DESIGN AND@TM

DV LDON

CONFERENCE AND EXHIBITION

10 YEAR ANNIVERSARY

Model-Based Approach for Developing Optimal
HW/SW Architectures for Al systems

Petri Solanti, Siemens EDA

Russell Klein, Siemens EDA

Artificial Intelligence in System Context ...

@L/i

One system can have multiple Al algorithms

* Dedicated algorithms for different
purposes

* Nested algorithms to provide complex
functions, e.g.,
* Filtering and FFT
* Object recognition
e Sensor fusion

Front Camera Rear Camera Source: https://eclipse.dev/capella/arcadia.html

e —
S‘ESTEMS INITIATIVE

Deploying Inferencing Systems, where and how

Highest performance and efficiency
are achieved with specialized ASIC
implementation running on the edge

/

Where

The Cloud?

A Gateway?

// ’//)//77////;;1/” i

How

TPU/NPU®

Higher specialization/Lower energy
Sources: 1Getty Images, 2Stereolabs, 3ems1.com, %intel.com, wolfadvancedtechnology.com, google.com, ’Adobe Stock

2023
DESIGN AND V! IFICATION™

DV

CONFERENCE AND EXHIBITION

'SYSTEMS INITIATIVE -
e 10 YEAR ANNIVERSARY

System Architecture Considerations

Al algorithms can be implemented in many different ways:

* Pure software implementation
* Very flexible and easy to update
* Performance and timing issues in timing critical applications
e Software with generic hardware accelerator (GPU, NPU)
* Relies on standard HW
* Limited flexibility
* Power consumption and timing issues
» Software with bespoke hardware accelerator
* Requires development of custom HW
* Low power and predictable timing

2023

DESIGN AND VI —ICATION™

Centralized or Distributed Computation

Centralized computation
* Uncompressed data through network
* High computational load on HPC
* Flexible
* High power consumption

Distributed computation
* Pre-processing data in its‘ origin
* Load shared across multiple components

* Data amount reduced by pre-processing and
compression

* Low power consumption through dedicated HW

Gateway

(CENEVEL,

Comp

EMS INITIATIVE

Model-Based Al System Design
+ X

TensorFlow

Synthesizable
C++
Architected

o : RTL

C++ :
»Algorithm » Quantized » » High Lev.el
Implementation Synthesis

Algorithm

Implementation:
- PCB
 PCB/FPGA

* SoC

Neural Network
Architecture

Software code

Virtual r
Platform =

Qsotne | -

Logical Architecture Performance Analysis Final Logical Architecture Physical Architecture

2023
DESIGN AND V! IFICATION ™

DV

CONFERENCE AND EXHIBITION

YSVSTENS INITIATIVE

10 YEAR ANNIVERSARY

Model-Based Architecture Exploration

Model-Based Architecture Exploration

Model-Based Systems Engineering (MBSE)
* Formalized application of modeling to support system design

* Covers design, analysis, verification and validation activities throughout
development

MBSE enables abstract level system architecture exploration
* Functional analysis

* Mapping functions to architectural elements

* Architecture performance analysis

e Subsystem transitioning of system components

» Several formalized approaches available

2023

—ICATION™

IVSTEMS INITIATIVE

ARCADIA Methodology

Tooled method to define, analyze, design &
verify system, SW and HW architectures

e Operational Analysis

What the users of the system need to accomplish

e System Analysis

What the system has to accomplish for the user

* Logical Architecture

How the system will work to fulfill expectations

* Physical Architecture

* How the system will be developed and built

Need understanding

:::’rl i -
SYSTEMS INITIATIVE

Top-Level System Exploration

& Operate Scanner
i
Dell Move scanner
Bl Power on 2nd off

45 Document
l {7] Scanngr System
i

ost Computer

DSl Graphical data DSl serial interface

@) Send digit to host|

@ Scan document

D=31 Digit queue

)
image queue
@ Detect digit image S & Recognize digit
Dl Move seanner g CaEEn smnﬁ,g e Activate scanner
Supply power fo
Dol Power supply e

System Physical architecture

lost Computer

Scanner System

y Scarjner ead serialinterface | D51 Standard serial interface FRuser
H DlfGraphical dat . Dl serial interface
architecture o o=
nost
<
ISESS stream g Activte scannes
Prysical System
DSIPinel stream link DsIDigit link [a— Elpryca
P -
A {E] sconrer)
ks 4Lsec L]power
. a power sy | @ san Dscfnner active signal
Pl image queue . . dacument
© Detect it mage P AIT29E [© Power control and g Supply powerto
supply D21 Power sunsly scanner . \
\
e \
7 Host Computer

] us8 Controtier

W}

Send digitto
. ® host '

D Standord serial intertce
rial interta -
D Serial intertace 3 @ Recene digit

System logical architecture

DA Standerd power supphf

Subsystem
transition

by, Supply power to

Power cantral
® and supply

DEPower supply

2023

DESIGN AND VI -ICATION ™

DV

CONFERENCE AND EXHIBITION

o - ' R

10 YEAR ANNIVERSARY

Subsystem Transition and Decomposition

Subsystem

transition

[image detector properties \ [0t recognition properties

= image size X = 28
image size ¥ = 28
= 172) = 50

—{= @ Detect digit image.

