
1 1

Migrating from
UVM to UVM-MS

Accellera UVM-AMS Working Group

Tim Pylant, Cadence Design Systems, UVM-AMS WG Vice-Chair

2 2

• Renesas
• Cadence
• Siemens EDA
• Qualcomm
• NXP
• Synopsys
• Texas Instruments

UVM-AMS WG Member Companies

3 3

• Same reason as UVM – explosion of verification needs
• Verifying analog functionality/connectivity under large set of digital configurations
• Digital control system transitions interacting with analog functions
• Dynamic control between analog & digital circuits under wide range of conditions
• Finding problems with A/D interaction in unexpected corner cases

• Standard methodology
• Plug & play reuse of existing UVM components
• Rich debug and messaging scheme integrated with simulator

Why UVM-AMS

4 4

• Define a way to extend UVM to AMS/DMS
• Modular, reusable testbench components
• Sequence-based stimulus
• Take advantage of UVM infrastructure as much as possible

• Reuse as much UVM as possible as DUT is refined from digital to AMS
• Use extension/factory as much as possible
• Support UVM architecture for DMS/AMS DUT from the start

• Define standard architecture for D/AMS interaction
• Minimize traffic across boundary
• Enable development of D/AMS VIP libraries & ecosystem

What Are We Trying to Do?

5 5

Top

uvm_agent (UVC)

in
tf

driver

monitor

sequencer

config in
tf

DUT

registers

Classical UVM Example

6 6

• Analog Mixed-Signal (AMS) simulation and verification refers to systems
that can simulate/verify analog/mixed-signal designs as a co-simulation of
digital + analog (electrical) solvers
• Digital Mixed-Signal (DMS) simulation and verification refers to systems that

can simulate/verify analog/mixed-signal designs within a discrete event-
driven solver as digital (logic) and real number models

Terminology

7 7

• Minimal changes to agent to add MS capabilities (driver, monitor, sequence
item) that can be applied using set_type_override_by_type
• Define analog behavior based on a set of parameters defined in a sequence

item and generate that analog signal using an analog resource (MS Bridge)
• Measure the properties of the analog signal, return them to a monitor, and

package those properties into a sequence item
• Drive and monitor configurations, controlled by dedicated sequence items

and support easy integration into multi-channel test sequences
• Controls can also be set by way of constraints for pre-run configurations.
• Collect/check coverage in the monitor based on property values returned

from analog resource or add checkers in analog resource

Requirements

8 8

What is needed to move from
UVM to UVM-MS

9 9

• An analog signal that is not simple DC or a slow changing signal, needs to
be a periodic waveform like a sine wave or a sawtooth, or some
composition of such sources
• Classical RNM would drive real numbers from UVC

sequence/driver within the agent
• In AMS this would generate too many D2A events or

not give enough finesse to the signal

Generating/Driving Discrete Analog Signals

10 10

• A signal generator for a continuously changing signal
can be controlled by four properties determining the
freq(1/λ), phase(Ф), amplitude(A), and DC bias(ν)
of the generated signal
• The properties of the analog signal being driven

are controlled by real values, generated by the
sequencer
• A UVM sequence_item contains fields for all the control parameters
• The driver passes the fields of the sequence_item to the controls for the

signal generator

Generating/Driving Continuous Analog Signals

11 11

uvm_ms_agent

in
tf

driver

monitor

sequencer

config

MS Bridge

DUT

in
tf

Overall UVM-MS Methodology

analog resource

pr
ox

y

pr
ox

y

DUT

• MS Bridge is the proposed layer that sits between the agent and the (A)MS DUT
and consists of a proxy API, SV interface, and an analog resource module
• The ‘proxy’ is an API that conveys analog attributes between the agent and the

MS Bridge
• The SV ‘intf’ passes digital/discrete signal values (logic, real, nettype/RNM)

between agent and MS Bridge – can be left in top or moved to Bridge

12 12

• DC Op – Steady State operating point of all the nodes/branch currents
• Understanding of UVM-MS DC OP is important

