

1

MeSSMArch – A Memory System Simulator for

Hardware Multithreading Architectures
A Study Exploring the Application of the Transaction Level Modeling

Methodology in the development of a Memory System Simulator at the System-

Level

Sushil Menon, NVIDIA, Bangalore, Karnataka, India (sushil.menon.1988@gmail.com)

Abstract— The trend of scheduling multiple software-applications (or software-threads) with ever-increasing

memory-footprints, for concurrent execution on multiple, increasingly accelerated hardware processing-cores, has

necessitated the simultaneous compliance of two orthogonal requirements of computer memory-systems: higher

speed and higher storage capacity. This has resulted in the adoption of a memory-hierarchy, which takes advantage

of locality to optimize system performance and cost, where smaller, faster memory is placed in close proximity to the

processing-cores, with larger, slower memory being further away. The organization of such a hierarchy is

characterized by multiple parameters, thereby obligating system-architects to conduct a thorough exploration of the

design-space as a pre-requisite to defining the system-architecture. The process of exploration requires the

employment of simulators (typically trace-based) which enable experimentation and analysis by providing insights

into estimated system-performance. The scarcity of free, easily extensible and fast, memory-hierarchy simulators has

inspired us to develop MeSSMArch – a Memory-System Performance Simulator for Hardware Multithreading

Architectures.

In this paper, we present our experience of applying the Transaction Level Modeling (TLM) methodology in the

process of developing MeSSMArch at the system-level. We first motivate the necessity for developing a generic

memory-system performance simulator at the system-level, a process resulting in the logical inference of design-

requirements. We then present a brief description of the TLM methodology, attempting to capture the salient

features of the design-philosophy. Next, we showcase the application of the TLM methodology, in the process of

modeling each major unit of the memory-system (Abstract Hardware-Thread, Serializing Interconnect, Generic

Cache and Memory Controller), and integrating them in the context of a hardware multithreaded system. We then

showcase the process of validating the simulator, by verifying selected use-cases that portray the fundamental tenets

of memory-hierarchies. We finally conclude by enunciating our learning from this experience.

Keywords—Memory Systems, Memory Hierarchy, Cache, Memory Controller, Interconnect, Hardware

Multithreading, Transaction Level Modeling (TLM), SystemC, Performance Estimation

I. INTRODUCTION

Moore’s law of exponential growth in the capacity of integrated-circuits has greatly promoted the

advancement of computing infrastructure. While processors are typically designed to channelize these resources

towards maximizing speed, ever-increasing memory-footprints have coerced designers to channelize these

resources towards increasing the storage-capacity of memories. As memories expand in capacity, it becomes

intractable to accommodate them with processors, both on the same die, thereby constraining designers to place

them off-chip, resulting in increased memory latency, thus reducing system performance. Designers, are thus,

compelled to construct a hierarchy of memories, in order to simultaneously increase storage-capacity whilst

preventing degradation of system performance.

The foundation of a memory-hierarchy is based on the fundamental principles of locality. While temporal

locality suggests that recently accessed data may-be accessed again in the near future, thereby favoring high-

speed memories, spatial locality suggests that data in close-proximity to recently accessed data may-be accessed

again in the near future, thereby favoring higher-capacity memories. These orthogonal requirements are

simultaneously satisfied by organizing a hierarchy where smaller, high-speed memories are placed closer towards

the processors (typically on the same die), and larger, slower memories are placed further away (typically off-

chip), resulting in a vast design-space, of which an extensive exploration must be performed prior to defining the

system-architecture.

2

The existence and interaction of multiple parameters in the design-space impels system-architects to conduct a

cost-performance analysis, a process requiring the employment of simulators (typically trace-based) that enable

architectural-exploration. The design of such simulators involves a process of maintaining an appropriate

equilibrium between result-accuracy and simulation-speed, thus emphasizing the importance of modeling the

system at an appropriate level of abstraction, as deemed necessary, for a given use-case. The combinatorically

explosive nature of the design-space, coupled with stringent time-to-market requirements, requires system-

architects to utilize efficient simulators, which provide results that signify an estimation of system performance,

in a minimal turnaround time, implying trading-off result-accuracy for simulation-speed. The scarcity of free,

easily extensible, fast memory-hierarchy simulators that provide course-grained data on memory-system

performance has served as our inspiration to develop MeSSMArch.

II. SIMULATOR DESIGN REQUIREMENTS

Our intended use-case is to develop a simulator that aids in the architectural-exploration of memory-system

performance at the system-level. Based on the targeted use-case, we reason the following requirements:

1. The simulator must be functionally generic – implying the avoidance of modeling functionality for

implementation-specific features, and instead capturing its effects on system performance. This enables

exploration at the system-level, offering system-architects a wider array of architectural options, as

opposed to exploration at the micro-architecture level, a process more constraining due to increased

design-complexity. For example, instead of modeling the functionality of comparators to perform a

parallel tag-lookup along all the ways of a set-associative cache, we model a parallel tag-lookup by

performing a sequential tag-lookup, and then dividing the time taken to perform the lookup by the

number of comparators, thus capturing the effects of parallel tag-lookup on system performance.

2. The simulator must provide an estimate into system performance – implying the sufficiency of coarse-

grained result-accuracy. This permits the modeling of transaction-accurate components, which ignore

temporal effects within a transaction, and instead capture temporal effects between transactions, resulting

in a fast simulator with an abstract notion of system performance.

3. The simulator must be extensible – implying the usage of parameterized components that communicate

over a unified interface. This permits the easy exploration of multifaceted memory-systems in a plug-and-

play environment.

Section IV discusses the development of each component of the simulator in the context of these design-

requirements.