Function e

breakdown &

Transitioned subsystem
functional architecture

Subsystem logical architecture

MNIST SoC Logical System

T Convolution Accelerator Dense Accelerator
DI Dense_2_In
‘ ‘ @ - G perens

r & Convolution G Flattening r G Dense G SoftMax

Dflimage queue Dfl MaxPool_|f D&l Dense_1_In Drl softMax_in
5 o
@ Convolution_20 @ MaxPooling @ Dense_1 @ Dense 2
D Convface Interfpce D2l Densq Acc Interface
0 |

§L]Software

Subsystem detailed functional architecture [&= losncng SIS

%" D Scanner pixel s malr;“.% Detect digit Flatten In ==tf DEDgt queve | Send digit to
© Scan document @ image @ MaxPooling @ Flattening @ SoftMax @0

UsB Controller

Active signal ASIC

ol
{Lf] Power management

DESIGN AND Q:’ON =

DV

CONFERENCE AND EXHIBITION

10D YEAR ANNIVERSARY

Subsystem Architecture Exploration

System

Convolution Accelerator Dense Accelerator

@ Convolution_2D @ Dense 1 CHRense2in

Dilimage queue DY MaxPool | DfiDense 1In DHlsafthax In
§hScanner
D=8 Convfacc Interfpce 08 Densg Acc Interface B MNST Soc
L u;
canner component Pixel stream | bIog
e Lo==" [0 coucore [0l convolution Accelerator
DSl Scanner pixel spream | -="" DI Digit
© scan document. @ MaxPooling @ Flattening @ softMax
Dflimage cueve | Lo
i ® Convolution_2D

_

Maxpool_in

D ASIC activatio;

Active signal AS

L
ower management [C Dense Accelerator

Dense 1 process

Automatic
model
creation

Bl Dense 1_in L
]] @® Dense_1
@® Flattening = i
® softMax o 2
< = &1
PRz

design
step)

Preprocessing -
L

———
Subsystem performance model P B

@® MaxPooling Maxp vuw:Ou/t_pan
K

Cenvolution process

I3 ® Convolution 20

27 1

t-port

ce_1_in_Out_port Dense_1 process

© Fiatten,
Q Dense_1_In

I
Postprocessing Densf ,U/nmfp{\ 25 FlattenzaData : uinta[20]
e

‘A DataReceivedEvent 1

@ softMax

25 MaxpooledDat

@ Dense_t
T DataReceivedEvent 1

Ensg 2 In_In_port

Flatten_in_Ot

Dense_2 process.

SoftMax_In_O e
T D¢ 2 In.Out_port
© SoftMax_in SoftMax_In_In_pert E"SE:E-P- uipo
, Dense_2 =
25 DensedData2 : uint8[1] 3 P
[. DateReceivedEvent 1|

DESIGN AND VI “ICATION™

DV

CONFERENCE AND EXHIBITION

"*‘-‘—'-:;sfsrsms INITIATIVE
r(,w"/ e y 10 YEAR ANNIVERSARY

Analyzing Performance Simulation Results

Full SW implementation with 3 CPU cores

Kernel Object Run-Time Distribution per CPU

CPU Execution Run-Time Statistics

iect Run-Time . ~*ribution per CPU

93.89% IDLE —
—— 2.6% System

2.05% TASK 93% TASK N
0.53% ISR
3.38% System o
0.68% ISR 3.687% IDLE

CPU[0] (6.11% BUSY) CPU[1] (96.13% BUSY)

B.6% TASK
3.32% System
0.59% ISR

CPU[2] (10.72% BUSY)

89.28% IDLE —

Task Execution Statistics

Convalu [0x35270]
Dense_1 [Dx3568d0] | 220
wotask [0x442acd] |l

92.14% IDLE —

~ 3.42% TASK
%3.82% System
0.62% ISR

CPU[0] 7.86% BUSY)

o 9.59% TASK
3.74% System
0.65% ISR

CPU[2] (12.98% BUSY)

g7.02% IDLE —

Task Execution Statistics

Accelerated implementation with 2 CPU cores

tion Run-Time Statistics

= 1.07% TASK
%4.69% System
0.57% ISR

CPU[1] (6.32% BUSY)

witask [Ox442ach] |
ISR [0x1q] | IR
ISR [0x2]
Convolu [0x35270]

