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Abstract— The trend of scheduling multiple software-applications (or software-threads) with ever-increasing 

memory-footprints, for concurrent execution on multiple, increasingly accelerated hardware processing-cores, has 

necessitated the simultaneous compliance of two orthogonal requirements of computer memory-systems: higher 

speed and higher storage capacity. This has resulted in the adoption of a memory-hierarchy, which takes advantage 

of locality to optimize system performance and cost, where smaller, faster memory is placed in close proximity to the 

processing-cores, with larger, slower memory being further away. The organization of such a hierarchy is 

characterized by multiple parameters, thereby obligating system-architects to conduct a thorough exploration of the 

design-space as a pre-requisite to defining the system-architecture. The process of exploration requires the 

employment of simulators (typically trace-based) which enable experimentation and analysis by providing insights 

into estimated system-performance. The scarcity of free, easily extensible and fast, memory-hierarchy simulators has 

inspired us to develop MeSSMArch – a Memory-System Performance Simulator for Hardware Multithreading 

Architectures. 

In this paper, we present our experience of applying the Transaction Level Modeling (TLM) methodology in the 

process of developing MeSSMArch at the system-level. We first motivate the necessity for developing a generic 

memory-system performance simulator at the system-level, a process resulting in the logical inference of design-

requirements. We then present a brief description of the TLM methodology, attempting to capture the salient 

features of the design-philosophy. Next, we showcase the application of the TLM methodology, in the process of 

modeling each major unit of the memory-system (Abstract Hardware-Thread, Serializing Interconnect, Generic 

Cache and Memory Controller), and integrating them in the context of a hardware multithreaded system. We then 

showcase the process of validating the simulator, by verifying selected use-cases that portray the fundamental tenets 

of memory-hierarchies. We finally conclude by enunciating our learning from this experience. 

 

Keywords—Memory Systems, Memory Hierarchy, Cache, Memory Controller, Interconnect, Hardware 

Multithreading, Transaction Level Modeling (TLM), SystemC, Performance Estimation 

I.  INTRODUCTION 

Moore’s law of exponential growth in the capacity of integrated-circuits has greatly promoted the 

advancement of computing infrastructure. While processors are typically designed to channelize these resources 

towards maximizing speed, ever-increasing memory-footprints have coerced designers to channelize these 

resources towards increasing the storage-capacity of memories. As memories expand in capacity, it becomes 

intractable to accommodate them with processors, both on the same die, thereby constraining designers to place 

them off-chip, resulting in increased memory latency, thus reducing system performance. Designers, are thus, 

compelled to construct a hierarchy of memories, in order to simultaneously increase storage-capacity whilst 

preventing degradation of system performance. 

The foundation of a memory-hierarchy is based on the fundamental principles of locality. While temporal 

locality suggests that recently accessed data may-be accessed again in the near future, thereby favoring high-

speed memories, spatial locality suggests that data in close-proximity to recently accessed data may-be accessed 

again in the near future, thereby favoring higher-capacity memories. These orthogonal requirements are 

simultaneously satisfied by organizing a hierarchy where smaller, high-speed memories are placed closer towards 

the processors (typically on the same die), and larger, slower memories are placed further away (typically off-

chip), resulting in a vast design-space, of which an extensive exploration must be performed prior to defining the 

system-architecture. 
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The existence and interaction of multiple parameters in the design-space impels system-architects to conduct a 

cost-performance analysis, a process requiring the employment of simulators (typically trace-based) that enable 

architectural-exploration. The design of such simulators involves a process of maintaining an appropriate 

equilibrium between result-accuracy and simulation-speed, thus emphasizing the importance of modeling the 

system at an appropriate level of abstraction, as deemed necessary, for a given use-case. The combinatorically 

explosive nature of the design-space, coupled with stringent time-to-market requirements, requires system-

architects to utilize efficient simulators, which provide results that signify an estimation of system performance, 

in a minimal turnaround time, implying trading-off result-accuracy for simulation-speed. The scarcity of free, 

easily extensible, fast memory-hierarchy simulators that provide course-grained data on memory-system 

performance has served as our inspiration to develop MeSSMArch. 

II. SIMULATOR DESIGN REQUIREMENTS 

Our intended use-case is to develop a simulator that aids in the architectural-exploration of memory-system 

performance at the system-level. Based on the targeted use-case, we reason the following requirements: 

1. The simulator must be functionally generic – implying the avoidance of modeling functionality for 

implementation-specific features, and instead capturing its effects on system performance. This enables 

exploration at the system-level, offering system-architects a wider array of architectural options, as 

opposed to exploration at the micro-architecture level, a process more constraining due to increased 

design-complexity. For example, instead of modeling the functionality of comparators to perform a 

parallel tag-lookup along all the ways of a set-associative cache, we model a parallel tag-lookup by 

performing a sequential tag-lookup, and then dividing the time taken to perform the lookup by the 

number of comparators, thus capturing the effects of parallel tag-lookup on system performance.  