III. TRANSACTION LEVEL MODELING (TLM) METHODOLOGY – AN OVERVIEW

A. Brief Description of the TLM Methodology

Transaction Level Modeling (TLM) refers to the approach of modeling systems such that the details of

module computation are separated from the details of inter-module communication. Module computations are

modeled as processes which exchange data via interface method calls. An interface declares communication

access methods which are implemented by channels. Modules are bound using ports that export an interface. A

transaction is the action of sending data from a master/initiator process to a slave/target process. Figure 1

showcases a graphical representation of the structural semantics of the TLM methodology.

The dissociation of communication from computation implies that each may be modeled arbitrarily as either

timed or untimed, resulting in a spectrum of acceptable transaction-accurate models. Figure 2 showcases the

design-space for widely used system-models [2]. Typical timed transaction-level models are of two types:

1. Approximately-timed computations exchanging data over an untimed communication channel, referred to

as a component-assembly model in figure 2, which resembles the Loosely-timed TLM 2.0 coding style

[4].

3

2. Approximately-timed computations exchanging data over an approximately-timed communication

channel, referred to as a bus-arbitration model in figure 2, which resembles the Approximately-timed

TLM 2.0 coding style [4].

Figure 1: Graphical Representation of the Structural Semantics of the TLM Methodology

Figure 2: Design-space of widely used System Models [2]

Furthermore, the separation of module computation from inter-module communication results in effortless

architectural-extensibility. Modules can be designed to be easily multiply instantiated and connected via a simple

binding of the ports to communication channels, regardless of the computation performed and the communication

protocol adopted, provided that the ports export a common interface.

B. Advantages of the TLM Methodology

[3] lists the following advantages of the TLM methodology:

1. Early software development – given a system-architecture specification, a functionally-accurate TLM

platform that permits the execution of embedded software can be constructed, thereby aiding pre-silicon

software development. Additionally, the functionally-accurate TLM models can be annotated with

transaction-level timing information, thereby enabling the early optimization of embedded software.

2. Architectural Analysis – timed TLM platforms which are comprised of parameterized components may be

used for architectural-exploration of a given system-architecture specification. Rather than implementing

them, the effects of micro-architectural features can be captured by specifying timing information, thereby

reducing the turnaround time for such an exploration.

3. Functional Verification – TLM platforms, and the models comprising them, represent an executable

functional specification, whose output maybe used for comparison with RTL, during the process of

functional verification.

Computation

Module A: Initiator

Communication

 Channel Computation

Module B: Target

Port Exporting Interface Transaction Interface Method Call

4

C. Salient Features of the TLM Methodology

The following are the salient features of the TLM methodology, and are intended to be used as guidelines

while developing models which compose TLM platforms:

1. Separate Module Computation from Inter-module Communication – by modeling communication related

details inside the channel. This permits the modeling of computation and communication at different

levels of abstraction, thus providing flexibility, and also eases architectural-extensibility.

2. Avoid modeling functionality of micro-architectural features and instead capture only their effects – by

modeling their effects through the specification of timing information. This results in simpler models, and

thus, faster simulation.

3. Simulate data-exchange at the Transaction-Level – by raising the level of timing-abstraction from cycle-

accuracy to timing-accuracy, by accounting for multiple clock-cycles as a lumped-delay, ensuring to

retain any synchronization present between clock-cycles that occur within the boundary of the specified

transaction. This results in faster simulation.

IV. USING THE TLM METHODOLOGY TO MODEL A GENERIC MEMORY-SYSTEM AT THE TRANSACTION-LEVEL

In this section, we showcase the process of modeling each of the components of a memory-system, at the

transaction-level. We describe an appropriate model for each component, which we derive based on the

guidelines of the TLM methodology. We then showcase the process of constructing a memory-hierarchy for a

hardware multithreaded system. Note that the sufficiency of coarse-grained result-accuracy implies that we model

all components to be loosely-timed by implementing only the TLM 2.0 b_transport() interface [4].

A. Modeling a Generic Cache at the Transaction-Level

A cache is a small, high-speed memory located in close proximity to the processor, which is designed to store

frequently accessed data, in an attempt to reduce memory-access latency. In the event that the requested data is

not located in the cache, the processor is stalled for additional penalty clock-cycles until the data is fetched from a

lower-level of memory and brought into the cache [6].

Figure 3 showcases the block diagram of the derived generic cache model. It mainly consists of:

 Tag RAM structures which store the tag-address, dirty-bit, valid-bit and age-counter of a way in the set

 A Cache controller which implements state-machines that capture the generic functionality of a cache

 A Bus Interface Unit which implements the interface for inter-module communication

Figure 3: Block Diagram of the derived Generic Cache Model

The model is parameterized via support for arguments in the module constructor. Configurable module

parameters include:

 Cache-size – specified in kilobytes

(Set, Way)

Cache

Address +

Physical

Address

Tag

RAM

#N

Tag

RAM

#1

…

…

Cache

Controller

Bus

Interface

Unit Physical

Address

Trans Payload

Target Socket

Initiator Socket

Trans Payload

5

 Cache Line-size – specified in bytes

 Cache Associativity –the number of ways in a set

 Number of Comparators – which are utilized during a parallel tag-lookup (a micro-architectural feature)

 Write Allocate – controls the allocation of a way-entry in a set, in the event of a write-miss

 Write Through – controls the generation of a write-transaction to the next-level of memory, in the event

of a write-hit (thus maintaining a consistent clean-state along the entire hierarchy)

 Way Prediction – controls the early-setting of the multiplexor to select the LRU-block during a tag-

lookup, in order to reduce lookup time (a micro-architectural feature)

 Clock Period – the time-period of a clock-cycle (internally, time for all operations are tracked as clock-

cycles)

In accordance with the guidelines of the TLM methodology:

1. Micro-architectural features are modeled as follows:

a. Only the effects of the number of comparators during the process of a tag-lookup are captured,

via the following mathematical equation

𝑜𝑓𝑐𝑙𝑜𝑐𝑘 𝑡𝑖𝑐𝑘𝑠 = ⌈
𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑣𝑖𝑡𝑦

𝑜𝑓 𝐶𝑜𝑚𝑝𝑎𝑟𝑎𝑡𝑜𝑟𝑠
⌉

b. When enabled, only the effects of way prediction during the process of a tag-lookup are

captured, via the conditional execution of the following mathematical equation

𝑖𝑓 ((𝑊𝑎𝑦𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝐸𝑛𝑎𝑏𝑙𝑒𝑑) &&(𝐻𝑖𝑡 𝑊𝑎𝑦 # == 𝐿𝑅𝑈 𝑊𝑎𝑦 #)) 𝑡ℎ𝑒𝑛 # 𝑜𝑓 𝑐𝑙𝑜𝑐𝑘 𝑡𝑖𝑐𝑘𝑠 = 1

2. Data exchange is modeled at the transaction-level by:

a. Tracking the cumulative number of clock-cycles during execution of the state-machines at the

current level without context-switching processes

b. Tracking the total time at the current level by adding a lumped time-delay received from the

lower level to the product of the number of clock-cycles and the clock-period at the current level

Model performance counters and execution statistics reported include:

 Number of cache-hits and cache-misses (further classified into reads/writes)

 Number of overhead-writes generated at current-level due to write policy (write-though/write-back)

 If enabled, classification of cache-misses into compulsory/capacity/conflict misses

 Cache hit-rate and miss-rate

 Cache hit-time and miss-time (average and total)

 If way-prediction enabled,

o Number of correct and incorrect predictions

o Non-mispredict and mispredict rate

 Total memory-bandwidth, memory-bandwidth wasted due to overhead-writes generated at current level

due to write-policy (write-through/write-back), effective memory-bandwidth

B. Modeling a Memory Controller at the Transaction-Level

DRAMs are organized into banks, rows and columns, thus introducing a format of addresses called raw-

addresses. A memory controller is a device that manages data-flow between the upper levels of memory and

6

DRAM by translating physical-addresses to raw-addresses and generating a sequence of commands that perform

the data-transfer to/from the DRAM.

Figure 4 showcases the block diagram of the derived memory controller model. It mainly consists of:

 A Memory Mapping unit which translates an incoming physical-address to raw-address format

 A Command Generation unit which generates a sequence of commands (Row Activate, Column Activate,

Row Precharge) which are routed to each bank’s command-queue

 Command-Queue structures for each bank, which contain a list of commands to be performed on the

respective DRAM bank

 Row-Buffer structures for each bank, which contain the row-address of the currently opened row in the

row-buffer, for the respective bank

 A Bus Interface Unit which implements the interface for inter-module communication

Figure 4: Block Diagram of the derived Memory Controller Model

The model is parameterized via support for arguments in the module constructor. Configurable module

parameters include:

 DRAM Page-size – specified in bytes

 Cache Line-size – specified in bytes

 Number of DRAM banks – to capture the effects of a multi-banked DRAM (a micro-architectural feature)

 Memory Data-bus Size – size of the data-bus connecting the memory controller to the DRAMs, specified

in bits (a micro-architectural feature)

 Technology dependent Memory Timing Parameters – including tRCD, tCL, tRP, specified in clock-

cycles

 DRAM Memory Type – whether the DRAM is synchronous or asynchronous, affecting the derived tRAS

memory-timing parameter

 Physical-Address to Raw-Address mapping – options include byte-interleaved, bank-sequential, and row-

sequential. These affecting the decoding of a physical-address into the raw-address tuple (Bank, Row,

Col)

 Clock Period - the time-period of a clock-cycle (internally, time for all operations are tracked as clock-

cycles)

In accordance with the guidelines of the TLM methodology:

1. Micro-architectural features as modeled as follows:

Target Socket

Bus

Interface

Unit

Memory

Mapping

Unit

Command

Generation

Unit

Command

Queue#1

Command

Queue#N

Row

Buffer#1

Row

Buffer#N

Physical

Address

(Bank, Row,

Col)

Raw Address

Raw Address

+ Command

(RowAct,

ColAct,

RowPre)

Row #

Row #

Trans Payload

7

a. Only the effects of the number of DRAM banks during the process of a memory-transaction

to/from DRAM are captured by modeling only data-structures that are essential to capture them.

This is done by modeling the command-queue associated with each bank, and computing the

delays contributed by the processing of commands in each queue. We do not model the entire

memory-bank.

b. Only the effects of the memory data-bus size during the process of a data-transfer of a cache-line

to/from DRAM are captured by splitting the transfer of a cache-line into multiple memory data-

bus transactions, the size of each being represented via the following mathematical equation

𝑜𝑓 𝑏𝑖𝑡𝑠 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑒𝑑 𝑏𝑦 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑚𝑒𝑚𝑜𝑟𝑦 𝑑𝑎𝑡𝑎 𝑏𝑢𝑠 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛

= min (𝑀𝑒𝑚𝑜𝑟𝑦 𝐷𝑎𝑡𝑎 𝐵𝑢𝑠 𝑆𝑖𝑧𝑒, #𝑜𝑓 𝐵𝑖𝑡𝑠 𝑈𝑛𝑡𝑖𝑙 𝐸𝑛𝑑 𝑜𝑓 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐷𝑅𝐴𝑀 𝑃𝑎𝑔𝑒, # 𝑜𝑓 𝐵𝑖𝑡𝑠 𝑈𝑛𝑡𝑖𝑙 𝐸𝑛𝑑 𝑜𝑓 𝐶𝑎𝑐ℎ𝑒 𝐿𝑖𝑛𝑒)

2. Data exchange is modeled at the transaction-level by tracking the cumulative number of clock-cycles

during the processing of commands in each of the command-queues without context-switching processes,

and returning the computed lumped time-delay on the transaction return-path.