Dense_1 [0x358d0] | |
MaxFool [0x34520]

2023
DESIGN AND V! IFICATION ™

DV

CONFERENCE AND EXHIBITION
= 0 AEa?d | J Bt =

NIVERSARY

Analyzing Performance Simulation Results contd

Kernel Object Run-Time Distribution per CPU

Architecture with 2 HW accelerators and CPU Execution Run-Time Statistics

one CPU core 5 23% IDLE — 73755 LE
* Clock frequency: 500 MHz

* Interval between inferences: 20ms 1.13% 'Sﬂ\a 0.74% ISR\’
4.35% System 25.3% TASK 4.84% System 21 67 % TASK

Grovre CPU[0] (30.77% BUSY) CPU[1] (27.25% BUSY)
$soct
[B8) couciuster 1 B3 2% IDLE I

[3 cpucere 1
[@] cenvolution Accelerator

45] MNIST SW Stack
Dl Convolution_|

® Image Readepg = ==~ ‘

Convolution Process

..... < 0.74% ISR
3.94% System 27 12% TASK
CPUJ2] (31.80% BUSY)

: DEIFigttening_in [O] Dense Accelerator
g“’“ Floee e Task Execution Statistics

i Ao — "L ®opense
Dense_1 [0x358d0]
Dloefse 2. Caonvaolu [0x35270]

,i Dense,zpmcess
MaxPool [0x34520]
witask [Dxdd2ach]

O o
Softmax [0x34850]

Image R [0x34160]

DESIGN AND \Hg;:iorq =

DV

CONFERENCE AND EXHIBITION

10 YEAR ANNIVERSARY

Final Subsystem Architecture

Logical architecture is updated based on the simulation results and
transitioned to Physical Architecture

4F] Physical System
SR MNIST SoC
INIST SoC Logical System
§P] Convolution Accelerator [P 1 4P Dense Accelerator IP
Convolution Accelerator Dense Accelerator
Bl vtaxfonl in 4F] Convolution Accelerator 4P Dense Accelerator
Dense_ 2 In
® @ Dense 1 ©Dense.2 ~ o 51 MaxPool_In
volution_2D MaxPooling ense_ ense_. d T {f) MaxPeoling
. Assiste ransition
DS Image queue Ol Dense_1_In Dl SoftMax_in
L] L] L)
MCon\E[A« Interface DSIFitten in D:EDEHS{A“ Interface Dlimage quejie ¥ Conv Acq|Interface Dl Dense_1_In LT Dense Acc Interface .
- AIF3
AAIF2 Dl SoftMar_in
LI Lr -
Software
USE Controller [N} |
Scanner component B Digit ink §Flax
-5 e DI Figtien.
. S =" r 4| Scanner compenent -
i e8] Scanner pixel sjream | Detect digit —== Deil Digit queue b Send digit to D51 pis | !
@ Scan document © ™ age ©Fiattening © softMax host B o e
& 2 F AFS 2 F
R -] \ Tt
.. £F]RAM §F]rOM $P|UART
D Ssanner pixel stref
IR L] -
Dl ASIC activatio
i . Detect digit
thve signal ASIC
ower management L
Im! B
‘ \lﬂb@\t queue Teel
Def] Active signal ASIC Loty 55! Interface
) L1
§PF] Pow er management USB Centreller
@ Send digit to host

2023

DESIGN AND VI “ICATION ™

DV

- =~ d CONFERENCE AND EXHIBITION
.

£UBYSTEMS INITIATIVE

10D YEAR ANNIVERSARY

Model-Based Desigh Process

HW/SW Co-Architecting

Iterative multi-abstraction level process

1. Individual pieces of algorithm developed separately — <
. . Architect_ure Functional =,
2. Complete functional model in C/C++ exploration Mode ~
(CIC++/SysC) g_
3. Architecture exploration < S
.. Partitioned 3
4. Partitioned HW/SW model 'ary rwisw B
. . (CIC++/SysC)
5. Virtual Hardware model with custom accelerators Vitiel Platorm .
yS
6. Partitioning optimization
7. High-Level Synthesis of custom accelerators
. . . RTL/Hybrid
Continuous verification throughout the process Verification
'

2023

DESIGN AND V! IFICATION™

MS INITIATIVE

Model-Based Al System Design
+ X

TensorFlow

Synthesizable
C++
Architected

o : RTL

C++ :
»Algorithm » Quantized » » High Lev.el
Implementation Synthesis

Algorithm

Implementation:
- PCB
 PCB/FPGA

* SoC

il
!