• Need to make sure initial conditions (caps, supplies, timesteps) start with valid
values for proper convergence

• Enable UVM DUT configuration before analog circuit initialization (DC Op).
• E.g. make a cap open for a particular test before DC op

• Using #0 is not good practice as it shows
poor coding and understanding of the
simulator(s) scheduler

• Must raise a UVM objection before
DC OP otherwise the simulation
finishes

Verilog-AMS Simulator DC OP

virtual task my_ams_test::run_phase(uvm_phase phase);
…
phase.raise_objection(this);
if ($realtime <= 0.0) #1step;
`uvm_info("TEST", "AMS DC-OP finished", UVM_MEDIUM)
my_seq.start(my_seqr); // Launch sequence(s)
…
phase.drop_objection(this); // Test termination

endtask: my_ams_test

Ensures time is
consumed

13 13

t1?

• Analog engine always
leads
• Digital to analog

events cause matrix
re-evaluation and
timestep backtrack
• Most simulators see

any digital var in the
analog block as a D2A
to monitor

Verilog-AMS Simulator Scheduling - Transient

Analog

Digital

t0 t1 t2?

@cross, above,
timer or internal

time-step

Some digital to
analog event

t2

14 14

• Variables are ‘owned’ by one engine
but can be read by another

• AMS can’t access digital variables
that are dynamic (everything in the
matrix is fixed at time 0)

• Generally, avoid ‘string’ datatypes in
Verilog-AMS as support is
inconsistent and the LRM is not clear

• OOMR to analog-owned variables
not allowed – they are not part of
the analog matrix

Verilog-AMS Best Practices

Analog
Simulator/

Engine

Digital
Simulator/

Engine

Variables
Real, integers,

strings

Variables
Real, integers,

strings, logic, …

15 15

UVC package
class osc_bridge_proxy extends uvm_ms_proxy;
...

pure virtual function void config_wave(…);
...

real freq_out;
...
endclass

module top;
…

osc_bridge osc_bridge(.clk_outp, .clk_outn, .clk_in);
…

initial begin
uvm_config_db#(osc_bridge_proxy)::set(null,"*freq_adpt*","bridge_proxy",top.osc_bridge.__uvm_ms_proxy);
run_test();

end
endmodule

module osc_bridge(...);
...
osc_bridge_core #(...) core (...); // AMS model
...
class proxy extends osc_bridge_proxy;

...
function void config_wave(input real ampl, bias, phase, freq);

core.ampl_in = ampl;
core.bias_in = bias;
core.phase_in = phase;
core.freq_in = freq;

endfunction
endclass

proxy __uvm_ms_proxy = new();
...
always_comb

__uvm_ms_proxy.freq_out = core.freq_out;
...
endmodule

Implement

UVM config setting

Proxy Template (API)

Proxy instance in MS Bridge module

Passes values to analog resource to
“program” waveform

Instance of analog
resource

Proxy “hook-up”

Passes values to agent component to
”monitor” waveform

16 16

Push

Pull

Monitored

Proxy ßà Analog Resource

class osc_bridge_proxy;
 function void config_wave(…);
 core.ampl_in = ampl;
 core.bias_in = bias;
 core.phase_in = phase;
 core.freq_in = freq;
 endfunction

 function void get_measures(...);
 ampl = core.ampl_out;
 bias = core.bias_out;
 phase = core.phase_out;
 freq = core.freq_out;
 endfunction

 //real min, max; //from base class
endclass

MS Bridge

osc_bridge_core (...);
 ...
 real ampl_in;
 real bias_in;
 real phase_in;
 real freq_in;

 analog begin
 vsin = (ampl_in * sin(`M_TWO_PI * freq_in * $abstime);
 ...
 end

 real ampl_out;
 real bias_out;
 real freq_out;
 real phase_out;

