
Mixed-Signal Functional Verification

Methodology for Embedded Non-Volatile

Memory Using ESP Simulation

S. Do, J. Park, D. Kim, J. Jang
Samsung Electronics, Foundry Division, Design Enablement Team

1-1, Samsungjeonja-ro, Hwaseong-si,

Gyeonggi-do, Korea, 18448

Abstract- IP verification is one of the key features of Foundry business. This is because only sufficiently validated IPs

can guarantee the robustness of system level operation. However, mixed-signal IPs are difficult to verify and most of them

are not supported by EDA tools. In this paper, we introduce our mixed-signal IP verification method using netlist-

extraction, module conversion techniques, and ESP symbolic simulation. We used three types of memory to verify our

methodology. One is eMRAM which is the state-of-art emerging NVM and the others are eFLASH and OTP memory

which are most commonly used in Foundry business. Our proposed method enables various types of mixed-signal IPs for

existing EDA tool and provides effective verification environment.

I. INTRODUCTION

In general, IP verification is a procedure to ensure that the design intent of designer is completely reflected in IP

design. However, from the Foundry perspective, IP verification also indicates mutual verification between different

types of design kits, such as simulation model, schematic, and Graphic Design System (GDS), which is key design

components. These three design kits should have the same functional consistency. To ensure this consistency,

various verification methods[2] and supporting Electronic Design Automation (EDA) tools are developed.

Considering schematic and GDS, Layout Versus Schematic (LVS) tool validates the consistency between these

design kits. Besides, verification between simulation model and schematic, Simulation Program with Integrated

Circuit Emphasis (SPICE) simulation is conventional and ideal method for verification.

Figure 1. Concept of our proposed methodology

However, SPICE simulation has limitations in terms of simulation time. As the design size is increased, runtime

of the SPICE simulation increased exponentially. Eventually, it is no longer available on time. To overcome this

limitations, for Very Large-Scale Integration (VLSI) or System-on-Chip (SoC) verification, divide and conquer

strategy is used. Large-scale integrated chip is composed of an enormous number of sub modules from library, such

as memory, standard cell, I/O cell and custom IPs. For efficient verification, SPICE simulation is only processed for

each minimum unit cells, library cell. Using this library verification process, simulation model of each IP is verified

with their schematic. For system-level verification, logic simulation using simulation model which is written by

Verilog or System Verilog language is used. Logic simulation encapsulate the signal values from real value to 4-

state data type, which includes one, zero, unknown(x) and High-Z. This encapsulation decreases simulation runtime

and increases simulation performance dramatically while maintaining the behavior of simulation model as same as

schematic.

Furthermore, synthesizable digital design or Soft-IPs has many supporting EDA verification tools. Logic

equivalence checking, which is usually known as EC, is supported by Cadence Conformal[12] and Synopsys

Formality[13]. However, in case of mixed-signal IPs, which has analog blocks inside, conventional EC tools are not

applicable. Therefore, various methods have been attempted for mixed-signal IP verification[3-7]. For certain

custom design case, Synopsys ESP[11] which is built for custom design formal equivalence checking tool provides

verification solution based on symbolic simulation. But its scope of supporting IPs is limited to SRAM, CAM or

ROM.

In this paper, we introduce our mixed-signal functional verification methodology that replicates the ESP flow and

its verification results. We used three types of memory to verify our methodology. One is eMRAM (embedded

magnetic random access memory) which is the state-of-art emerging Non-Volatile Memory (NVM) and the others

are eFLASH and OTP memory which are most commonly used in real Foundry business. The main contributions of

this work are:

 Create custom testbench for ESP to enable symbolic simulation that is not natively supported by tool.

 Find modules that need to be modeled and create the implementation model from schematic.

The rest of this paper is organized as follows. Section 2 describes Synopsys ESP verification solution. We

introduce native ESP flow with Samsung Foundry’s SRAM ESP flow based on symbolic simulation and testbench

creation. Section 3 describes netlist-extraction and module conversion technique and also includes several

conversion examples for eFLASH and eMRAM case. Section 4 provides verification simulation results and

comparison with ESP work of ARM[1] which was introduced at SNUG 2021. At last, section 5 summarizes the

verification result.