2. The simulator must provide an estimate into system performance – implying the sufficiency of coarse-

grained result-accuracy. This permits the modeling of transaction-accurate components, which ignore 

temporal effects within a transaction, and instead capture temporal effects between transactions, resulting 

in a fast simulator with an abstract notion of system performance. 

3. The simulator must be extensible – implying the usage of parameterized components that communicate 

over a unified interface. This permits the easy exploration of multifaceted memory-systems in a plug-and-

play environment. 

Section IV discusses the development of each component of the simulator in the context of these design-

requirements. 

III. TRANSACTION LEVEL MODELING (TLM) METHODOLOGY – AN OVERVIEW 

A. Brief Description of the TLM Methodology 

Transaction Level Modeling (TLM) refers to the approach of modeling systems such that the details of 

module computation are separated from the details of inter-module communication. Module computations are 

modeled as processes which exchange data via interface method calls. An interface declares communication 

access methods which are implemented by channels. Modules are bound using ports that export an interface. A 

transaction is the action of sending data from a master/initiator process to a slave/target process. Figure 1 

showcases a graphical representation of the structural semantics of the TLM methodology. 

The dissociation of communication from computation implies that each may be modeled arbitrarily as either 

timed or untimed, resulting in a spectrum of acceptable transaction-accurate models. Figure 2 showcases the 

design-space for widely used system-models [2]. Typical timed transaction-level models are of two types: 

1. Approximately-timed computations exchanging data over an untimed communication channel, referred to 

as a component-assembly model in figure 2, which resembles the Loosely-timed TLM 2.0 coding style 

[4]. 
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2. Approximately-timed computations exchanging data over an approximately-timed communication 

channel, referred to as a bus-arbitration model in figure 2, which resembles the Approximately-timed 

TLM 2.0 coding style [4]. 

 

Figure 1: Graphical Representation of the Structural Semantics of the TLM Methodology 

 

Figure 2: Design-space of widely used System Models [2] 

Furthermore, the separation of module computation from inter-module communication results in effortless 

architectural-extensibility. Modules can be designed to be easily multiply instantiated and connected via a simple 

binding of the ports to communication channels, regardless of the computation performed and the communication 

protocol adopted, provided that the ports export a common interface.  

B. Advantages of the TLM Methodology 

[3] lists the following advantages of the TLM methodology: 

1. Early software development – given a system-architecture specification, a functionally-accurate TLM 

platform that permits the execution of embedded software can be constructed, thereby aiding pre-silicon 

software development. Additionally, the functionally-accurate TLM models can be annotated with 

transaction-level timing information, thereby enabling the early optimization of embedded software.  

2. Architectural Analysis – timed TLM platforms which are comprised of parameterized components may be 

used for architectural-exploration of a given system-architecture specification. Rather than implementing 

them, the effects of micro-architectural features can be captured by specifying timing information, thereby 

reducing the turnaround time for such an exploration. 

3. Functional Verification – TLM platforms, and the models comprising them, represent an executable 

functional specification, whose output maybe used for comparison with RTL, during the process of 

functional verification. 
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C. Salient Features of the TLM Methodology 

The following are the salient features of the TLM methodology, and are intended to be used as guidelines 

while developing models which compose TLM platforms: 

1. Separate Module Computation from Inter-module Communication – by modeling communication related 

details inside the channel. This permits the modeling of computation and communication at different 

levels of abstraction, thus providing flexibility, and also eases architectural-extensibility. 

2. Avoid modeling functionality of micro-architectural features and instead capture only their effects – by 

modeling their effects through the specification of timing information. This results in simpler models, and 

thus, faster simulation. 

3. Simulate data-exchange at the Transaction-Level – by raising the level of timing-abstraction from cycle-

accuracy to timing-accuracy, by accounting for multiple clock-cycles as a lumped-delay, ensuring to 

retain any synchronization present between clock-cycles that occur within the boundary of the specified 

transaction. This results in faster simulation. 

IV. USING THE TLM METHODOLOGY TO MODEL A GENERIC MEMORY-SYSTEM AT THE TRANSACTION-LEVEL 

In this section, we showcase the process of modeling each of the components of a memory-system, at the 

transaction-level. We describe an appropriate model for each component, which we derive based on the 

guidelines of the TLM methodology. We then showcase the process of constructing a memory-hierarchy for a 

hardware multithreaded system. Note that the sufficiency of coarse-grained result-accuracy implies that we model 

all components to be loosely-timed by implementing only the TLM 2.0 b_transport( ) interface [4]. 