Neural Network
Architecture

Software code

Virtual r
Platform =

B | P
Physical Architecture

Performance Analysis Final Logicél Architecture

2023
DESIGN AND V! IFICATION ™

DV

CONFERENCE AND EXHIBITION

YSVSTENS INITIATIVE

thimize Neural Network

Tensc;r Flow
* In the datacenter, size and speed are secondary
considerations

* On the edge we need to be fast and compact
* Fewer layers

Neural Network

Architecture * Fewer channels
Original MNIST network Optimized MNIST network
MAC operations: 2357008 MAC operations: 235408
Number of parameters: 1966038 Number of parameters: 39690
Minimum data transfer: 1971244 words Minimum data transfer: 42464 words

DESIGN AND Q:’ON =

SYSTEMS INITIATIVE

Create an equivalent C++ model

C++
Algorithm

To use co-architecting flow we need
to convert the algorithm to C++

Only include programmability in the
C++ for parameters you will vary

Create System (Functional) Architecture
.I.\

TensorFlc

 Specifies different functions and their
dependencies

C++
Algorithm

* Levels of details depends on the system
hierarchy level

Neural Network
Architecture

* Relevant parameters attached to functions
as properties

System Architecture

e Functional breakdown needed, when
moving down in subsystem hierarchy

e
.

SYSTEMS INITIATIVE

2023

“ICATION ™

Functional Breakdown and Parameterization

Subsystem

transition

[image detector properties \ [0t recognition properties |

= image size X = 28
image size ¥ =

ve- 50 T
:scanner companent i Hasc : i ouoge: EAUs Controlier S b d . | d . d f . I h .
: S ubsystem detalled parameterized tunctional architecture
@ Detect digitimage ki @5ena gar
[Convolution properties] Performance properties [performance properties EJsoftax properties
e signal ASKC = KemeIDim fe > — =
NumofMacOps = 392000 NumofMacOps = 200 = —
T’ H =% InputFMapSize = 784 __CN o ';. S [pense_2 properties —_°N " - =5 InputFMapSize = 10
| U n C |0n = v = i L=l TS IENIEETS - -~y =G Nur = [5] Performance properties
e (&) Recognize digit =5 NumefQutputchannels = 20 — NumofWeights = 200 | AT L
ywer management o T — . [simuiation properties
= < - " =5 OutputFMapSize = 10 [simulation properties| i
b rea kd own 2l 3 =5 QutputFMapS 84 [Simulation properties = inputFMapSize =20 [* /
on properties " — v
L EJPerformance properties - - — oo e —— Filetype = Crv class [Performahice properties
Iracy [5] = 98.0 [l simulation properties Fllnar 3 simuistion properties i Filename = dense.n = . T
1[5]=0.02 ' T =
[ransitioned subsystem | ’ ’ :
N ' i [simulation properties
! [A’ 1

ename = softmax.h

functional architecture . : - e ' ' = g
S -
@ Convolution @ Flattening @) Dense @ softMax Jl Bl image queye @ coneluton.20 Dloit queud @ Send digit to host

T In properties
e MaxPool_In

i
&) MaxPooling @) Flattening
(5] Convolution_2D @ MaxPooling () Dense_1 G Dense_2 . .
q v
T v 1 ' N
S u b Syst e m fu n Ct I O n a I b re a kd OW n [l Maxpooling properties ﬁnman,ln nmpenies| h Dense_1_In nmpenies‘ [Dense_1 properties [Performance properties hsthaun pmnenies|
= InputFMapSize = 764 =5 DataSize = 3920 | |=oDatesize=3320 | [inputfMapsize = 3320 o 5| = Mumoftiacops = 782000 = Datasize = 10
=5 NumofChannels = 20 =5 NumofWeight: =5 Numofinstructions = 3159520
=5 Poolsize = 2 — = =5 OutputFMapS:
properties
stride =2 -y EdPertormance properties [] Simulation properties
= T =5 NumofClocksHW = 3920 imulat i
= OutputFMapSize = 192 = W =l simulation properties S Filetype = C++ dlass
B e =5 Numofinstructions = 90160
= Filename = dense.n
B simulation properties [®- -

[simulation properties

=CFiletype = C++ class
lename = maxpool_2d.h

2023

DESIGN AND VI “ICATION™

DV

CONFERENCE AND EXHIBITION

-
1’3‘4[A —
A SYSTEMS INITIATIVE

10D YEAR ANNIVERSARY

Create |nitial Logical Architecture

TensorFlc
* Initial system architecture
C++
Algorithm e Group system functions into logical
‘ components based on

* Performance metrics (MAC operations,
profiling data, etc.)