II. ESP

ESP is a verification tool to view the convergence of two designs by using symbolic simulation. For conventional

function simulation, a specific vector should have been created to run the simulation and verify the functional

consistency. However, ESP reduce vector dependency and enable equivalent check with a digital simulator by using

their own data type, “symbol”. The definition of symbol is ‘ESP unique value’. For static simulation, symbol is

represented as unknown ‘x’ from equation. For dynamic simulation, such as vector base logic simulation, symbol

can be either 1 or 0 at the same time. Using this type of special characteristic, ESP can determine the consistency by

comparing the output value of simulation results between reference design and implementation design. In addition,

ESP automatically generates testbench and performs simulations.

Figure 2. ESP Native & Our proposed verification flow.

A. SAMSUNG Foundry SRAM ESP Flow

As shown in Figure 2, ESP tool natively support SRAM. Therefore, ESP implementation for SRAM is quite

simple. By setting the behavior model and SRAM circuit as reference design and implementation design, design

preparation is performed. Next, setup the configure file for testbench generation according to operation

characteristic and SRAM specification. Finally, tool generates testbench and runs the symbolic simulation. This ESP

verification flow provides verification solution between behavior model and circuit for very large scale SRAM

without SPICE simulation. Samsung Foundry has been using ESP verification flow for solid and reliable verification

since 2017.

B. Symbolic Simulation

Verification flow of ESP comprises of three major steps. The first step is design preparation. During the design

preparation step, read reference design and implementation design, and match the ports. Reference design is Verilog

behavior model and implementation design is transistor-level design, which is transferred from the schematic to the

ESP custom format. Port matching step match the ports between reference design and implementation design. From

the following testbench generation step, testbench for the symbolic simulation is automatically generated

considering configurations.

Testbench generation includes three steps. First step is setting the constraint pins. Second step is defining the

clock pin and setting up the period, setup-delay, and hold-delay. Third step is setting up the testbench style.

Supporting testbench styles includes symbolic, SRAM, and ROM. Each style has different test scenarios and test

cycles. The testbench consists of different type of cycles and each cycle is divided by test clock. There are four types

of test clock period: INIT (initialize) cycle, BIN (binary) cycle, SYM (symbolic) cycle and FLUSH cycle. INIT

cycle is initialization clock period, which sets the initial data of input or intern nodes. BIN cycle is binary data cycle

that all input data and internal node data are represent as binary (0 or 1). SYM cycle represents the symbol assigned

simulation cycle. FLUSH cycle supports multi-SYM cycle operation by following the SYM cycle as per the

requirement.

In the end, simulation step runs the ESP symbolic simulation and provides the simulation result with coverage

reports. When the simulation reaches to the check point at the end of each cycle, simulator stores the result of each

cycle. When all simulations are completed, simulator compares the stored simulation result between reference and

implementation design. If there exist any mismatch point, simulator initiates simulation dump recording for

debugging. ESP verification flow using symbolic simulation is appropriate verification methodology for mixed-

signal IPs, but unfortunately it is not applicable for all general IPs. Because, it is digital simulator and supported

SPICE model conversion is limited to few supporting devices, such as diode, capacitor, MOSFET, and resistor.

Furthermore, analog circuit which has feed-back loop also cannot convert directly for digital circuit. Therefore,

mixed-signal IPs which is composed of non-supported instances and analog blocks, such as eMRAM, eFLASH and

OTP, are also unavailable to run ESP verification flow natively.

Figure 3. Cycle diagram for ESP symbolic simulation.

C. Custom Testbench Generation

ESP verification flow supports automatic testbench generation using the configuration data from simulation

setting. Configuration data contains pin type information, clock period, setup/hold delay, testbench style, timescale,

constraint pin information, power supply information, and so on. Using this configuration setting, testbench

generator assigns symbol or static value for each pins and creates INIT, BIN, SYM, FLUSH cycle accordingly.

However, automatically generated testbench using their own clock signal only supports synchronous IPs, such as

SRAM even though many IPs are designed for asynchronous system, such as eFLASH. Due to this limitation, we

have created custom testbench for ESP symbolic simulation, which can cover both synchronous and asynchronous

designs. Custom testbench generation should be developed by the designer themselves. However, it is an inevitable

solution because many custom IPs cannot be standardized.

Natively, ESP tool automatically converts circuit design into ESP custom format. However, as mentioned earlier,

ESP only supports few IPs, such as SRAM, CAM or ROM. Therefore, we use Verilog versus Verilog comparison

feature[9] from ESP to verify our mixed-signal IPs. To enable this ESP feature, we have to prepare circuit extracted

netlist from schematic. Some schematics can be automatically converted into verilog language by using verilog

native gate logic. However, most schematics cannot be simulated normally if converted automatically. In this paper,

we use extracted netlist with module conversion technique to prepare implementation design for ESP simulation.

