
Metadata Based Testbench Generation

Automation

Daeseo Cha1, Soonoh Kwon2, Ahhyung Shin3, Youngnam Youn4, Youngsik Kim5, Seonil Brian Choi6
Samsung Electronics Co., Ltd., Seoul, Korea

(1dscha; 2soonoh1.kwon; 3ah0403.shin; 4yyn612; 5ys31.kim; 6seonilb.choi@samsung.com)

Abstract: This paper introduces the concept of automated testbench generation techniques using metadata

of design spec. It focuses on full chip level structural testbench for register and interconnect verification. We

demonstrate what contents need to be captured in metadata and how to automate UVM (Universal

Verification Methodology) testbench generation with metadata.

I. Introduction

Generally, the functional verification environment has been developed by referencing functional specification and

RTL design implementation specification together. As the size and complexity of SOC design continues to increase

and the development time spent for SOC (System on a Chip) design is required to be shortened, it is very important

to follow the variation of functional spec and implement them into RTL design properly. Moreover, the functional

spec of design is changed frequently during development cycle. If these changes are not managed systematically, it

makes the discrepancy between functional spec and RTL implementation spec.

Register and interconnect verification are the basic features of SOC verification, and they need to be done in early

stage of verification with the highest priority. Register verification checks whether all IPs are controlled correctly

through register access transaction. Interconnect verification checks whether all masters and slaves are accessed

correctly on backbone bus through random data access transaction. Usually, register verification environment

consists of register model and address map (uvm_reg) for each IP, a VIP agent replacing CPU. Interconnect

verification environment consisted of VIP agents replacing all masters and slaves. They are highly dependent on the

design implementation spec coming from design team. The problem is that verification engineers collect this

information by referring to design specification documents and it is likely to insert human-errors when making

verification environment, hence the inconsistency between design and documents happens. If there is this kinds of

error, it takes long time for debugging because it is running on full-chip. In order to remove this problem, this paper

proposes metadata based testbench generation automation approach which is aligned with metadata based SOC

design integration automation.

II. PROPOSED APPROACH

IP-XACT is the IEEE standard metadata format (IEEE1685) which includes an information for full chip RTL

integration(https://www.accellera.org/downloads/standards/ip-xact). Mainly it consists of two parts, one is IP

package that includes port list, Interface, and SFR spec, and the other is design architecture that includes IP instance,

connection between IPs. However, it is not enough for automating testbench generation (such as security,

parameters required for VIP configuration, etc.) so we improved this by extending the contents of metadata. Newly

defined metadata contains data for design automation of system IPs such as backbone interconnect, clock and power

management unit and so on. In addition, we added more information for testbench automation such as controlling

sequences, into the extended metadata. With this extended metadata, we are able to automate RTL design and

testbench generation.

Figure 1 shows the proposed full chip register and interconnect testbench generation flow using metadata.

vBuilder(Verification Builder) parses metadata to populate required information for testbench generation, such as IP

address map, registers, location where masters and slaves are located, interface protocols and signal for

masters/slaves, from metadata (IP-XACT), and then it renders target project testbench with existing register

testbench template (SFR TB Template) and interconnect testbench templates(BUS TB Template), which are

reusable for all projects. Generated testbench by vBuilder consists of 1) instantiating VIP (Verification IP), 2)

connecting VIP ports to RTL signals, 3) generating complete test scenarios.

mailto:dscha;%20soonoh1.kwon;%20ah0403.shin;%20yyn612;%20ys31.kim;%20seonilb.choi@samsung.com
https://www.accellera.org/downloads/standards/ip-xact

Figure 1. Metadata based Testbench Generation Flow.

A. Metadata

IP-XACT provides an IP connectivity standard for full chip RTL integration. Fig 2 shows the content which is

described by JSON (JavaScript Object Notation), extracted from IP-XACT. It contains useful information for

generating verification environment such as hierarchical instance name, interface name for masters and slaves,

interface parameters and so on. They are used to integrate VIP which generates random bus transaction and checker

to monitor DUT response through the interface in verification environment.

Figure 2. Metadata for Interfaces.

Fig 3 shows the contents for advanced information which describes where masters and slaves are located, how

connections are made between masters and slaves, what address spaces are used for slaves, what interface protocol

is used for a slave and so on. It is necessary information to generate full chip interconnection testbench.

Figure 3. Metadata for Interconnect Topology.

Fig 4 shows the contents for project specific information which needs to be considered separately. It is a code

snippet of address map for a project, which is used by interconnect verification environment that generates random

transactions to backbone bus. Line 2~11 describes unmapped logic and line 13~28 describes read-only region. This

information is used for the policy of stimulus and checker. Since it is extended metadata for automating verification

environment, it is hard to describe them with existing IP-XACT only. So we chose yaml to model this contents

because it is simple to describe, has existing interface with Jinja for rendering.