 Vsig = V(sig);
 if (Vsig > max_a)
 max_a = Vsig;
 else if (Vsig < min_a)
 min_a = Vsig;

always_comb begin
 __uvm_ms_proxy.min = core.min_a;
 __uvm_ms_proxy.max = core.max_a;
end

Interpolated value

If target is different, it’s seen
as a D2A event

Analog generates update

17 17

UVM Phasing Requirements for UVM-MS
• Analog resources will have parameters and UVM should have a means

to read/modify/write them before simulation consumes time
• Implement methods getParameters() / setParameters() in proxy
• Use existing UVM phases to guarantee read/modify/write order

UVM Phase What should happen for AMS resources

build

connect Read parameters values from ‘SV+VAMS’ module (Instrument/Passive) into
the agent’s configuration.

end_of_elaboration Modify agents parameters based on test requirements

start_of_simulation Apply agents parameters to ‘SV+VAMS’ module (Instrument/Passive)

run
Must consume some time to allow DC OP to happen before agents drive
sequence items so that synchronization system works. Recommend
task run_phase() ;
 if($realtime <= 0.0) #1step; // cause a DC OP to occur

18 18

Analog Resource Configuration
• Analog components tend to be placed

with initial values as parameters. e.g. a
decoupling cap on an LDO output
• Allow the MS Bridge to have

parameters that are copied from UVM
configuration in connect_phase
• Test cases can override the

configuration, which is then set in the
analog resource in
start_of_simulation_phase

class osc_bridge_proxy;
 function res_config getParameters();
 res_config cfg = new();
 cfg.res_val = i_core.rseries_val;
 ...
 return(cfg);
 endfunction
 function void setParameters(res_config cfg);
 i_core.rseries_val = cfg.res_val;
 ...
 endfunction
 ...

osc_bridge_core (...);
 ...
 parameter res_val = 200;
 ...
 // Initial values set from parameter,
 // then set by setParameter in proxy
 real rseries_val = res_val;
 ...

19 19

UVM-MS Phasing

20 20

Example Walk-through
UVM digital to UVM-MS

21 21

Frequency_Adapter DUT

4:1

fx2

f/2 f/2

clk_in
clkout_p

clkout_n

sel_mux[1:0]
en_mux

ampl_adj[2]

sr_adj[2]

pw_adj[8]

22 22

UVM TB – add analog capability

Frequency_Adapter
clk_in

Registers

clkout_p
clkout_n

Reg_bus

DUT
reg_if

osc_clk osc_clk

23 23

Freq_adapter Waveforms
Digital

VAMS

Digital clks

Analog clks

24 24

Model of Frequency Adapter Ports in SV

module freq_adapter (

 output logic CLKOUT_P,CLKOUT_N; // differential output

 input logic CLK_IN; // clock input

 input logic en_mux, [1:0] sel_mux; // register control

 input logic [7:0] pw_adj, [1:0] sr_adj, ampl_adj;

);

uvm_agent (UVC)
in

tf

driver

monitor

sequencer

config

Top

in
tf

DUT (digital)

1 0 1 0 1 0 1 0

25 25

Model of Frequency Adapter Ports in SV RNM

module freq_adapter import cds_rnm_pkg::*; (

 output wreal4state CLKOUT_P,CLKOUT_N; // differential output

 input wreal4state CLK_IN; // clock input

 input logic en_mux, [1:0] sel_mux; // register control

 input logic [7:0] pw_adj, [1:0] sr_adj, ampl_adj;