Section 3 describes model perpetration step, which includes netlist extraction and module conversion.

III. MODEL PREPERATION

Due to the analog circuit embedded inside each of the mixed-signal IPs, mixed-signal IPs are designed by analog

circuit designer using analog design tool, such as Cadence Virtuoso or Synopsys Custom Compiler. For symbolic

simulation, ESP tool reads circuit schematic and converts it to ESP format. However, ESP does not support

converting analog circuit or feedback loop for ESP format. Therefore, analog circuit must be replaced by ESP-

readable format, Verilog model. Virtuoso natively supports Verilog netlist extraction function from schematic.

However, extracted Verilog netlist does not fully reflect the analog circuit design and loses analog characteristic

during the netlist extraction, such as analog device characteristic or feedback loop. Therefore, we cannot use it

directly for ESP simulation. To overcome this limitation, we proposed our own circuit conversion technique and use

it for implementation model generation. Section 3.1 describes netlist extraction method and Section 3.2 and

following sub-sections describe circuit conversion technique including various conversion examples from eFLASH

and eMRAM design.

A. Netlist Extraction

Verilog netlist extraction function extract Verilog netlist from schematic from top block to device level. In case of

Cadence Virtuoso, function name “Verilog Environment for NC-Verilog Integration” converts each block from

schematic to Verilog netlist. After conversion, CDS directories are created for each block and each netlist inside the

CDS directory represents Verilog netlist of each block. To construct the top-level Verilog netlist, we use our own

script to rename each netlist file to their module name and allocate them into single top level directory. However, as

mentioned earlier, some of this modules are not correctly functioning because of analog conversion limitation.

Therefore, we apply module conversion technique for analog modules.

B. Module Conversion

Contrary to digital block, which is operated by 0 or 1 digitized value, analog block operation is based on

continuous voltage level or current level with devices. However, converted Verilog language does not support

continuous level so it loses analog characteristic. As a result, converted analog block cannot operate properly.

However, if we tune or modify this abnormal Verilog block to operate correctly, entire converted Verilog netlist can

be used for ESP simulation. Following four subsections (level shifter, charge pump, MRAM bit-cell, and latch)

introduce each example of module conversion of our proposed methodology.

1. Level Shifter

In case of level shifter, Figure 4-a) illustrates schematic of level shifter. During digital operation, in level shifter,

when voltage level of IN rise, N2 is closed, N1 is opened, and a1 is short with GROUND. However, a1 is conflicted

with LOGIC H which comes through P1 when OUT is low. As a result, in digital perspective, a1 goes unknown(x)

value. According to unknown value at a1, OUT goes unknown(x) value. This type of conflict also occurs even IN

signal falls from High to Low. According to this conflict, converted level shifter model cannot be used as it is. To

solve this conflict issue, we use R-PMOS (resistive PMOS). In case of conventional NMOS and PMOS, signal

strength is preserved after the signal passed from drain to source. Thus, when same strength but different valued

signal meets, value goes to unknown x. However, if one of the two signals has different signal strength, signal value

follows a stronger signal. In case of R-NMOS and R-PMOS, because of resistivity, signal strength goes lower when

the signal passed from drain to source. Due to this property of R-PMOS, modified level shifter functions correctly as

described below.

Figure 4. Schematic of level shifter. a) original, b) modified.

When IN is set to high, N1 is opened and N2 is closed. Depending on the N1 and N2 setting, a1 connect with

GROUND. Meanwhile, a1 is determined as ground. Because priority of logic high from R-PMOS P1 is lower than

ground, which is coming through N1. According to fixed a1 ground, R-PMOS P2 is opened and OUT goes high and

R-PMOS P1 is closed. Besides, when IN is set to low, N1 is closed and N2 is opened. Depending on the N1 and N2

setting, OUT, which has high value transfer to the ground value through N2. Because the priority of ground through

N2 is higher than logic high from R-PMOS P2. According to OUT value transition, R-PMOS P1 is opened and a1

goes logic high and R-PMOS P2 is closed.

Similar to this operation, when we use R-PMOS instead of PMOS, we can solve the signal conflict issue by

distinguishing the signal priority. As a result, we can successfully transform analog level shifter circuit to enable

Verilog simulation.