 Figure 4. Metadata for project specific information

B. Testbench Generation

The previous approach to create full-chip interconnect testbench was a manual process:

 Step 1: Extract required information for testbench from design specification documents

 Step 2: Generate testbench initial version

 Step 3: Modify testbench code according to RTL implementation spec

 Step 4: Clean-up testbench (build & compile)

 Step 5: Start verification

Current approach is able to automate from step 1 to step 4 using metadata. vBuilder (In-house verification builder

to generate various target testbench such as generic IP, full-chip testbench or application specific testbench

generation for register, interconnect) parses metadata of either json or IP-XACT, and generates UVM testbench

vBuilder uses Jinja to handle project specific metadata when generating testbench like Fig 5. It renders target

testbench code by combining jinja template code with yaml data file.

Figure 5. Rendering testbench code using Jinja

C. Configurable Testbench Generation

By default testbench configuration, all masters and slaves are replaced with active VIP (Verification IP)

components in interconnect testbench. Active VIP master generates bus transaction to backbone bus and active VIP

slave responds to backbone bus. This configuration can be used from early verification stage. However, once real IP

RTLs are available later, they need to be included in interconnect testbench for performance verification or stress

tests. To do that, our new approach can support this configuration update easily by changing parameters from

SYS.CSV file. Fig 6. shows how to configure SYS.CSV. If “attach active agent” will be set to “N”, RTL IP will be

used from interconnect testbench.

Rendering

Jinja template code

Rendered target testbench code

Figure 6. Configurable Interconnect Testbench Generation

D. Sign-off for Register Sanity Test using Metadata

IP-XACT and RTL are mandatory deliverables on IP hand-off and it needs to be guaranteed that IP-XACT and

RTL are functionally equivalent. To reinforce this, this check requirement is added to IP sign-off system and this

check can be done automatically by leveraging register testbench automation using metadata above.

IP-XACT provides the way of describing register with various attributes and they can be modeled using uvm_reg

library in UVM testbench. In order to increase the quality of register checking in IP sign-off system, the functional

behaviors in UVM testbench for IP-XACT tags for testable, constraint and coverage related tags in Table 1, was

customized.

Metadata (IP-XACT) Testbench (UVM_REG)

<spirit:field>

 <spirit:name>PA_TxHsG1SyncLength_MSB</spirit:name>

 <spirit:writeValueConstraint>

 <spirit:minimum>0</spirit:minimum>

 <spirit:maximum>1</spirit:maximum>

 </spirit:writeValueConstraint>

</spirit:field>

class hsi_unipro16_pa_std_region_pa_txhsg2synclength_pa_txhsg2synclen_msb_c

extends uvm_reg_field;

 constraint valid { value inside { ['h0:'h1] }; }

endclass :

hsi_unipro16_pa_std_region_pa_txhsg2synclength_pa_txhsg2synclen_msb_c

<spirit:register>

 <spirit:name>COMP_OPTION_SUITE</spirit:name>

 <spirit:addressOffset>0x20</spirit:addressOffset>

 <spirit:size spirit:resolve="immediate">32</spirit:size>

 <spirit:field>

 <spirit:name>Reserved_FF0</spirit:name>

 <spirit:bitOffset>2</spirit:bitOffset>

 <spirit:bitWidth

spirit:resolve="immediate">30</spirit:bitWidth>

 </spirit:field>

 <spirit:field>

 <spirit:name>rx_symbol_clk1_reset_type</spirit:name>

 <spirit:bitOffset>1</spirit:bitOffset>

 <spirit:bitWidth

spirit:resolve="immediate">1</spirit:bitWidth>

 </spirit:field>

 <spirit:field>

 <spirit:name>rx_symbol_clk0_reset_type</spirit:name>

 <spirit:bitOffset>0</spirit:bitOffset>

 <spirit:bitWidth

class hsi_unipro16_component_region_comp_option_suite_c extends uvm_reg;

 rand uvm_reg_field reserved_ff0;

 rand uvm_reg_field rx_symbol_clk1_reset_type;

 rand uvm_reg_field rx_symbol_clk0_reset_type;

 covergroup cg_vals;

 option.per_instance = 1;

 reserved_ff0: coverpoint reserved_ff0.value[29:0]

 {

 `AUTO_COV_MIN_MAX(30)

 }

 rx_symbol_clk1_reset_type: coverpoint rx_symbol_clk1_reset_type.value[0:0];

 rx_symbol_clk0_reset_type: coverpoint rx_symbol_clk0_reset_type.value[0:0];

endgroup

define AUTO_COV_MIN_MAX(VAL) \

 bins min = {0}; \

 bins mid = {[1:({VAL{1'b1}})-1]}; \

 bins max = {{VAL{1'b1}}};

spirit:resolve="immediate">1</spirit:bitWidth>

 </spirit:field>

</spirit:register>

<spirit:register>

 <spirit:name>PA_AvailTxDataLanes</spirit:name>

 <spirit:field>

 <spirit:name>PA_AvailTxDataLanes</spirit:name>

 <spirit:testable>false</spirit:testable>

 </spirit:field>

class hsi_unipro16_pa_std_region_pa_availtxdatalanes_c extends uvm_reg;

 uvm_resource_db#(bit)::set({"REG::",get_full_name()},

"NO_REG_HW_RESET_TESTS", 1, this);

 uvm_resource_db#(bit)::set({"REG::",get_full_name()},

"NO_REG_ACCESS_TESTS", 1, this);