» Data sizes of the function exchanges

Neural Network
Architecture

* Allocate function exchanges to
component exchanges

2023

“ICATION ™

e
.

SYSTEMS INITIATIVE

Explore Different Architecture Options

TensorFlow

* Create initial performance analysis model

Agonthm based on the logical architecture
‘ Explore different allocations

* Multi-core
Multi-cluster
i Architectures with hardware accelerators
Multi-chip
Multiboard

Neural Network
Architecture

2023

DESIGN AND VI “ICATION ™

. ‘ .' 7
'SYSTEMS INITIATIVE

Runtime and Data Communication Analysis

Analyzing performance simulation results

Kernel Object Run-Time Distribution per CPU

CPU Execution Run-Time Statistics

93.89% IDLE —

2.05% TASK
% 3.33% System
0.68% ISR

CPU[0] (6.11% BUSY)

B.58% TASK
3.32% System
0.59% ISR

CPU[2] (10.72% BUSY)

859.28% IDLE —

ST — Y B% System
93% TASK K_
0.53% ISR

387% IDLE
CPU[1] (96.13% BUSY)

Full SW implementation
With 3 CPU cores

Task Execution Statistics

Convolu [035270]
Dense_1 [0x353d0]
wigtask [0xddZach]

[
L1}

Kernel Object Run-Time Distribution per CPU

CPU Execution Rui

92.14% IDLE —

=y 3.42% TASK
3.82% System
0.62% ISR

CPU[0] (7.86% BUSY)

. 3.89% TASK
3.74% Systern
0.E5% ISR

CPUJ2] (12.98% BUSY)

87.02% IDLE —

93.658% IDLE —

!Accelerated function

e 1.07% TASK
%4.69% Systern
0.57% ISR

CPU[1] (6.32% BUSY)

Accelerated implementation
With 2 CPUs and accelerator

Task Execution Statistics

witask [Jxd42ach] |
ISR [Ox1d] | EEEEEET
ISR [0x2]
Convalu [0x35270]

Dense_1 [0x358d0] ||
hlaxPool [0x34520]

2023
DESIGN AND V! IFICATION™

DV

CONFERENCE AND EXHIBITION
= R R Ead | J B =

10 YEAR ANNIVERSARY

Quantize HW Functions & Update Logical Arch.

TensorFlow

* Update logical architecture based

C++ Ct+
» Algorithm » Quantized on performance results

Algorithm . .
e Quantize functions that are
allocated to hardware accelerators

Neural Network
Architecture

 Functional verification of
guantized functions

mm}m, - '“‘;_”! ,.:,ii..m.. J .
’-%u,—.:f,l = _,*1 | o e

Logical Architecture Performance Analysis Final Logical Architecture

2023

“ICATION ™

Quantization of HW Functions

* Optimizing hardware word lengths to minimize HW area
* |deally every variable individually

° F|Xed_p0|nt data types |dea| sign integer bits fractional bits
Il
e ac_fixed
* sc_(u)fixed Any size you want

* Several analysis methods available
* Value Range Analysis -based (simulation based)
 Static Analysis
* Brute force

2023

“ICATION ™

'SYSTEMS INITIATIVE

Create Physical Architecture Model

TensorFlow

e Assisted transition of

C++
C++
»Algorithm » Quantized model

Algorithm .
* Non-functional
Neural Network components added
Architecture manua”y
\ * Memories
o * |nterconnects
— QM — E 5 = — e Peri p h era | S
Logical Architecture Performance Analysis Final Logical Architecture Physicali Akch??éc%ﬂré

Create Virtual Platform from Physical Architecture

TensorFlow

* Create SystemC

C C++
» Algorithm » Quantized model of hardware
Algorithm platform

. SW functions
Virtual ““—*Q mapped to
e

11

Neural Network

Architecture 2 -
Platform = o
T e Processors

? * |nitial drivers

=== e
R it s S e e
Logical Architecture Performance Analysis Final Logical Architecture PhysicaI.AkchitectlJré

Creating Virtual Platform -

0J0[S
DI
riscy_cpu axi_fabric code_and_data
§F] Physical System /
periph_reset / code
Convolution Accelerator 1P , (Dense Accelerator 1P ppmmmm— -
! = t 0 master _Mmaster o
Convolution Accelerator Dense Accelerator
{F) 4
Convolution_21 = MaxPooling i
® MaxPoel_In console
Spe===- O
\ o) "
DSlimage quejie Dl Ceny Acd|Interface DSl Dense_1_in D=l Dense Acc Interface ——' console
AAIF 2 DSl Softhax_in g
o — ‘ master _2d_master
A Scanner component ‘ DI Fitten_i t_out slave _slave
i_}:ﬂ:.? stream link) 0
.. poxt IF 1
.. g cony_2d
\h@q\ i E]EPU frore
nef pixel strej
“= - .. fFsopwpre dense shared_memory B
Dat‘fﬂc;; eig . @ Flatten ing%L _master
X=H#llint_out slave dense_slave
\ / Teo
i o Dense
- ‘ \lﬂblg\tq oo accel_bus