A. Modeling a Generic Cache at the Transaction-Level 

A cache is a small, high-speed memory located in close proximity to the processor, which is designed to store 

frequently accessed data, in an attempt to reduce memory-access latency. In the event that the requested data is 

not located in the cache, the processor is stalled for additional penalty clock-cycles until the data is fetched from a 

lower-level of memory and brought into the cache [6]. 

Figure 3 showcases the block diagram of the derived generic cache model. It mainly consists of: 

 Tag RAM structures which store the tag-address, dirty-bit, valid-bit and age-counter of a way in the set 

 A Cache controller which implements state-machines that capture the generic functionality of a cache 

 A Bus Interface Unit which implements the interface for inter-module communication 

Figure 3: Block Diagram of the derived Generic Cache Model 

The model is parameterized via support for arguments in the module constructor. Configurable module 
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 Cache Line-size – specified in bytes 

 Cache Associativity –the number of ways in a set 

 Number of Comparators – which are utilized during a parallel tag-lookup (a micro-architectural feature) 

 Write Allocate – controls the allocation of a  way-entry in a set, in the event of a write-miss 

 Write Through – controls the generation of a write-transaction to the next-level of memory, in the event 

of a write-hit (thus maintaining a consistent clean-state along the entire hierarchy) 

 Way Prediction – controls the early-setting of the multiplexor to select the LRU-block during a tag-

lookup, in order to reduce lookup time (a micro-architectural feature) 

 Clock Period – the time-period of a clock-cycle (internally, time for all operations are tracked as clock-

cycles) 

In accordance with the guidelines of the TLM methodology: 

1. Micro-architectural features are modeled as follows: 

a. Only the effects of the number of comparators during the process of a tag-lookup are captured, 

via the following mathematical equation 

# 𝑜𝑓𝑐𝑙𝑜𝑐𝑘 𝑡𝑖𝑐𝑘𝑠 =  ⌈
𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑣𝑖𝑡𝑦

# 𝑜𝑓 𝐶𝑜𝑚𝑝𝑎𝑟𝑎𝑡𝑜𝑟𝑠
⌉ 

b. When enabled, only the effects of way prediction during the process of a tag-lookup are 

captured, via the conditional execution of the following mathematical equation 

𝑖𝑓 ((𝑊𝑎𝑦𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝐸𝑛𝑎𝑏𝑙𝑒𝑑) &&(𝐻𝑖𝑡 𝑊𝑎𝑦 # == 𝐿𝑅𝑈 𝑊𝑎𝑦 #))      𝑡ℎ𝑒𝑛         # 𝑜𝑓 𝑐𝑙𝑜𝑐𝑘 𝑡𝑖𝑐𝑘𝑠 = 1 

2. Data exchange is modeled at the transaction-level by: 

a. Tracking the cumulative number of clock-cycles during execution of the state-machines at the 

current level without context-switching processes 

b. Tracking the total time at the current level by adding a lumped time-delay received from the 

lower level to the product of the number of clock-cycles and the clock-period at the current level 

Model performance counters and execution statistics reported include: 

 Number of cache-hits and cache-misses (further classified into reads/writes) 

 Number of overhead-writes generated at current-level due to write policy (write-though/write-back) 

 If enabled, classification of cache-misses into compulsory/capacity/conflict misses 

 Cache hit-rate and miss-rate 

 Cache hit-time and miss-time (average and total) 

 If way-prediction enabled, 

o Number of correct and incorrect predictions 

o Non-mispredict and mispredict rate 

 Total memory-bandwidth, memory-bandwidth wasted due to overhead-writes generated at current level 

due to write-policy (write-through/write-back), effective memory-bandwidth 

B. Modeling a Memory Controller at the Transaction-Level 

DRAMs are organized into banks, rows and columns, thus introducing a format of addresses called raw-

addresses. A memory controller is a device that manages data-flow between the upper levels of memory and 
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DRAM by translating physical-addresses to raw-addresses and generating a sequence of commands that perform 

the data-transfer to/from the DRAM.  

Figure 4 showcases the block diagram of the derived memory controller model. It mainly consists of: 

 A Memory Mapping unit which translates an incoming physical-address to raw-address format 

 A Command Generation unit which generates a sequence of commands (Row Activate, Column Activate, 

Row Precharge) which are routed to each bank’s command-queue 

 Command-Queue structures for each bank, which contain a list of commands to be performed on the 

respective DRAM bank 

 Row-Buffer structures for each bank, which contain the row-address of the currently opened row in the 

row-buffer, for the respective bank 

 A Bus Interface Unit which implements the interface for inter-module communication 

Figure 4: Block Diagram of the derived Memory Controller Model 

The model is parameterized via support for arguments in the module constructor. Configurable module 

parameters include: 