Model performance counters and execution statistics reported include:

 Row-buffer hit-rate and miss-rate (per-bank and average)

 Average memory-transaction latency

 Average memory-bandwidth

 Per-bank and average DRAM utilization (%age of DRAM cycles spent on data-transfer vs. DRAM

cycles spent on initiating transfer)

 Bank-specific statistics:

o Number of row activates, column activates, and row precharges

o Row-buffer hit-count and miss-count

o Bank active cycles (cycles spent on data-transfer i.e. column activates) and inactive cycles

(cycles spent on initiating data-transfer i.e. row activates and row precharges)

o Total row precharge time

C. Modeling a Serializing Interconnect at the Transaction-Level

In a hardware multithreading architecture, multiple execution cores are organized as hardware-threads that

share a unified memory-hierarchy [9], [11], implying the need for a serializing interconnect that manages

arbitration. The serializing interconnect arbitrates access to the shared memory-hierarchy by buffering incoming

transactions from all hardware-threads and injecting them downstream for processing.

Figure 5: Block Diagram of the derived Serializing Interconnect Model

Arbiter Pending Transaction Buffer

Trans Payload

Target Socket

Bus Interface Unit

Selected Buffer

Index

Initiator Socket

Trans

Payload

Starting of Buffer Drain

SystemC Thread Context

8

Figure 5 showcases the block diagram of the derived serializing interconnect model. It mainly consists of:

 A Pending Transaction Buffer that stores the payload of an incoming transaction

 An Arbiter that implements algorithms to select a transaction from the pending transaction buffer for

injection downstream

 A Bus Interface Unit which implements the interface for inter-module communication

In order to arbitrate accesses by multiple hardware-threads to the shared memory-hierarchy, the following

protocol is adopted:

1. The hardware-thread must first acquire access to the serializing interconnect to ensure the reservation of

an entry in the pending transaction buffer for the corresponding transaction. If the serializing interconnect

fails to reserve an entry in the pending transaction buffer, it blocks the hardware-thread.

2. Once access is acquired, the serializing interconnect must queue the transaction in the pending transaction

buffer and block the hardware-thread until the transaction has completed.

3. The serializing interconnect must notify the hardware-thread upon the completion of the transaction,

following which the hardware-thread must relinquish access by returning the reserved pending

transaction buffer entry.

The serializing interconnect model implements a SystemC process to drain the pending transaction buffer.

When the SystemC kernel schedules this thread for execution, the arbiter selects a transaction from the pending

transaction buffer and injects it downstream for processing. The criterion for selection of a transaction is dictated

by the configured arbitration algorithm.

The model is parameterized via support for arguments in the module constructor. Configurable module

parameters include:

 Number of outstanding transactions – which denotes the size of the pending transaction buffer, specified

in number of transactions

 Arbitration algorithm – choice between first-pending (the first pending transaction found in the buffer),

first-come-first-served (the earliest transaction to be queued in the buffer), static priority (to prioritize

transactions from specific threads), prioritize hits (test-inject each transaction in the buffer, and pick the

one that hits at the highest-level of the memory system, implying the fastest transaction)

In accordance with the guidelines of the TLM methodology, data exchange is modeled at the transaction-level

by:

1. Associating the completion of a transaction injected by a hardware-thread with a single event, instead of

polling its completion status every clock-cycle

2. Modeling the total transaction delay returned from the lower level with a single wait(), and hence only a

single context-switch

D. Modeling a Hardware-Thread at the Transaction-Level

A typical hardware-thread encapsulates logic such as instruction-fetch units, instruction-decode units,

instruction-execution units and ALUs, registers, branch-predictors, and load-store units, usually organized in a

pipeline, which collectively enable the execution of an instruction-stream [10], [11]. In this context of this work,

we model the hardware-thread to comprise only of a load-store unit, ignoring all other aspects that are not

involved with the memory-system.

Figure 6 showcases the block diagram of the derived hardware-thread model. It mainly consists of:

 A Load/Store unit with a single-entry depth FIFO that given a load/store transaction, generates the

corresponding transaction payload

9

 A Trace Parser that implements infrastructure to read and parse an input benchmark-file

 A Bus Interface Unit which implements the interface for inter-module communication

Figure 6: Block Diagram of the derived Hardware-Thread Model

The hardware-thread model implements a SystemC process to inject memory-transactions downstream. When

the SystemC kernel schedules this thread for execution, the trace parser reads and parses an instruction from the

benchmark-file, and forwards it over to the load/store unit which generates a transaction payload for injection

downstream. This process executes until the benchmark-file is empty.

The model is parameterized via support for arguments in the module constructor. Configurable module

parameters include:

 Benchmark File – path to the benchmark-file to read, parse and execute

 Master Priority – representing a static-priority for the thread (used only for the static priority serializing

interconnect arbitration scheme)

In accordance with the guidelines of the TLM methodology, data exchange is modeled at the transaction-level

by the avoidance of invoking wait() to model transaction-latency (this is modeled by the downstream serializing

interconnect).

Model performance counters and execution statistics reported include:

 Number of instructions issued

 Total thread execution time

 Bus-contention time, effective execution time, bus-queuing time (%age and time-units)

 Average memory-operation execution time

E. Constructing a Memory-Hierarchy for a Hardware Multithreaded system

Constructing the memory-hierarchy involves instantiating each component and binding their ports. Figure 7

showcases the block diagram of a memory-hierarchy for a hardware multithreaded system. As shown in the

figure, it is comprised of an arbitrary number of hardware-threads bound to the serializing interconnect, which

further sinks into a hierarchy of an arbitrary number of caches, and finally terminates with a connection to the

memory controller. Each instance of the hardware-thread spawns a SystemC thread-context which injects

transactions downstream to the serializing interconnect, which are queued in the pending transaction buffer in the

same thread-context. Once queued, the serializing interconnect suspends the hardware-thread’s SystemC thread-

context until the transaction has completed. When the SystemC kernel schedules the pending transaction buffer

drain SystemC thread-context, an arbitrary transaction is injected downstream through the entire hierarchy, in the

same thread-context. On completion of the transaction, the pending transaction buffer SystemC thread-context

schedules an event that notifies the hardware-thread’s SystemC thread-context associated with that transaction, of

its completion, and then suspends itself. Upon receiving the event-notification, the hardware-thread’s SystemC

thread-context continues the cycle, injecting the next transaction until all have been processed.