<spirit:register>

 <spirit:name>COMP_RESET</spirit:name>

 <spirit:field>

 <spirit:name>comp_reset</spirit:name>

 <spirit:testable

spirit:testConstraint="readOnly">true</spirit:testable>

 </spirit:field>

class hsi_unipro16_component_region_comp_reset_c extends uvm_reg;

 uvm_resource_db#(bit)::set({"REG::",get_full_name()},

"NO_REG_ACCESS_TESTS", 1, this);

Table 1. Metadata for Register Sanity

III. CASE STUDY

A. Full chip Register Verification

 DUT Info

 Image Sensor (50Mp)

 Inputs

 Top.DESIGN.INFO.json: AMBA bus interface details for all masters and slaves

 Top.BUS.INFO.json: Back-bone bus details

 Catalog_top_1.0.xml: All IP-XACT information for IP/TOP (Registers, Fileset, Clock, Reset)

Figure 7. Full-chip Register Testbench Generation Flow

 Output: UVM Testbench

 Add AHB master VIP to Cortex M4 System Bus

 Generate uvm_reg model for all IPs

 Generate test scenario on top of boot sequence which user provides

 Build and run script

 Generated testbench code:

Figure 9. Example code for full-chip Register Verification Testbench

 Result:

Register testbench generation is fully automated using metadata and it successfully runs as one-shot and found a

few IP-XACT/RTL issues quickly. Table 2 shows total runtime for register verification in this design.

Step Time Iteration Total Time

1. Testebench Generation Time 00:02:49 1

00:38:26 2. RTL compile 00:00:30 1

3. Compile (multi-snapshot) 00:00:30 49 (IP)

4. Run Tests 00:00:13 49 (IP)
Table 2. Full-chip Register Testbench Runtime

B. Full chip Interconnect Verification

 DUT Info

 Image Sensor (50Mp)

 Bus Master: 5 with AHB interfaces

 Bus Slave: 12 AHB slaves, 105 APB slaves

Figure 8. Full-chip Interconnect Testbench Generation Flow

 Output: UVM Testbench

 Add AHB master VIP to Cortex M4 System Bus

 Generate uvm_reg model for all IPs

 Generate test scenarios on top of boot sequence which user provides

- base_test, one_to_all_test , all_to_one_test, all_to_all_test, unmapped_test

 Build and run script

 Generated testbench code:

Figure 10. Example code for full-chip Interconnect Verification Testbench

 Result

Table 3 shows total runtime for sanity test scenario of interconnect testbench generated by vBuilder. This sanity

tests consisted of one master to one slave access test, one master to all slave access test, all masters to one slave

access test.

Step Time Iteration Total Time

1. Testebench Generation Time 00:04:39 1

02:07:57 2. Build simulation snapshot 00:03:18 1

4. Run Sanity Test 00:10:00 12
Table 3. Full-chip Interconnect Testbench Runtime

IV. RESULT

The setup time for interconnect testbench of SOC design used to take two weeks with previous approach at the

flagship mobile AP SOC project because it requires many iterations due to mismatches between RTL and testbench.

However, the proposed metadata based testbench generation approach reduces this setup time in a day by removing

manual process and human-errors. In addition, since interconnect testbench automation can generate target testbench

having different configuration of VIP/RTL agents automatically, the scope of verification is easily extended to

performance verification, power estimation. The accuracy for performance and power analysis is increased by

including key RTL agents like DRAM.

 As IP and full chip sign-off for register access test can be performed easily using vBuilder(metadata), the quality

of RTL was improved from early stage of design cycle. Thus, verification engineers can focus on functional

verification from the beginning. Prior to vBuilder, it requires many iterations due to the mismatch between RTL and

specification documents.

V. CONCLUSION

In this paper, we present new methodology regarding how to automate register and interconnect testbench

generation using design spec metadata. It contributes to reduce testbench setup time for SOC design from two weeks

to one day as well as removing debug efforts due to the discrepancy between RTL design and testbench. Moreover,

we can significantly improve the verification quality of register and interconnect verification with this automated

approach and it helps us extend verification coverage, start complex function test quickly.

REFERENCES

[1] IEEE Standard for Universal Verification Methodology Language Reference Manual, " in IEEE Std 1800.2-

2017, 26 May 2017

[2] IEEE Standard for SystemVerilog--Unified Hardware Design, Specification, and Verification Language, " in

IEEE Std 1800-2017 (Revision of IEEE Std 1800-2012), 22 Feb. 2018

[3] IP-XACT, https://en.wikipedia.org/wiki/IP-XACT

[4] Accellera, https://www.accellera.org

[5] Introducing JSON, https://www.json.org

https://en.wikipedia.org/wiki/IP-XACT
https://www.accellera.org/
https://www.json.org/