 DRAM Page-size – specified in bytes 

 Cache Line-size – specified in bytes 

 Number of DRAM banks – to capture the effects of a multi-banked DRAM (a micro-architectural feature) 

 Memory Data-bus Size – size of the data-bus connecting the memory controller to the DRAMs, specified 

in bits (a micro-architectural feature) 

 Technology dependent Memory Timing Parameters – including tRCD, tCL, tRP, specified in clock-

cycles 

 DRAM Memory Type – whether the DRAM is synchronous or asynchronous, affecting the derived tRAS 

memory-timing parameter 

 Physical-Address to Raw-Address mapping – options include byte-interleaved, bank-sequential, and row-

sequential. These affecting the decoding of a physical-address into the raw-address tuple (Bank, Row, 

Col) 

 Clock Period - the time-period of a clock-cycle (internally, time for all operations are tracked as clock-

cycles) 

In accordance with the guidelines of the TLM methodology: 

1. Micro-architectural features as modeled as follows: 
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a. Only the effects of the number of DRAM banks during the process of a memory-transaction 

to/from DRAM are captured by modeling only data-structures that are essential to capture them. 

This is done by modeling the command-queue associated with each bank, and computing the 

delays contributed by the processing of commands in each queue. We do not model the entire 

memory-bank. 

b. Only the effects of the memory data-bus size during the process of a data-transfer of a cache-line 

to/from DRAM are captured by splitting the transfer of a cache-line into multiple memory data-

bus transactions, the size of each being represented via the following mathematical equation 

# 𝑜𝑓 𝑏𝑖𝑡𝑠 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑒𝑑 𝑏𝑦 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑚𝑒𝑚𝑜𝑟𝑦 𝑑𝑎𝑡𝑎 𝑏𝑢𝑠 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛

= min (𝑀𝑒𝑚𝑜𝑟𝑦 𝐷𝑎𝑡𝑎 𝐵𝑢𝑠 𝑆𝑖𝑧𝑒, #𝑜𝑓 𝐵𝑖𝑡𝑠 𝑈𝑛𝑡𝑖𝑙 𝐸𝑛𝑑 𝑜𝑓 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐷𝑅𝐴𝑀 𝑃𝑎𝑔𝑒, # 𝑜𝑓 𝐵𝑖𝑡𝑠 𝑈𝑛𝑡𝑖𝑙 𝐸𝑛𝑑 𝑜𝑓 𝐶𝑎𝑐ℎ𝑒 𝐿𝑖𝑛𝑒)  

2. Data exchange is modeled at the transaction-level by tracking the cumulative number of clock-cycles 

during the processing of commands in each of the command-queues without context-switching processes, 

and returning the computed lumped time-delay on the transaction return-path. 

Model performance counters and execution statistics reported include: 

 Row-buffer hit-rate and miss-rate (per-bank and average) 

 Average memory-transaction latency 

 Average memory-bandwidth 

 Per-bank and average DRAM utilization (%age of DRAM cycles spent on data-transfer vs. DRAM 

cycles spent on initiating transfer) 

 Bank-specific statistics: 

o Number of row activates, column activates, and row precharges 

o Row-buffer hit-count and miss-count 

o Bank active cycles (cycles spent on data-transfer i.e. column activates) and inactive cycles 

(cycles spent on initiating data-transfer i.e. row activates and row precharges) 

o Total row precharge time 

C. Modeling a Serializing Interconnect at the Transaction-Level 

In a hardware multithreading architecture, multiple execution cores are organized as hardware-threads that 

share a unified memory-hierarchy [9], [11], implying the need for a serializing interconnect that manages 

arbitration. The serializing interconnect arbitrates access to the shared memory-hierarchy by buffering incoming 

transactions from all hardware-threads and injecting them downstream for processing. 

Figure 5: Block Diagram of the derived Serializing Interconnect Model 
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Figure 5 showcases the block diagram of the derived serializing interconnect model. It mainly consists of: 

 A Pending Transaction Buffer that stores the payload of an incoming transaction 

 An Arbiter that implements algorithms to select a transaction from the pending transaction buffer for 

injection downstream 

 A Bus Interface Unit which implements the interface for inter-module communication 

In order to arbitrate accesses by multiple hardware-threads to the shared memory-hierarchy, the following 

protocol is adopted: 

1. The hardware-thread must first acquire access to the serializing interconnect to ensure the reservation of 

an entry in the pending transaction buffer for the corresponding transaction. If the serializing interconnect 

fails to reserve an entry in the pending transaction buffer, it blocks the hardware-thread. 

2. Once access is acquired, the serializing interconnect must queue the transaction in the pending transaction 

buffer and block the hardware-thread until the transaction has completed. 