Load/Store Unit

Trace Parser

Load/Store

Transaction

Initiator Socket

Trans Payload

Bus Interface Unit

Trans Payload

Starting

of

H/W-

Thread

SystemC

Thread

Context

10

Figure 7: Block Diagram of a Memory-Hierarchy for a Hardware Multithreading System

Arbiter Pending Transaction Buffer

Trans Payload

Target Socket

Bus Interface Unit

Selected Buffer

Index

Initiator Socket

Trans

Payload

Starting of Buffer Drain

SystemC Thread Context

(Set, Way)

Cache

Address +

Physical

Address

Tag

RAM

#N

Tag

RAM

#1

…

…

Cache

Controller

Bus

Interface

Unit Physical

Address

Trans Payload

Target Socket

Initiator Socket

Trans Payload

Target Socket

Bus

Interface

Unit

Memory

Mapping

Unit

Command

Generation

Unit

Command

Queue#1

Command

Queue#N

Row

Buffer#1

Row

Buffer#N

Physical

Address

(Bank, Row,

Col)

Raw Address

Raw Address

+ Command

(RowAct,

ColAct,

RowPre)

Row #

Row #

Trans Payload

bind() bind()

bind()

Any Number of Caches

bind()

bind()

Hardware

Thread#0

Any

Number

 of

Hardware

Threads

bind()

Serializing Interconnect

Level#0 Cache

Memory Controller

Load/Store Unit

Trace Parser

Load/Store

Transaction

Initiator Socket

Trans Payload

Bus Interface Unit

Trans Payload

Starting

of

H/W-

Thread

SystemC

Thread

Context

Load/Store Unit

Trace Parser

Load/Store

Transaction

Initiator Socket

Trans Payload

Bus Interface Unit

Trans Payload

Hardware

Thread#N

Starting

of

H/W-

Thread

SystemC

Thread

Context

11

Note that the memory-hierarchy constructed in figure 7, with the derived component-models, results in a

sequentially consistent memory-system, implying the correct functional execution of programs implementing

mutual-exclusion primitives (although this does not guarantee the avoidance of or recovery from a deadlock).

From [12], [13], a multiprocessor memory-system is said to be sequentially consistent if:

 The result of an execution of memory-transactions issued from a single processor is the same as if the

transactions were issued in program-order

 The execution of memory-transactions issued by multiple processors maybe arbitrarily interleaved

An in-depth observation of the derived component-models and the memory-hierarchy constructed in figure 7

indicates the following proof of confirmation:

 The load/store unit of the hardware-thread model is designed to have a single-depth entry FIFO. Since the

Trace Parser reads the input benchmark-file in order, it issues transactions to the load/store unit in-order,

which due to it’s single-depth FIFO, cannot re-order transactions (as it cannot hold more than one

transaction), thus making it impossible for the hardware-thread to issue memory-transactions out-of-

order, implying that a stream of memory-transactions processed by a hardware-thread will always be in

program-order

 The arbitration algorithm governing the arbiter of the serializing interconnect may interleave memory-

transactions issued by multiple hardware-threads

V. VALIDATION OF THE GENERIC MEMORY-SYSTEM SIMULATOR

In this section, we showcase the process of validating the simulator by verifying use-cases that portray the

fundamental tenets of memory-hierarchies. For each use-case, we first provide a brief description of the test-

scenario and the system-architecture on which the scenario is executed. We then present a plot of certain

execution-statistics obtained from the simulator which illustrates the successful passing of the test.

For all test-scenarios, we use one or more of the SPEC CPU benchmarks specified in table 1. The benchmarks

are composed of all memory-instructions (loads and stores) present in the first 100-million instructions of a

dynamic execution-trace collected for each benchmark.

Table I. SPEC CPU Benchmarks used in test-scenarios

Benchmark Name # of Memory Transactions Brief Description of Benchmark

art-100M 19888117 Adaptive Resonance Theory – Image Recognition/Neural Networks [14]

mcf-100M 32362081 Single-Depot Vehicle Scheduling [15]

go-100M 35497321 Artificial Intelligence: Game of Go [16]

A. Test-Scenario 1: Larger cache line-sizes reduce miss-rate but increase miss-penalty

Increasing the size of a cache-line reduces the miss-rate because of spatial locality – a larger cache-line

implies that a larger chunk of data in close-proximity to the address of the currently accessed cache-line is fetched

on a miss, thereby increasing the probability of a cache-hit, if nearby addresses are accessed. However, a larger

cache-line also implies that more data is fetched during a cache-miss, hence increasing the penalty of a miss.

In order to verify this test-scenario, we construct a system with configuration parameters as shown in figure 8.

We sweep through cache line-sizes in the range [4-bytes, 1024-bytes] in powers of 2, plotting the miss-rate and

miss-time for each data-point. Note that since we only require a single hardware-thread, the configuration

parameters of the serializing interconnect are irrelevant.

Figures 9 and 10 showcase a plot of cache miss-rate and cache miss-penalty against cache line-size. As

indicated by the plots, an increase in the cache line-size results in a reduction in cache miss-rate, but also

increases the average miss-penalty, thus indicating the successful passing of test.

