
MetaPSS: An Automation Framework for Generation
of Portable Stimulus Model

Jaimini Nagar, Thorsten Dworzak, Sebastian Simon,
Ulrich Heinkel, Djones Lettnin

Agenda

• Introduction

• Model-driven PSS generation flow

• Code Generation

• Conclusion

Introduction

• Portable stimulus model is a single representation of stimulus and
test scenarios usable across many levels of integration

• A well-defined meta-model based framework for automated
generation of portable stimulus representation

• Inspired from Model-Driven-Architecture (MDA) principle for the
code generation

• Meta-model is visually symbolized with UML class diagram

Problem statement

Design

Specification

PSS Model
Generate Tests

for Target
Platform

Testbench

• Writing a PSS model manually costs in terms of human effort

Taxonomy of PSS model

• Component - encapsulating
reusable model units

• Action - unit of behavior

• Flow objects - transmit data

Action

component

Action

Buffer

Pool
Buffer

Stream

Pool
Stream

Flow Object

State

Pool
State

pss_top

Action

component

Action

Action

Model-driven PSS generation flow (1)

• Capture high-level attributes

• Platform independent way of
describing PSS model

• Enables the developer to
consider the view that must be
generated

Model-driven PSS generation flow (2)

• MetaPSS: A meta-model to
signify PSS

• Backbone of the automation
framework

• One-time effort

• Define the structure and
elements of PSS

Code Generation (1)

• Graphical User Interface to fill the XML Data Structure

• Run <make gui>

Code Generation (2)

• Steps for each PSS model generation
1. Review the design specification
2. Identify key elements of PSS
3. Fill the required data in GUI
4. Save as *.xml
5. Run < make pss >

• Generate Portable Stimulus model
as *.pss

• Runtime for the generation of code
≈ 1 sec

resource uart_r { }

enum uart_mode_e {mode0, mode1, mode2, mode3};
enum baud_rate_e{b2m, b500k, b250k, b115k, b20k, b19k, b9600};
enum uart_nr_e {uart0, uart1};

component uart_c {

pool [2] uart_r uart_p ;
bind uart_p * ;

//import package here //

action uart_txn {
rand int tx_data ;
rand bit [8] tb ;

// start of user code here for action uart_txn //

// end of user code here for action uart_txn //
};

}

Advantages

resource i2c_resource_r { }
enum i2c_mode_e {host, device};
enum baudrate_e {k100,k400,M1};

component i2c_c {

pool [2] i2c_resource_r i2c_resource_p ;
bind i2c_resource_p * ;
//import package here //

abstract action data_xfer {
rand bit start ;
rand bit stop ;
rand bit [10] addr;
rand bit [8] data_q;
rand int trans_id ;
rand bit addr_ack ;
rand bit [8] wdata;
rand bit [8] rdata;

// start of user code here for action data_xfer //

// end of user code here for action data_xfer //
};

action host_to_target : data_xfer {
int num_of_word ;

// start of user code here for action host_to_target //

// end of user code here for action host_to_target //
};

action target_to_host : data_xfer {
bit [32] host_timeout_ctrl ;

// start of user code here for action target_to_host //

// end of user code here for action target_to_host //
};

}

• Re-usable multiple time
• An example of re-usability

• Give a quick start for working on the
Portable Stimulus methodology

• Defined space to add dynamic and
design specific user code

Conclusion

• Reduce effort to utilize Portable Stimulus methodology reinforced
verification

• An automation framework contains major key constructs of PSS

• Generated PSS representation is an abstract model and platform
independent

• Not included executable that defines the targeted verification
platform

Acknowledgement

This work has been developed in the project VE-VIDES (project label 16ME0243K)
which is partly funded within the Research Programme ICT 2020 by the German
Federal Ministry of Education and Research (BMBF).

Questions

