, and
reset
• Software and processor orchestrate

operation (as in final system)

• Likely to require FPGA prototype

Dense
synth RTL

Memory

Interconnect

CPU
Complex

I/O
Peripheral

I/O
Peripheral

C++ | SystemVerilog
Testbench

Page 54

Debugging – When Things Go Wrong

• Log all intermediate values to memory or log file
• This includes output from each layer

• Have scripts that can compare intermediate values
from different model representations
• This identifies the first point of divergence between

models

• Immediately find layer and node where problem
resides

• Intermediate values from the Python can be
recorded to a file for comparison

Model A

Model B

Questions?

Model-Based Approach for Developing Optimal
HW/SW Architectures for AI systems

Petri Solanti, petri.solanti@siemens.com

Russell Klein, russell.klein@siemens.com