12

Hardware Thread#0

(Benchmark: mcf-100M)

Serializing Interconnect

(# of outstanding transactions: DNC, Arbitration Algorithm: DNC)

Level#0 Cache

(Cache-size: 32Kb, Cache Line-size: <4-1024> bytes, # of comparators: 1, Associativity: 4, Write-back, Write-allocate, Way-

prediction: disabled, Clock Period: 1ns)

Memory Controller

(DRAM Page-size: 1024 bytes, # of DRAM banks: 4, Memory Data-bus size: 256-bits, Physical to Raw Address Mapping: byte-

interleaved, tRCD: 5-cycles, tCAS: 5-cycles, tRP: 5-cycles, DRAM type: synchronous, Clock Period: 10ns)

Figure 8: Block Diagram of a System-Architecture for Test-Scenario 1

Figure 9: Plot of Cache Miss-Rate vs. Cache Line-Size for Test-Scenario 1

Figure 10: Plot of Cache Miss-Penalty vs. Cache Line-Size for Test-Scenario 1

13

Hardware Thread#0

(Benchmark: mcf-100M)

Serializing Interconnect

(# of outstanding transactions: DNC, Arbitration Algorithm: DNC)

Level#0 Cache

(Cache-size: 32Kb, Cache Line-size: 32-bytes, # of comparators: 1, Associativity: [1-1024], Write-back, Write-allocate, Way-

prediction: disabled, Clock Period: 1ns)

Memory Controller

(DRAM Page-size: 1024 bytes, # of DRAM banks: 4, Memory Data-bus size: 256-bits, Physical to Raw Address Mapping: byte-

interleaved, tRCD: 5-cycles, tCAS: 5-cycles, tRP: 5-cycles, DRAM type: synchronous, Clock Period: 10ns)

B. Test-Scenario 2: Higher associativity reduces cache miss-rate but increases cache hit-time

For a fixed cache-size, a bounded increase in associativity reduces the miss-rate because it increases the

spatial distribution of addresses that may be mapped to the corresponding set. However, it also increases hit-time

because more ways need to be searched during a tag-lookup.

In order to verify this test-scenario, we construct a system with configuration parameters as shown in figure

11. We sweep through cache-associativity in the range [1-way, 1024-way] in powers of 2, plotting the miss-rate

and hit-time for each data-point. Note that since we only require a single hardware-thread, the configuration

parameters of the serializing interconnect are irrelevant.

Figure 11: Block Diagram of a System-Architecture for Test-Scenario 2

Figure 12: Plot of Cache Miss-Rate vs. Associativity for Test-Scenario 2

Figure 13: Plot of Cache Hit-Time vs. Associativity for Test-Scenario 2

14

Hardware Thread#0

(Benchmark: mcf-100M)

Serializing Interconnect

(# of outstanding transactions: DNC, Arbitration Algorithm: DNC)

Level#0 Cache

(Cache-size: 32Kb, Cache Line-size: 64-bytes, # of comparators: 1, Associativity: 4-way, Write-back, Write-allocate, Way-

prediction: disabled, Clock Period: 1ns)

Memory Controller

(DRAM Page-size: 1024 bytes, # of DRAM banks: 4, Memory Data-bus size: 256-bits, Physical to Raw Address Mapping: byte-

interleaved, tRCD: 5-cycles, tCAS: 5-cycles, tRP: 5-cycles, DRAM type: synchronous, Clock Period: 10ns)

Level#1 Cache

(Cache-size: 256Kb, Cache Line-size: 64-bytes, # of comparators: 1, Associativity: 8-way, Write-back, Write-allocate, Way-

prediction: disabled, Clock Period: 1ns)

Figures 12 and 13 showcase a plot of cache miss-rate and cache hit-time against associativity. As indicated by

the plots, an increase in associativity reduces the miss-rate and increases hit-time, indicating the successful

passing of the test.

C. Test-Scenario 3: Multilevel caches reduce miss-penalty

A hierarchy of caches can be constructed to simultaneously optimize hit-time and miss-penalty. Placing a

smaller, less-associative cache closer to the processor reduces hit-time. Placing a larger, more-associative cache

after the smaller cache, increases the probability of encapsulating misses from the previous level, in the current

level, hence reducing the effective miss-penalty of the smaller cache at the previous level.

In order to verify this test-scenario, we construct a system with configuration parameters as shown in figure

14. We plot the miss-penalty for the Level#0 cache in the presence and absence of the Level#1 cache. Note that

since we only require a single hardware-thread, the configuration parameters of the serializing interconnect are

irrelevant.

Figure 14: Block Diagram of a System-Architecture for Test-Scenario 3

Figure 15 showcases the plot for miss-penalty of the Level#0 cache in the presence and absence of the

Level#1 cache. As indicated by the plot, in the presence of the Level#1 cache, the miss-penalty for the Level#0

cache is significantly reduced, indicating the successful passing of the test.

Figure 15: Plot of Level#0 Cache Miss-Time vs. # of Cache-Levels for Test-Scenario 3

15

Hardware Thread#0

(Benchmark: mcf-100M)

Serializing Interconnect

(# of outstanding transactions: DNC, Arbitration Algorithm: DNC)

Level#0 Cache

(Cache-size: 32Kb, Cache Line-size: 32-bytes, # of comparators: 1, Associativity: [4-1024], Write-back, Write-allocate, Way-

prediction: [disabled, enabled], Clock Period: 1ns)

Memory Controller

(DRAM Page-size: 1024 bytes, # of DRAM banks: 4, Memory Data-bus size: 256-bits, Physical to Raw Address Mapping: byte-

interleaved, tRCD: 5-cycles, tCAS: 5-cycles, tRP: 5-cycles, DRAM type: synchronous, Clock Period: 10ns)

D. Test-Scenario 4: Way-prediction reduces cache hit-time

Due to the larger number of ways to be searched within a set, caches with high-associativity suffer from

increased hit-times. Way-predictors can help alleviate this inefficiency by predicting the way of the next access,

and preloading the multiplexor to select the predicted way to access data in advance. An incorrect prediction

would result in the searching of all ways in the next clock-cycle.

In order to verify this test-scenario, we construct a system with configuration parameters as shown in figure

16. We sweep through cache-associativity in the range [4-way, 1024-way] in powers of 4, plotting the average

hit-time in the presence and absence of way-prediction, for each data-point. Note that since we only require a

single hardware-thread, the configuration parameters of the serializing interconnect are irrelevant.