);

uvm_agent (UVC)
in

tf

driver

monitor

sequencer

config

5V 0V 5V 0V

RNM uses event solver so just
need to convert logic to real
voltage

1 0 1 0

Top

DUT (SVRNM)
MS Bridge

in
tf

analog resource
(SVRNM)pr

ox
y

26 26

Model of Frequency Adapter Ports in VAMS

module freq_adapter (CLKOUT_P,CLKOUT_N,CLK_IN,en_mux,sel_mux,pw_adj,sr_adj,ampl_adj);

 output CLKOUT_P,CLKOUT_N; electrical CLKOUT_P,CLKOUT_N; // differential output

 input CLK_IN; electrical CLK_IN; // clock input

 input wire [2:0] en_mux, [1:0] sel_mux; // register control

 input [7:0] pw_adj, [1:0] sr_adj, ampl_adj; // digital control voltage

uvm_agent (UVC)
in

tf

driver

monitor

sequencer

config

5V 0V 5V 0V

electrical uses analog solver
that takes into account VIR

1 0 1 0

Top

DUT (VAMS)
MS Bridge

in
tf

analog resource
(VAMS)pr

ox
y

27 27

Analog Resource for SV-RNM/VAMS
Option 1

• Automatically inserted Connect Modules (CM) converts logic signal values to SV-RNM or
electrical equivalents (depending on the DUT)
• IE card parameters used to configure the connect modules inserted (supply voltage, rise time, drive

resistance, etc)
• No changes required to UVM driver

Not recommended
where control over

critical analog signals
needed

Top

DUT (RNM/Elec)
MS Bridge

analog resource

CM
CM
CM

in
tf

28 28

Analog Resource for SV-RNM/VAMS
Option 2

• Analog resource uses proxy attributes to generate analog signal algorithmically
• Proxy used to pass attributes that define type and shape of analog signal
• Same agent/MS Bridge with swappable analog resource for VAMS electrical signals or SVRNM

real/user-defined signals
• Requires override of UVM driver and sequence item to change functionality from driving signals

through interface to passing values through proxy

This is the option used
for the demo

Recommended for
continuously

changing signals such
as sine wave

Top

DUT (RNM/Elec)
MS Bridge

analog resource
in

tf

pr
ox

y

29 29

• Create Bridge module
• Contains Analog Resource and Proxy

• Extend classes for Driver, Monitor and Sequence Item
• Use set_type_override_by_type to use extended classes

Steps to create a UVM-MS agent

30 30

osc_bridge

31 31

osc_driver à osc_ms_driver
UVM UVM-MS

32 32

osc_monitor à osc_ms_monitor
UVM UVM-MS

osc_bridge

33 33

osc_transaction à osc_ms_transaction
UVM UVM-MS

34 34

freq_adpt_tb à freq_adpt_ms_tb
UVM UVM-MS

35 35

freq_adpt_scoreboard à freq_adpt_ms_scoreboard
UVM UVM-MS

36 36

• Send expectations about ongoing outputs to agents monitoring meters.
• Use Assertions to report errors when output is not within expected parameters
• Test sends sequence item to agents as expectations change.
• Test must be able to predict expectations.

• Reference model gets sequence items affecting the block and predicts
expectations.
• Can be sent to agents monitoring outputs. Where data can be used in assertions.
• Sent as item to a scoreboard for check against similar item collected from DUT.
• Scoreboard uses item compare method to determine match / no match.

• How to coordinate item generation between DUT and Reference model?
• In digital designs the TLM model assumes that output transactions are generated as a result

of input transactions.
• Is such a transaction response the right approach in general for Analog?

How to check tests?

37 37

Demo

38 38

UVM Messaging

39 39

• Debugging activity inside a large environment with many agents is critical.
• Need to report:

• Errors
• Debug
• Progress

• Messages need to be categorized via severity:
• Fatal, Error, Warning, Info

• Need to link actions with messages
• Stop simulation on fatal or after four errors
• Summarize number of messages reported

• Need a different mechanism than simulator messages to avoid filtering effects

Messages for Debug and Error Reporting

40 40

UVM Messaging System

41 41

• UVM Reporting macros not supported in Verilog-AMS modules
• Take advantage of up-scoping to access SV bridge

• `include “uvm_ms.vamsh” in Verilog-AMS analog resource or
`include “uvm_ms.vdmsh” in SystemVerilog analog resource

• localparams to define UVM Verbosity levels as integers to match UVM enum
• Macros to wrap the uvm_ms_* reporting function calls defined in uvm_ms.svh