3. The serializing interconnect must notify the hardware-thread upon the completion of the transaction, 

following which the hardware-thread must relinquish access by returning the reserved pending 

transaction buffer entry. 

The serializing interconnect model implements a SystemC process to drain the pending transaction buffer. 

When the SystemC kernel schedules this thread for execution, the arbiter selects a transaction from the pending 

transaction buffer and injects it downstream for processing. The criterion for selection of a transaction is dictated 

by the configured arbitration algorithm. 

The model is parameterized via support for arguments in the module constructor. Configurable module 

parameters include: 

 Number of outstanding transactions – which denotes the size of the pending transaction buffer, specified 

in number of transactions 

 Arbitration algorithm – choice between first-pending (the first pending transaction found in the buffer), 

first-come-first-served (the earliest transaction to be queued in the buffer), static priority (to prioritize 

transactions from specific threads), prioritize hits (test-inject each transaction in the buffer, and pick the 

one that hits at the highest-level of the memory system, implying the fastest transaction)  

In accordance with the guidelines of the TLM methodology, data exchange is modeled at the transaction-level 

by: 

1. Associating the completion of a transaction injected by a hardware-thread with a single event, instead of 

polling its completion status every clock-cycle 

2. Modeling the total transaction delay returned from the lower level with a single wait( ), and hence only a 

single context-switch 

D. Modeling a Hardware-Thread at the Transaction-Level 

A typical hardware-thread encapsulates logic such as instruction-fetch units, instruction-decode units, 

instruction-execution units and ALUs, registers, branch-predictors, and load-store units, usually organized in a 

pipeline, which collectively enable the execution of an instruction-stream [10], [11]. In this context of this work, 

we model the hardware-thread to comprise only of a load-store unit, ignoring all other aspects that are not 

involved with the memory-system. 

Figure 6 showcases the block diagram of the derived hardware-thread model. It mainly consists of: 

 A Load/Store unit with a single-entry depth FIFO that given a load/store transaction, generates the 

corresponding transaction payload 
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 A Trace Parser that implements infrastructure to read and parse an input benchmark-file 

 A Bus Interface Unit which implements the interface for inter-module communication 

Figure 6: Block Diagram of the derived Hardware-Thread Model 

The hardware-thread model implements a SystemC process to inject memory-transactions downstream. When 

the SystemC kernel schedules this thread for execution, the trace parser reads and parses an instruction from the 

benchmark-file, and forwards it over to the load/store unit which generates a transaction payload for injection 

downstream. This process executes until the benchmark-file is empty. 

The model is parameterized via support for arguments in the module constructor. Configurable module 

parameters include: 

 Benchmark File – path to the benchmark-file to read, parse and execute 

 Master Priority – representing a static-priority for the thread (used only for the static priority serializing 

interconnect arbitration scheme) 

In accordance with the guidelines of the TLM methodology, data exchange is modeled at the transaction-level 

by the avoidance of invoking wait( ) to model transaction-latency (this is modeled by the downstream serializing 

interconnect). 

Model performance counters and execution statistics reported include: 

 Number of instructions issued 

 Total thread execution time 

 Bus-contention time, effective execution time, bus-queuing time (%age and time-units) 

 Average memory-operation execution time 

E. Constructing a Memory-Hierarchy for a Hardware Multithreaded system 

Constructing the memory-hierarchy involves instantiating each component and binding their ports. Figure 7 

showcases the block diagram of a memory-hierarchy for a hardware multithreaded system. As shown in the 

figure, it is comprised of an arbitrary number of hardware-threads bound to the serializing interconnect, which 

further sinks into a hierarchy of an arbitrary number of caches, and finally terminates with a connection to the 

memory controller. Each instance of the hardware-thread spawns a SystemC thread-context which injects 

transactions downstream to the serializing interconnect, which are queued in the pending transaction buffer in the 

same thread-context. Once queued, the serializing interconnect suspends the hardware-thread’s SystemC thread-

context until the transaction has completed. When the SystemC kernel schedules the pending transaction buffer 

drain SystemC thread-context, an arbitrary transaction is injected downstream through the entire hierarchy, in the 

same thread-context. On completion of the transaction, the pending transaction buffer SystemC thread-context 

schedules an event that notifies the hardware-thread’s SystemC thread-context associated with that transaction, of 

its completion, and then suspends itself. Upon receiving the event-notification, the hardware-thread’s SystemC 

thread-context continues the cycle, injecting the next transaction until all have been processed. 

Load/Store Unit 

Trace Parser 

Load/Store 

Transaction 

Initiator Socket 

Trans Payload 

Bus Interface Unit 

Trans Payload 

Starting 

of  

H/W-

Thread 

SystemC 

Thread 

Context 



 

 

 

 

 

10 

 

Figure 7: Block Diagram of a Memory-Hierarchy for a Hardware Multithreading System 
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Note that the memory-hierarchy constructed in figure 7, with the derived component-models, results in a 

sequentially consistent memory-system, implying the correct functional execution of programs implementing 

mutual-exclusion primitives (although this does not guarantee the avoidance of or recovery from a deadlock). 