Figure 16: Block Diagram of a System-Architecture for Test-Scenario 4

Figure 17 showcases the plot for average hit-time vs. associativity, in the presence and absence of way-

prediction. As indicated by the plot, way-prediction reduces hit-time, indicating the successful passing of the test.

Figure 17: Plot of Average hit-time vs. Associativity for Test-Scenario 4

E. Test-Scenario 5: Larger DRAM pages reduce the average DRAM access latency

Increasing the size of a DRAM page reduces its access latency due to spatial locality – a larger DRAM page

implies that a larger chunk of data in close-proximity to the address of the currently accessed page is fetched on a

row-buffer miss, thereby increasing the probability of a row-buffer hit, if nearby addresses are accessed.

16

Hardware Thread#0

(Benchmark: mcf-100M)

Serializing Interconnect

(# of outstanding transactions: DNC, Arbitration Algorithm: DNC)

Level#0 Cache

(Cache-size: 32Kb, Cache Line-size: 64-bytes, # of comparators: 1, Associativity: 4-way, Write-back, Write-allocate, Way-

prediction: disabled, Clock Period: 1ns)

Memory Controller

(DRAM Page-size: [64-bytes, 8192-bytes], # of DRAM banks: 1, Memory Data-bus size: 512-bits, Physical to Raw Address

Mapping: byte-interleaved, tRCD: 5-cycles, tCAS: 5-cycles, tRP: 5-cycles, DRAM type: synchronous, Clock Period: 10ns)

Level#1 Cache

(Cache-size: 256Kb, Cache Line-size: 64-bytes, # of comparators: 1, Associativity: 8-way, Write-back, Write-allocate, Way-

prediction: disabled, Clock Period: 1ns)

In order to verify this test-scenario, we construct a system with configuration parameters as shown in figure

18. We sweep through DRAM page-size in the range [64-bytes, 8192-bytes] in powers of 2, plotting the average

DRAM access latency for each data-point. Note that since we only require a single hardware-thread, the

configuration parameters of the serializing interconnect are irrelevant.

Figure 18: Block Diagram of a System-Architecture for Test-Scenario 5

Figure 19 showcases the plot for average DRAM access latency vs. DRAM page-size. As indicated by the

plot, a larger page reduces access latency, indicating the successful passing of the test.

Figure 19: Plot of Average DRAM Access Latency vs. DRAM Page-size for Test-Scenario 5

F. Test-Scenario 6: Prioritization of a thread is achieved at the cost of the performance of other threads

In a system where multiple requestors contend for a unified shared-resource, access to the shared-resource

must be meticulously arbitrated to ensure fairness to all requestors. In such a system, prioritization of a thread is

achieved at the cost of a performance-loss on other threads, resulting in an overall lower system performance.

In order to verify the observability of this phenomenon in this test-scenario, we construct a system with

configuration parameters as shown in figure 20. We study the effects of varying serializing interconnect

arbitration algorithms on the effect of performance of each thread by plotting the average memory-access latency

17

Hardware Thread#0

(Benchmark: art-100M)

Serializing Interconnect

(# of outstanding transactions: 3, Arbitration Algorithm: FCFS, Static

Priority {T0=3, T1=2, T2=1, lower # = higher priority}, Prioritize Hits)

Level#0 Cache

(Cache-size: 32Kb, Cache Line-size: 64-bytes, # of comparators: 1, Associativity: 4-way, Write-back, Write-allocate, Way-

prediction: disabled, Clock Period: 1ns)

Memory Controller

(DRAM Page-size: 1024-bytes, # of DRAM banks: 4, Memory Data-bus size: 512-bits, Physical to Raw Address Mapping: byte-

interleaved, tRCD: 5-cycles, tCAS: 5-cycles, tRP: 5-cycles, DRAM type: synchronous, Clock Period: 10ns)

Level#1 Cache

(Cache-size: 256Kb, Cache Line-size: 64-bytes, # of comparators: 1, Associativity: 8-way, Write-back, Write-allocate, Way-

prediction: disabled, Clock Period: 1ns)

Hardware Thread#1

(Benchmark: mcf-100M)

Hardware Thread#2

(Benchmark: go-100M)

for each thread. For the static prioritization case, we assign the following priorities: {Thread#0: Priority 3,

lowest}, {Thread#1: Priority 2, medium}, {Thread#2: Priority 1, highest}.

 Figure 20: Block Diagram of a System-Architecture for Test-Scenario 6

Figure 21 showcases the plot for average memory-access latency vs. the selected arbitration algorithm. In the

first-come-first-served case, all threads share the loss in performance more uniformly. However, in the static-

prioritization case, thread#2 (go-100M) and thread#1 (mcf-100M) are prioritized over thread#0 (art-100M),

resulting in the degradation of performance of thread#0. The observability of the effects of this phenomenon

indicates the successful passing of the test.

Figure 21: Plot of Average Memory-Access Latency vs. Arbitration Algorithm for Test-Scenario 6

18

VI. CURRENT LIMITATIONS – SCOPE FOR FUTURE ENHANCEMENTS

Although MeSSMArch successfully provides an approximation of memory-system performance, in its current

state, it suffers from the following limitations:

1. The support for only a fixed cache-line size throughout the entire hierarchy restricts the exploration

of architectures where line-sizes differ at cache-levels. In a typical system, caches closer to the

processor are configured to have smaller line-sizes to minimize data-flow to/from the next-level, in

order to improve hit-times, and caches further away from the processor are configured to have larger

line-sizes to improve miss-rates by exploiting spatial-locality.

2. No support for non-blocking caches restricts the exploration of out-of-order execution hardware-

threads because, when the hardware-thread is stalled on a long-latency miss, it cannot issue another

memory-transaction (that may result in a hit) because the cache is busy.