2. Charge Pump

In case of charge pump, Figure 5 illustrates 5-stage charge pump schematic. Charge pump stores input voltage

from each clock signal to capacitor and creates high-voltage output. However, Verilog does not support voltage

level for functional operation. Therefore, we cannot use charge pump schematic for Verilog simulation. Thus, we

create behavior model, which represents charge pump operation. Following Verilog module is extracted netlist from

charge pump schematic in a similar manner as illustrated in Figure 6. From an analog operation perspective, charge

pump operation is considered to be complex. However, from a digital operation perspective, charge pump only

passes the input voltage to output voltage, because there is no voltage level in Verilog. Thus, simply connect Vout

with Vdd, and comment out other NMOS whereas CAP creates charge pump behavior model.

Figure 5. Schematic of 5-stage charge pump. Store input voltage for each clock and create high voltage output.

Figure 6. Verilog model charge pump. a) extracted from charge pump. b) behavior for charge pump.

3. Bit-cell and Cell Array Model

Figure 7 illustrates schematic of read path including MRAM bit-cell. MRAM determines bit-cell data ‘0’ or ‘1’ by

using magnetic resistance effect from Magnetic Tunnel Junction (MTJ). At this time, voltage level of Source Line

(SL) and Bit Line (BL) is analog signal. Therefore, this schematic does not support digital simulation. Also, MTJ

device does not support digital simulation. Therefore, read path including bit-cell must be modeled for digital

verification. Following two sub-section describe write and read operation of MRAM and also provide detailed

information on cell array modeling.

Source Line

MTJ

Bit Line

Word Line

RREF

DOUT

VREF

VIN

S/A

Bit Cell

Figure 7. Schematic of MTJ Bit-Cell.

Input data for MRAM write operation is controlled by source line (SL) and bit line (BL). During ‘write-1’

operation, each SL and BL is set to high and low and then bit-cell is set to 1. In contrast, during ‘write-0’ operation,

each SL and BL is set to low and high and then bit-cell is set to 0. Figure 8 illustrates MRAM cell-array modeling

by Verilog language. For modeling efficiency, we pre-defined the specification of eMRAM at the top module, such

as word width, column and row address width, number of mux, and number of word lines. Modeling a write

operation is quite simple. Figure 8 illustrates write task operation including write operation modeling. First, select

column data array from 2-D mem register array using row address. Then, write source line (SL) data into column

data array considering mux and column address. Therefore, BL value should be opposite with SL value.

Figure 8. Cell array model for MRAM.

Read data from MRAM read operation is delivered by voltage difference between reference resister and MTJ.

Due to the different resistance between reference resister and MTJ, voltage between source line (SL) and bit line

(BL) is different. As illustrated in Figure 7, read data is generated by sensing this voltage difference using sense

amplifier. Therefore, cell array model should generate digital value for reference voltage (VREF) and input voltage

(VIN) for read operation. If the data stored in MTJ is ‘0’, reference resistance is higher than MTJ resistance. Since

current flows from SL to BL, reference voltage (VREF) is lower than input voltage (VIN). Thus, assign 0 and 1 for

each reference voltage and input voltage. Sense amplifier receives both voltage signals and prints out read data 0.

Read operation modeling is similar with write operation on Figure 8. First, select column data array from 2-D mem

register array using row address. Then, read data from bit-cell and assign appropriate value for VREF and VIN.

When read data is 0, assign 0 for VREF and assign 1 for VIN. When read data is 1, assign opposite value.

4. Latch

Feedback loop is common scheme for circuit design. In analog simulation, feedback loop stabilizes the value of

the node to maintain a certain voltage level. However, in case of digital simulation, feedback loop can crash the net

value due to the signal confliction or fluctuate the net value due to the periodic signal assignment. Therefore,

feedback loop should be removed from circuit during module conversion. Figure 9 illustrates simple latch schematic

and its behavior model. When CLK is high, VOUT is set to VIN. When CLK is low, VOUT is maintained. However,

when we run the digital simulation using schematic illustrated in Figure 9.a), a node goes unknown state and VOUT

goes unknown. To solve this situation, we can set the signal priority as we performed for level shifter at section

3.2.1. However, in case of latch, it can result in distorting the situation of the actual circuit. Thus, we create behavior

model for latch as illustrated in Figure 9.b) Latch behavior model assigns VIN to VOUT when CLK is high and

CLKB is low. If CLKB is not low when CLK is high, assign unknown value to VOUT.