[DH ASIC activation

A Subsystem Virtual Platform Model

L= LT
N USB Controller

1= @ Send digit to host

Subsystem Physical Architecture Model

£ Power management

2023

DESIGN AND VI “ICATION™

DV

CONFERENCE AND EXHIBITION

10D YEAR ANNIVERSARY

Creating Custom Virtual Component

@)
High-Level TE'. rg?t
Synthesis Optimized
IP Block 1 _ RTL
signall (ASIC, FPGA)
Synthesizable @)

Component signal2

IP Block 2 signal3

Synthesizable IP Block
C++

Synthesizable Component
C++/SystemC

I Processor H Timer I

1 1
| Bus Fabric

I Low I I High
Memory Memory

Synthesizable SystemC
Wrapper

UART

Optimize accelerator model for HLS

* Some code restructuring may be needed for optimal synthesis results
* Block-level architecture
* Loop order
* Internal storages
* Reusable functions

* Code modifications may influence algorithm accuracy
e Continuous verification required

2023

“ICATION ™

Update Virtual Platform with detailed Accelerator

TensorFlow

Crt * No need to change

C++ Ct+ :
Algorithm Quantized » Architected platform
Implementation

Algorithm architecture

e Bit-accurate function

Neural Network :":7”‘— T
Architecture Virtual | g (S of accelerator
Platform = . _ﬂ
L * Final platform for

[

‘ SW development

: ‘R‘ 6 ;_AI’ ;m- LI D"‘ I ,,. “m: - L. T
3 14 i N i3 =
oo | = =S = e

Logical Architecture Performance Analysis Final Logical Architecture Physicali Architecture

Implement and Integrate HW and SW Modules
+ X

TensorFlow

Synthesizable
o o : RTL
Quantized » Architected » ngh-Lev.eI
Algorithm Implementation Synthesis

Implementation:
- PCB
 PCB/FPGA

* SoC

C++
Algorithm

Neural Network
Architecture

Software code

Virtual r
Platform -

g S ;.-..;_n.' |
Logical Architecture Performance Analysis Final Logical Architecture Physical Architecture

2023
DESIGN AND V! IFICATION ™

DV

CONFERENCE AND EXHIBITION

'SYSTEMS INITIATIVE

10 YEAR ANNIVERSARY

Hardware Implementation

Optimization High-Level Jr
for HLS Synthesis

riscv_cpu axi_Jabric ode_and_data

/ 4] Physical System
/ 4RI MNIST 50C

N\
N\

Bin_periph_reset code_and_data
47 M Accelerator

4F] Convolution Acclerator 1P -
in_reset_0 master B————8—Wcpu_master =
4F] Convolution Accelerator 4F] Dense Accelerator D e
MaxPooling nsole
\ o)
Delimage queje DEl Convy Acd|Interface DSl Dense_1_in console
AMIF2
s = =Blcony_2d_master console_out
AX
Scanner component ‘ L ! conv_2d_slave
1

sharecd§gemory

Dol pixel stream link_ L
5] [F—
g . waIF
@ scan documenty’ .
T
. §F] CPU [Core
nef pixel strepm *~

shared_memory B

==« _ $F]softwpre
DE(;‘;;E'Q [E @ Fiatten mg%" @ softMax %Q e se_master xi_men

accel_bus

- ‘ \.Elbiqitqueue p

DADigink

Active signal ASIC 5Pl Interface

B9 ASIC activation

e SoC Implementation

3 @ send digit to host

DESIGN AND Q;N =

DV

CONFERENCE AND EXHIBITION

= R R Ead | J B=F |

10 YEAR ANNIVERSARY

Validation and Verification of
HW/SW Al System

Validation vs. Verification

* Validation == Are we doing the right thing?
* Performed during design phase of the project
 Comparing the model to higher abstraction level or requirement
* Usually simulation between consecutive design steps

* Verification == Did we implement it correctly?
* Performed during implementation/integration phase of the project
* Implementation vs. requirements at the same level
* Implementation vs. model at the same level
* Test coverage, corner cases, etc.
e Simulations, formal analysis, emulation, prototyping