3. No support for coherence protocols in the cache and interconnect restricts the exploration of

multicore architectures. Although it may be structurally possible to construct a multicore architecture

by connecting multiple memory-hierarchies to the same memory controller, the lack of coherence

protocols implies that the invalidation-messages required to maintain coherence between the

hierarchies will not be communicated due to their non-existence, resulting in functional

incorrectness.

4. No support for arbitration in the memory controller restricts the exploration of arbitrated multicore

memory-hierarchies. Even if coherence protocols are supported in the cache and interconnect, the

lack of an arbiter in the memory controller implies the lack of choice between transactions injected

from different hierarchies, thus making it impossible to model behavior such as core-unfairness [17].

VII. CONCLUSION

As systems grow increasingly complex, in order to cope with constraining time-to-market requirements, it is

imperative that designers adopt the usage of efficient tools, which enable the rapid exploration of massive design-

spaces in a minimal turnaround time. This necessitates tackling the system-design problem by adopting flows that

enable the co-design of hardware and software. The development of such flows is feasible only when designers

adopt methodologies that enable the design of systems at higher-levels of abstraction.

Although one of its challenges is the lack of a guideline for the definition of the scope of processes in a

transaction-level platform, in our experience, the TLM methodology has been instrumental in enabling the easy

transformation of an architecture-specification to an executable-model of the system at the transaction-level, thus

enabling swift architectural-exploration.

REFERENCES

[1] John L. Hennessy and David A. Patterson. 2011. Computer Architecture, Fifth Edition: A Quantitative Approach (5th ed.). Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA

[2] Lukai Cai and Daniel Gajski. 2003. Transaction level modeling: an overview. In Proceedings of the 1st IEEE/ACM/IFIP international

conference on Hardware/software codesign and system synthesis (CODES+ISSS '03). ACM, New York, NY, USA, 19-24

[3] Frank Ghenassia. 2006. Transaction-Level Modeling with Systemc: Tlm Concepts and Applications for Embedded Systems. Springer-

Verlag New York, Inc., Secaucus, NJ, USA.

[4] "IEEE Standard for Standard SystemC Language Reference Manual," IEEE Std 1666-2011 (Revision of IEEE Std 1666-2005) , vol.,

no., pp.1,638, Jan. 9 2012

[5] Ye Lu; Sezer, S.; McCanny, J., "TLM2.0 based timing accurate modeling method for complex NoC systems," Circuits and Systems

(ISCAS), Proceedings of 2010 IEEE International Symposium on , vol., no., pp.2900,2903, May 30 2010-June 2 2010

[6] Menon, S.; Suryaprasad, J., "A pattern based methodology for the design and implementation of multiplexed Master-Slave devices at

the system-level use-case: Modeling a Level-2 Cache IP module at transaction level," Networked Embedded Systems for Enterprise

Applications (NESEA), 2010 IEEE International Conference on , vol., no., pp.1,6, 25-26 Nov. 2010

[7] Benny Akesson. An introduction to SDRAM and memory controllers. URL: http://www.es.ele.tue.nl/premadona/files/akesson01.pdf

[8] Onur Mutlu. Computer Architecture, Spring 2015, Lecture 21: Main Memory, Carnegie Mellon University. URL:

http://www.ece.cmu.edu/~ece447/s15/lib/exe/fetch.php?media=onur-447-spring15-lecture21-main-memory-afterlecture.pdf

http://www.es.ele.tue.nl/premadona/files/akesson01.pdf
http://www.ece.cmu.edu/~ece447/s15/lib/exe/fetch.php?media=onur-447-spring15-lecture21-main-memory-afterlecture.pdf

19

[9] Milo M. K. Martin. Introduction to Computer Architecture, Fall 2010, Unit 10: Hardware Multithreading, University of Pennsylvania.

URL: https://www.cis.upenn.edu/~milom/cis501-Fall10/lectures/10_multithreading.pdf

[10] Amir Roth, "A High-Bandwidth Load-Store Unit for Single- and Multi-Threaded Processors", . January 2004

[11] Intel® Hyper-Threading Technology: Technical User’s Guide. January 2003. URL: http://cache-

www.intel.com/cd/00/00/01/77/17705_htt_user_guide.pdf

[12] Daniel J. Sorin, Mark D. Hill, and David A. Wood. 2011. A Primer on Memory Consistency and Cache Coherence (1st ed.). Morgan

& Claypool Publishers.

[13] L. Lamport. 1979. How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs. IEEE Trans. Comput.

28, 9 (September 1979), 690-691. DOI=10.1109/TC.1979.1675439 http://dx.doi.org/10.1109/TC.1979.1675439

[14] Adaptive Resonance Theory 2 (ART 2) Benchmark. URL: https://www.spec.org/cpu2000/CFP2000/179.art/docs/179.art.html

[15] MCF Benchmark. URL: https://www.spec.org/cpu2006/Docs/429.mcf.html

[16] Game of Go (Go) Benchmark. URL: https://www.spec.org/cpu2006/Docs/445.gobmk.html

[17] Mutlu, O.; Moscibroda, T., "Parallelism-Aware Batch Scheduling: Enabling High-Performance and Fair Shared Memory Controllers,"

Micro, IEEE , vol.29, no.1, pp.22,32, Jan.-Feb. 2009, doi: 10.1109/MM.2009.12

https://www.cis.upenn.edu/~milom/cis501-Fall10/lectures/10_multithreading.pdf
http://cache-www.intel.com/cd/00/00/01/77/17705_htt_user_guide.pdf
http://cache-www.intel.com/cd/00/00/01/77/17705_htt_user_guide.pdf
http://dx.doi.org/10.1109/TC.1979.1675439
https://www.spec.org/cpu2000/CFP2000/179.art/docs/179.art.html
https://www.spec.org/cpu2006/Docs/429.mcf.html
https://www.spec.org/cpu2006/Docs/445.gobmk.html