From [12], [13], a multiprocessor memory-system is said to be sequentially consistent if: 

 The result of an execution of memory-transactions issued from a single processor is the same as if the 

transactions were issued in program-order 

 The execution of memory-transactions issued by multiple processors maybe arbitrarily interleaved 

An in-depth observation of the derived component-models and the memory-hierarchy constructed in figure 7 

indicates the following proof of confirmation: 

 The load/store unit of the hardware-thread model is designed to have a single-depth entry FIFO. Since the 

Trace Parser reads the input benchmark-file in order, it issues transactions to the load/store unit in-order, 

which due to it’s single-depth FIFO, cannot re-order transactions (as it cannot hold more than one 

transaction), thus making it impossible for the hardware-thread to issue memory-transactions out-of-

order, implying that a stream of memory-transactions processed by a hardware-thread will always be in 

program-order 

 The arbitration algorithm governing the arbiter of the serializing interconnect may interleave memory-

transactions issued by multiple hardware-threads  

V. VALIDATION OF THE GENERIC MEMORY-SYSTEM SIMULATOR 

In this section, we showcase the process of validating the simulator by verifying use-cases that portray the 

fundamental tenets of memory-hierarchies. For each use-case, we first provide a brief description of the test-

scenario and the system-architecture on which the scenario is executed. We then present a plot of certain 

execution-statistics obtained from the simulator which illustrates the successful passing of the test. 

For all test-scenarios, we use one or more of the SPEC CPU benchmarks specified in table 1. The benchmarks 

are composed of all memory-instructions (loads and stores) present in the first 100-million instructions of a 

dynamic execution-trace collected for each benchmark. 

Table I. SPEC CPU Benchmarks used in test-scenarios 

Benchmark Name # of Memory Transactions Brief Description of Benchmark 

art-100M 19888117 Adaptive Resonance Theory – Image Recognition/Neural Networks [14] 

mcf-100M 32362081 Single-Depot Vehicle Scheduling [15] 

go-100M 35497321 Artificial Intelligence: Game of Go [16] 

 

A. Test-Scenario 1: Larger cache line-sizes reduce miss-rate but increase miss-penalty 

Increasing the size of a cache-line reduces the miss-rate because of spatial locality – a larger cache-line 

implies that a larger chunk of data in close-proximity to the address of the currently accessed cache-line is fetched 

on a miss, thereby increasing the probability of a cache-hit, if nearby addresses are accessed. However, a larger 

cache-line also implies that more data is fetched during a cache-miss, hence increasing the penalty of a miss. 

In order to verify this test-scenario, we construct a system with configuration parameters as shown in figure 8. 

We sweep through cache line-sizes in the range [4-bytes, 1024-bytes] in powers of 2, plotting the miss-rate and 

miss-time for each data-point. Note that since we only require a single hardware-thread, the configuration 

parameters of the serializing interconnect are irrelevant. 

Figures 9 and 10 showcase a plot of cache miss-rate and cache miss-penalty against cache line-size. As 

indicated by the plots, an increase in the cache line-size results in a reduction in cache miss-rate, but also 

increases the average miss-penalty, thus indicating the successful passing of test. 
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Hardware Thread#0 

(Benchmark: mcf-100M) 

Serializing Interconnect 

(# of outstanding transactions: DNC, Arbitration Algorithm: DNC) 

 

Level#0 Cache 

(Cache-size: 32Kb, Cache Line-size: <4-1024> bytes, # of comparators: 1, Associativity: 4, Write-back, Write-allocate, Way-

prediction: disabled, Clock Period: 1ns) 

 

 

Memory Controller 

(DRAM Page-size: 1024 bytes, # of DRAM banks: 4, Memory Data-bus size: 256-bits, Physical to Raw Address Mapping: byte-

interleaved, tRCD: 5-cycles, tCAS: 5-cycles, tRP: 5-cycles, DRAM type: synchronous, Clock Period: 10ns) 

 
Figure 8: Block Diagram of a System-Architecture for Test-Scenario 1 

 

Figure 9: Plot of Cache Miss-Rate vs. Cache Line-Size for Test-Scenario 1 

 

Figure 10: Plot of Cache Miss-Penalty vs. Cache Line-Size for Test-Scenario 1 
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Hardware Thread#0 

(Benchmark: mcf-100M) 

Serializing Interconnect 

(# of outstanding transactions: DNC, Arbitration Algorithm: DNC) 

 