SYSTEMS INITIATIVE

Validation and Verification

Python ML Framework

FPGA Prototype
Validation
Virtual Prototype p Inference N
‘ Verification
Bit Accurate Model Quantization
\ Accelerator
HW Verification Logic simulation

Architected C++ ,
Architecture

Catapult ->Verilog RTL Creation

2023

DESIGN AND V FICATION ™

DV

CONFERENCE AND EXHIBITION

EMS INITIATIVE

Multi-Abstraction-Level Verification Challenges

Verification
Requirement

Requirement

* Requirements driven
verification with

System Verification

* Parameterizable requirements eaement Model =vent Verification
. e . . Requirement
e Verification requirements I% HW/SW P
Architecture Event

 Requirement refinement
. q . . HEL e Verification
* Hierarchical requirements ‘ Requirement

* Continuous verification and HW Imple- I RN Verification

. . mentation mentation Event
requirements tracing +

. . pe . o Verification
* Multi-layer verification concept System Verification Requirement II
Integration Event

2023

DESIGN AND V! IFICATION ™

MS INITIATIVE

Verification Process in Model-Based Design

* Requirements driven process:

 Verification requirement defines test event
e Test procedure
* Test activity
* Test configuration

* Refined and hierarchical requirements need their own test events

e Verification Capture Point (VCP)

* Bundles all test events related to one test requirement together
* Contains test events in different design phases and abstraction levels

2023

=ICATION ™

IVSTEMS INITIATIVE

Verification Capture Point

Verification Verification Threader
Requirement

Test Test Test
System Model Configuration Procedure Activity System Simulation

Verification Event

Model Event VP Simulation

Component Verification ————
Implementation Event Simulation

Verification Capture Point

DESIGN AND Q;N =

DV

CONFERENCE AND EXHIBITION

YSTEMS INITIATIVE

10 YEAR ANNIVERSARY

Validation and Verification of MNIST System
+ X

TensorFlow

Synthesizable
C++

C++ . RTL
Quantized » Architected » ngh-Lev.eI
Algorithm Implementation Synthesis

Implementation:
Neural Network 3 .
i ; - Software code * PCB
Architecture Virtual x -
Platform =

* SoC

g S ;.-..;_n.' |
Logical Architecture Performance Analysis Final Logical Architecture Physical Architecture

2023
DESIGN AND V! IFICATION ™

DV

CONFERENCE AND EXHIBITION

'SYSTEMS INITIATIVE

10 YEAR ANNIVERSARY

Validating Python to C++ Translation Consistency

~ Python CNN

L

TensorFlc

* Import a C++ node into Python
and compare the outputs

e Start with one node
* Then one layer
e Then the whole network

C++
Algorithm

Neural Network

Architecture C++node Comparator | e Should match Python results
except for bottom 2 or 3 bits
Node by node compare .
Python with C++ * Variance results from order of
operations

Python to C++

2023

=ICATION ™

Validation and Verification of C++ Code

TensorFlow

C++ C++ C++
Algorithm » Quantized » Architected
Implementation

Algorithm

Neural Network Functional validation in Tensorflow
Architecture * Possibly modify the network architecture for better PPA

* Verification of quantized and architected C++ code
* Ensure that implementation meets requirements
* |n C++ domain with translated testbench
e Coverage analysis needed to ensure test quality

2023

“ICATION™

,‘:.'..:,, :
‘SYSTEMS INITIATIVE

Verification of MNIST System Architecture
+ X

TensorFlow
C++ C++
Quantized Architected
Algorithm Implementation

Neural Network
Architecture

| f Conmluimn_zq#ln::t;ﬂ@ Malpt:chﬂﬂ.w |\~\\
System Architecture

Performance

-
. =
i
\ 1LC
R

— S I U
Logical Architecture Performance Analysis Final Logical Architecture Physical Architecture

2023
DESIGN AND V! IFICATION ™

DV

CONFERENCE AND EXHIBITION

= 8 B Bu?d i J Bl B=

10 YEAR ANDND ERSARY

Verification of MNIST System Architecture
+ X

TensorFlow
C++

C++ C++ .
Algorithm Quantized » Architected
Implementation

Algorithm

Functionality

@ Timing
g Performance
! Integrity

Neural Network

Virtual
Platform

Architecture

PR _‘ Performance
B | |
Logical Architecture Performance Analysis Final Logical Architecture Physical Architecture

DESIGN AND V! FICATION ™

DV

CONFERENCE AND EXHIBITION

10 YEAR ANNIVERSARY

Verification of MNIST System Implementation
+ -

TensorFlow

Synthesizable
C++

C++ . RTL
Quantized » Architected » ngh-Lev.eI
Algorithm Implementation Synthesis

Neural Network
Architecture

il
!