Figure 9. a) Schematic of Latch. b) Behavior latch modeling

IV. EXPERIMENTAL RESULT

The main purpose of the ESP symbolic simulation is to check a functional equivalence between circuit and

Verilog simulation model. In addition, the special feature of ESP, which is known as symbolic simulation, supports

vector-less verification ideally. However, due to the functional characteristics of mixed-signal IPs, not all pins can

be assigned to symbol. It depends on the IPs, but generally only functional pins are allowed to assign symbol. On

the other hand, power pins, power-gating pins or other test pins are invalid to assign symbol.

During the symbolic simulation, symbol is propagated from input to output through the netlist. Thus, we can

calculate the percentage of net which is covered by symbolic value during the simulation. Due to the symbolic

value’s characteristic, it is impossible to obtain 100% symbolic net coverage. However, the greater the percentage,

the greater the reliability of verification. Not only symbolic net coverage, line coverage is also important factor for

verification reliability. Line coverage represents how much the simulation checks the parts described in the

verification model. Our simulation scenarios cover at least 99% of verification model for all tested IPs.

A. Simulation Setup

To evaluate our proposed verification methodology, we used three different types of embedded Non-Volatile

Memories (eNVMs), such as eFLASH, eMRAM, and OTP. eFLASH and OTP are most commonly used embedded

memory for System-on-Chip (SoC), and eMRAM is an emerging state-of-art embedded non-volatile memory. The

symbols are assigned on many pins to improve the symbolic net coverage for ESP simulation. Also, functional

operation for each IPs are implemented on the simulation scenario, such as read and write for all memories, program

and erase for eFLASH, and power-gating for eMRAM. We run the simulation using Intel(R) Xeon(R) Gold 6142

CPU @ 2.60 GHz, 256 GB RAM with single core for each IP. Memory usage and simulation runtime are measured

by ESP tool and runtime is based on wall time.

Table 1. Symbolic simulation coverage.

Type
Non

Symbolic

Nets

Total

Nets

Symbolic
Net

Coverage

Line

Coverage

eFLASH
imp 90885 259865 65.03%

99.71%
ref 3178 3869 17.86%

eMRAM
imp 450248 948651 52.54%

99.81%
ref 52855 86199 38.68%

OTP
imp 740523 1206951 38.65%

99.27%
ref 2228 2586 13.84%

B. Simulation Result

Table 1 describes the ESP simulation coverage report for each IPs. This coverage report is generated by ESP tool

when the symbolic simulation is completed. Type imp. represents generated simulation model from circuit using

netlist extraction and module conversion technique. Type ref. represents Verilog behavior model for each IPs.

Symbolic-Net indicates the net which is covered with the symbolic value at least one time during the ESP simulation.

Line coverage is simulator touched line from ref model or behavior model during ESP simulation. As shown in

Table 1, symbolic net coverage of implementation model is higher than behavior(reference) model for all IPs. This

is because implementation model from circuit uses bidirectional port and it makes easier to propagate symbol value

through the netlist. Besides, behavior model mostly uses directional port and it restricts the symbol value to

propagate from input to output only. Symbolic net coverage cannot be 100% due to the functional characteristic of

IP. However, from the result of line coverage, we can check that ESP symbolic simulation is tested more than 99%

of entire model for all IPs and it guarantees the reliability of verification simulation.

Table 2. ESP simulation computing power.

Memory

Type

Instance

Size

Memory

Requirement
Runtime

eFLASH 4Mb 1.06GB 73min

eMRAM 44Mb 4.37GB 1hr 13min

OTP 32Kb 2.79GB 30min

Table 2 and Table 3 describe simulation computing power of our ESP symbolic simulation and ESP simulation of

ARM which is introduced from SNUG world 2021[1]. We tested three different types of IP and the size of each IP is

different. In case of ARM, two different sizes of eMRAM are tested. It is difficult to compare the result between our

simulation and ARM directly. Because we do not have detailed simulation result related to different cases of ARM,

such as coverage report and symbolic simulation setting. However, when we compare the average computing power

from known simulation data considering memory requirement, runtime, and memory size, our simulation is much

efficient than the simulation result of ARM.