Level#0 Cache 

(Cache-size: 32Kb, Cache Line-size: 32-bytes, # of comparators: 1, Associativity: [1-1024], Write-back, Write-allocate, Way-

prediction: disabled, Clock Period: 1ns) 

 

 

Memory Controller 

(DRAM Page-size: 1024 bytes, # of DRAM banks: 4, Memory Data-bus size: 256-bits, Physical to Raw Address Mapping: byte-

interleaved, tRCD: 5-cycles, tCAS: 5-cycles, tRP: 5-cycles, DRAM type: synchronous, Clock Period: 10ns) 

 

B. Test-Scenario 2: Higher associativity reduces cache miss-rate but increases cache hit-time 

For a fixed cache-size, a bounded increase in associativity reduces the miss-rate because it increases the 

spatial distribution of addresses that may be mapped to the corresponding set. However, it also increases hit-time 

because more ways need to be searched during a tag-lookup. 

In order to verify this test-scenario, we construct a system with configuration parameters as shown in figure 

11. We sweep through cache-associativity in the range [1-way, 1024-way] in powers of 2, plotting the miss-rate 

and hit-time for each data-point. Note that since we only require a single hardware-thread, the configuration 

parameters of the serializing interconnect are irrelevant. 

Figure 11: Block Diagram of a System-Architecture for Test-Scenario 2 

Figure 12: Plot of Cache Miss-Rate vs. Associativity for Test-Scenario 2 

Figure 13: Plot of Cache Hit-Time vs. Associativity for Test-Scenario 2 
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Hardware Thread#0 

(Benchmark: mcf-100M) 

Serializing Interconnect 

(# of outstanding transactions: DNC, Arbitration Algorithm: DNC) 

 

Level#0 Cache 

(Cache-size: 32Kb, Cache Line-size: 64-bytes, # of comparators: 1, Associativity: 4-way, Write-back, Write-allocate, Way-

prediction: disabled, Clock Period: 1ns) 

 

 

Memory Controller 

(DRAM Page-size: 1024 bytes, # of DRAM banks: 4, Memory Data-bus size: 256-bits, Physical to Raw Address Mapping: byte-

interleaved, tRCD: 5-cycles, tCAS: 5-cycles, tRP: 5-cycles, DRAM type: synchronous, Clock Period: 10ns) 

 

Level#1 Cache 

(Cache-size: 256Kb, Cache Line-size: 64-bytes, # of comparators: 1, Associativity: 8-way, Write-back, Write-allocate, Way-

prediction: disabled, Clock Period: 1ns) 

 

 

Figures 12 and 13 showcase a plot of cache miss-rate and cache hit-time against associativity. As indicated by 

the plots, an increase in associativity reduces the miss-rate and increases hit-time, indicating the successful 

passing of the test. 

C. Test-Scenario 3: Multilevel caches reduce miss-penalty 

A hierarchy of caches can be constructed to simultaneously optimize hit-time and miss-penalty. Placing a 

smaller, less-associative cache closer to the processor reduces hit-time. Placing a larger, more-associative cache 

after the smaller cache, increases the probability of encapsulating misses from the previous level, in the current 

level, hence reducing the effective miss-penalty of the smaller cache at the previous level. 

In order to verify this test-scenario, we construct a system with configuration parameters as shown in figure 

14. We plot the miss-penalty for the Level#0 cache in the presence and absence of the Level#1 cache. Note that 

since we only require a single hardware-thread, the configuration parameters of the serializing interconnect are 

irrelevant. 

Figure 14: Block Diagram of a System-Architecture for Test-Scenario 3 

Figure 15 showcases the plot for miss-penalty of the Level#0 cache in the presence and absence of the 

Level#1 cache. As indicated by the plot, in the presence of the Level#1 cache, the miss-penalty for the Level#0 

cache is significantly reduced, indicating the successful passing of the test.  

Figure 15: Plot of Level#0 Cache Miss-Time vs. # of Cache-Levels for Test-Scenario 3 
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Hardware Thread#0 

(Benchmark: mcf-100M) 

Serializing Interconnect 

(# of outstanding transactions: DNC, Arbitration Algorithm: DNC) 

 

Level#0 Cache 

(Cache-size: 32Kb, Cache Line-size: 32-bytes, # of comparators: 1, Associativity: [4-1024], Write-back, Write-allocate, Way-

prediction: [disabled, enabled], Clock Period: 1ns) 

 

 

Memory Controller 

(DRAM Page-size: 1024 bytes, # of DRAM banks: 4, Memory Data-bus size: 256-bits, Physical to Raw Address Mapping: byte-

interleaved, tRCD: 5-cycles, tCAS: 5-cycles, tRP: 5-cycles, DRAM type: synchronous, Clock Period: 10ns) 

 

D. Test-Scenario 4: Way-prediction reduces cache hit-time 

Due to the larger number of ways to be searched within a set, caches with high-associativity suffer from 

increased hit-times. Way-predictors can help alleviate this inefficiency by predicting the way of the next access, 

and preloading the multiplexor to select the predicted way to access data in advance. An incorrect prediction 

would result in the searching of all ways in the next clock-cycle. 