Software code Hybrid or RTL
Verification Flow

Virtual r
Platform =

g S ;.-..;_n.' |
Logical Architecture Performance Analysis Final Logical Architecture Physical Architecture

2023
DESIGN AND V! IFICATION ™

DV

CONFERENCE AND EXHIBITION
'SYSTEMS INITIATIVE

10 YEAR ANNIVERSARY

Verification — Before HLS

C++ Architected CNN Static Design Checks

Static code analysis and synthesis
checks. Find coding errors and
problem constructs

Coverage Analysis

Determine completeness of test
cases. Statement, branch and
expression coverage as well as
covergroups, coverpoints, bins and
crosses

DESIGN AND \Hg;:iorq =

DV

CONFERENCE AND EXHIBITION

B
SYSTEMS INITIATIVE

10 YEAR ANNIVERSARY

C++ to RTL consistency

4
IS always @(posedge clk_1 or negedge rstn_i) begin
he ifl(irstn_i) begin

C++ Architected CNN Formal ¥ e T

19 end

FO else begin .
Using formal techniques, prove as SR P
. . 54 if(timer_start) begin
much equivalency as possible D Sy
:-‘l;::tTcI’ (re.ql:l " 4'b0010)
grnt_o == 4't 10;
else 1f (req_1 4'b0100)
> ofse If (reqi = 4'b1000)
UVM ::j %rntEo <= 4'b1000;
= else eqin

Architected C++ is used as a 7 e v ene
predictor for RTL verification o if(ring_cnt — 2'600) begin

if(req_1[0]

2 grnt_o == 4'b0001;

3 else

Fa ring_ent == ring_cnt +1 ;
&= end

RTL Coverage 2 gt g o bin
) e‘lggnt_o 4

Determine remaining verification 2 e T
effectiveness through RTL coverage [Mifingihy =7 bon

grnt_o - .
A 87 else
metrICS 38 ring_cnt ring_cnt +1 ;

end

2023
DESIGN AND V! IFICATION™

DV

CONFERENCE AND EXHIBITION

10 YEAR ANNIVERSARY

Block Level Verification

e Re-use C++ or employ new
Testbench System Verilog testbench

C++ | SystemVerilog

* Prove correctness

e Cover corner and exception
conditions

> Synthesized
RTL — * Repeat for each accelerator

P ,
SYSTEMS INITIATIVE

Block Level Verification - HLS Flow Tools

C++/SystemC
Find language and Design
coding bugs

without simulation Catapult
Design Checker

Ensure code/functional

coverage of HLS Code
Run in a wide C++/ SysC/

variety of UVM
environments JesibEni

HLS Catapult
Verification Coverage

Verify post-HLS RTL
leveraging existing

testbench Area, Timing &
Power Optimized

RTL

DESIGN AND \Hg;:iorq =

DV

CONFERENCE AND EXHIBITION

10 YEAR ANNIVERSARY

Sub-System Verification

C++ | SystemVerilog

Testbench

* Prove the correctness of a
collection of accelerator

* Exercise larger functions

Conv2d
synth RTL
Dense
synth RTL

Dense
synth RTL

* |n this case inference

* Low level coverage is not important
— here

* Run times could be impractical for

logic simulation

* May require acceleration
(emulation | FPGA prototype)

P e %
SVSTENS INITIATIVE

System Verification

C++ | SystemVerilog

Testbench

L, /O CPU /O
Peripheral Complex Peripheral
| | |
Interconnect
| | |
Memory Conv2d Dense
synth RTL synth RTL

* Includes processors, software,
interconnect

e Exercises HW and SW interfaces

* Execute typical and exceptional
use cases

* Testbench drives I/0O, clock, and
reset

e Software and processor orchestrate
operation (as in final system)

* Likely to require FPGA prototype

P ‘
SVSTENS INITIATIVE

Debugging — When Things Go Wrong

Model A

FEMS INITIATIVE

* Log all intermediate values to memory or log file
* This includes output from each layer

* Have scripts that can compare intermediate values
from different model representations

* This identifies the first point of divergence between
models

* Immediately find layer and node where problem
resides

* Intermediate values from the Python can be
recorded to a file for comparison

2023

=ICATION ™

Questions?

DESIGN AND Q:’ON =

DV

CONFERENCE AND EXHIBITION

10D YEAR ANNIVERSARY

7 o
FISYSTEMS INITIATIVE

DESIGN AND@TM

DV LDON

CONFERENCE AND EXHIBITION

10 YEAR ANNIVERSARY

Model-Based Approach for Developing Optimal
HW/SW Architectures for Al systems

Petri Solanti, petri.solanti@siemens.com
Russell Klein, russell.klein@siemens.com