Table 3. ARM's ESP simulation computing power[1]

Memory
Type

Instance
Size

Memory
Requirement

Runtime

eMRAM
8Mb 4GB 60min

16Mb 8GB ~6hrs

V. CONCLUSION

In Foundry business, verification of IPs is essential to achieve the reliability of Foundry library. In addition,

regarding fundamental IPs such as embedded memories, importance of this verification is even higher. However, it

is difficult for embedded non-volatile memories, such as eFLASH, eMRAM, and OTP, to verify their functional

operation on IP-level due to the verification tool limits. To improve the reliability of fundamental IPs of Samsung

Foundry, we have proposed a mixed-signal functional verification methodology for non-volatile memory using

Netlist-extraction and ESP symbolic simulation. Our proposed methodology successfully enabled mixed-signal

system-level functional verification in short time with reasonable computing power. Since 2020, Samsung Foundry

applied this verification methodology for eFLASH, eMRAM, and OTP including advanced technology node, such

as 5 nm or 4 nm. In addition, our proposed method can expand to various types of mixed-signal IPs. Furthermore,

our generated simulation model using netlist-extraction technique supports various Verilog simulators, such as

Cadence Xcelium, Synopsys VCS, or Mentor QuestaSim[10].

ACKNOWLEDGMENT

We would like to express our deepest gratitude to our team leader Dr. Jongwook Kye and our group leader Dr.

Taejoong Song for their support on this project. Furthermore, we would like to acknowledge our principal engineers

Jaeseung Choi, Dongho Shin, Myeonghee Oh, and Hyunteak Jung for their review and comments. In addition, we

are grateful to Jisoo Lee for technical support of OTP simulation. Lastly, we thank Gayana H. B. for her excellent

language correction.

REFERENCES
[1] Buddhi, J. “Functional Equivalence Check of Industry’s First eMRAM.” SNUG World 2021, 22 Apr. 2021, www.snugworld2021.com

[2] Serna-M. Edgar, Morales-V. David, “State of the Art in the Research of Formal Verification”, Ingeniería, Investigación y Tecnología,
Volume 15, Issue 4, 2014, Pages 615-623, ISSN 1405-7743, https://doi.org/10.1016/S1405-7743(14)70659-6.

[3] H. Du, M. Tan, X. Tian and H. Xu, "ESP verification for custom SRAM array design," 2009 4th International Conference on Computer

Science & Education, 2009, pp. 1889-1892, doi: 10.1109/ICCSE.2009.5228237.

[4] Gajjar, D., eInfochips “Analog Mixed Signal Verification Methodology (AMSVM).” Design And Reuse, 30 Jan. 2012, www.design-
reuse.com/articles/28333/analog-mixed-signal-verification-methodology.html.

[5] Ito, T. “EETimes - Analog Behavioral Models Reduce Mixed-Signal LSI Verification Time.” EETimes, 22 June 2007,

www.eetimes.com/analog-behavioral-models-reduce-mixed-signal-lsi-verification-time/#

[6] Thomas, T., Kumar, N. and Sharath, N. 2015. “Modeling and verification of mixed signal ip using systemverilog in virtuoso and ncsim.”
SILABTECH Pvt. Ltd., Bangalore, India.

[7] C. Liang, Zhou Fang and C. -. Chen, "Method for analog-mixed signal design verification and model calibration," 2015 China

Semiconductor Technology International Conference, 2015, pp. 1-4, doi: 10.1109/CSTIC.2015.7153486.

[8] “Simplifying Mixed-Signal Verification.” Verification Academy, Simens, Nov. 2018, verificationacademy.com/verification-
horizons/november-2018-volume-14-issue-3/simplifying-mixed-signal-verification.

[9] “Comparing Verilog Versus Verilog Using ESP-CV.” Solvnet, Synopsys, Inc., 12 Dec. 2019, solvnetplus.synopsys.com/s/article/

Comparing-Verilog-Versus-Verilog-Using-ESP-CV-1576091129565.

[10] “Running an ESP-CV Testbench With Verilog Simulator.” Solvnet, Synopsys, Inc., 11 Dec. 2019, solvnetplus.synopsys.com/s/article/

Running-an-ESP-CV-Testbench-With-Verilog-Simulator-1576070054890.

[11] “ESP User Guide.” Solvnet, Synopsys, Inc., spdocs.synopsys.com/dow_retrieve/S-2021.06/dg/esp_olh/Content/espug/pdf/espug.pdf.

Accessed 21 July 2021.
[12] “Conformal Equivalence Checker.”, Cadence Design Systems, Inc., www.cadence.com/content/dam/cadence-www/global/

en_US/documents/tools/digital-design-signoff/conformal-equivalence-checker-ds.pdf.

[13] “Formality Equivalence Checking.” Synopsys, Inc., www.synopsys.com/implementation-and-signoff/signoff/formality-equivalence-

checking.html.