• `include “uvm_ms.svh” in MS Bridge (SV)
• Definitions of the functions called by analog resource
• Provides macros for `uvm_ms_[info|warning|error|fatal](…)
• Utilizes the “__uvm_ms_proxy” declaration as the originating path for analog

resource UVM messages

UVM Messaging from Analog Resource

42 42

• Use analog domain to detect the issue and toggle a flag
• Flag is detected by absdelta to then report the message via the digital

engine
• Example

analog begin
 if((I_PLUS > 1.0) && !I_thr_triggered) I_thr_triggered = 1;
 else if(I_PLUS < 0.9) I_thr_triggered = 0;
end
//Convert the detection in the analog block to a UVM report.
string message;
always@(absdelta(I_thr_triggered,1,0,0,1)) begin
 $sformat(message,"The Current is above the thresholds @ %e",I_PLUS);
 if(I_thr_triggered) `uvm_ms_error(P__TYPE,message)
end

UVM Messaging Example for Verilog-AMS Resource

Up-scope function call

43 43

UVM Message – Analog block

“uvm_ms.svh”

osc_core.vams

osc_bridge.sv

UVM_INFO ../uvc_lib/osc/vams/osc_bridge_core.vams(98) @ 52001.098068ns: top.detector_bridge
[FREQ_UPDATE] The Current is above the threshold @ 1.178812e+00A

“uvm_ms.vamsh” uvm_ms_info function is found via up-scope and executed from SV bridge
`define uvm_ms_info(id,message,uvm_verbosity) \

uvm_ms_info(id,message,uvm_verbosity,$sformatf(“%m”),`__FILE__ ,`__LINE__);

`include “uvm_ms.vamsh”
`uvm_ms_info("FREQ_UPDATE",$sformatf("freq=%e Hz period=%e ns", freq_in, out_period),\
UVM_MEDIUM)

function void uvm_ms_info(id,message,uvm_verbosity,uvm_path,`__FILE__ ,`__LINE__);
uvm_component CTXT;
CTXT=uvm_ms_get_bridge_path(uvm_path); // get path to uvm_component in top.bridge
CTXT.uvm_report_info(id,message,uvm_verbosity'(verbosity_level),file,line);

endfunction: uvm_info

`include “uvm_ms.svh”
`uvm_ms_reporter // instantiates uvm_ms_reporter component to be used with messaging

44 44

UVM-AMS Standard Release Schedule

45 45

• There is a need for more advanced, standard methodologies for scalable,
reusable and metric-driven mixed-signal (AMS/DMS) verification
• The UVM-AMS WG proposal addresses the gaps in current verification

methodology standards
• Extend UVM class-based approach to seamlessly support the module-based

approach (MS Bridge) needed for mixed-signal verification
• Targeting analog/mixed-signal contents (RNM, electrical/SPICE)
• Application and extension of existing UVM concepts and components

• Sequencer, Driver, Monitor
• MS Bridge / Analog resources
• UVM Messaging System

Conclusions

46 46

• uvm_*_printer print_real()uses %f formatting, which truncates
very small values

• Override with uvm_radix_real_exp

• UVM messaging macros don’t work in modules
• Created macros and methodology to support Analog Resource

• UVM-MS specific include/import files

Changes for UVM-AMS from UVM

Statement Usage

import uvm_ms_pkg::*; Within the MS Bridge and uvm_ms_agent Defines uvm_ms_proxy template class

`include “uvm_ms.vamsh” Within analog_resource modules defined as Verilog-AMS Defines UVM-MS messaging macro/functions

`include “uvm_ms.dmsh” Within analog_resource modules defined as SystemVerilog Defines UVM-MS messaging macro/functions

`include “uvm_ms.svh” Within the MS Bridge to enable the messaging from the
analog_resource

Requires the MS Proxy instance to be named
__uvm_ms_proxy

47 47

Questions?