In order to verify this test-scenario, we construct a system with configuration parameters as shown in figure 

16. We sweep through cache-associativity in the range [4-way, 1024-way] in powers of 4, plotting the average 

hit-time in the presence and absence of way-prediction, for each data-point. Note that since we only require a 

single hardware-thread, the configuration parameters of the serializing interconnect are irrelevant. 

Figure 16: Block Diagram of a System-Architecture for Test-Scenario 4 

Figure 17 showcases the plot for average hit-time vs. associativity, in the presence and absence of way-

prediction. As indicated by the plot, way-prediction reduces hit-time, indicating the successful passing of the test.  

Figure 17: Plot of Average hit-time vs. Associativity for Test-Scenario 4 

E. Test-Scenario 5: Larger DRAM pages reduce the average DRAM access latency 

Increasing the size of a DRAM page reduces its access latency due to spatial locality – a larger DRAM page 

implies that a larger chunk of data in close-proximity to the address of the currently accessed page is fetched on a 

row-buffer miss, thereby increasing the probability of a row-buffer hit, if nearby addresses are accessed. 
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Hardware Thread#0 

(Benchmark: mcf-100M) 

Serializing Interconnect 

(# of outstanding transactions: DNC, Arbitration Algorithm: DNC) 

 

Level#0 Cache 

(Cache-size: 32Kb, Cache Line-size: 64-bytes, # of comparators: 1, Associativity: 4-way, Write-back, Write-allocate, Way-

prediction: disabled, Clock Period: 1ns) 

 

 

Memory Controller 

(DRAM Page-size: [64-bytes, 8192-bytes], # of DRAM banks: 1, Memory Data-bus size: 512-bits, Physical to Raw Address 

Mapping: byte-interleaved, tRCD: 5-cycles, tCAS: 5-cycles, tRP: 5-cycles, DRAM type: synchronous, Clock Period: 10ns) 

 

Level#1 Cache 

(Cache-size: 256Kb, Cache Line-size: 64-bytes, # of comparators: 1, Associativity: 8-way, Write-back, Write-allocate, Way-

prediction: disabled, Clock Period: 1ns) 

 

 

In order to verify this test-scenario, we construct a system with configuration parameters as shown in figure 

18. We sweep through DRAM page-size in the range [64-bytes, 8192-bytes] in powers of 2, plotting the average 

DRAM access latency for each data-point. Note that since we only require a single hardware-thread, the 

configuration parameters of the serializing interconnect are irrelevant. 

Figure 18: Block Diagram of a System-Architecture for Test-Scenario 5 

Figure 19 showcases the plot for average DRAM access latency vs. DRAM page-size. As indicated by the 

plot, a larger page reduces access latency, indicating the successful passing of the test. 

Figure 19: Plot of Average DRAM Access Latency vs. DRAM Page-size for Test-Scenario 5 

F. Test-Scenario 6: Prioritization of a thread is achieved at the cost of the performance of other threads 

In a system where multiple requestors contend for a unified shared-resource, access to the shared-resource 

must be meticulously arbitrated to ensure fairness to all requestors. In such a system, prioritization of a thread is 

achieved at the cost of a performance-loss on other threads, resulting in an overall lower system performance. 

In order to verify the observability of this phenomenon in this test-scenario, we construct a system with 

configuration parameters as shown in figure 20. We study the effects of varying serializing interconnect 

arbitration algorithms on the effect of performance of each thread by plotting the average memory-access latency 
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Hardware Thread#0 

(Benchmark: art-100M) 

Serializing Interconnect 

(# of outstanding transactions: 3, Arbitration Algorithm: FCFS, Static 

Priority {T0=3, T1=2, T2=1, lower # = higher priority}, Prioritize Hits) 

 

Level#0 Cache 

(Cache-size: 32Kb, Cache Line-size: 64-bytes, # of comparators: 1, Associativity: 4-way, Write-back, Write-allocate, Way-

prediction: disabled, Clock Period: 1ns) 

 

 

Memory Controller 

(DRAM Page-size: 1024-bytes, # of DRAM banks: 4, Memory Data-bus size: 512-bits, Physical to Raw Address Mapping: byte-

interleaved, tRCD: 5-cycles, tCAS: 5-cycles, tRP: 5-cycles, DRAM type: synchronous, Clock Period: 10ns) 

 

Level#1 Cache 

(Cache-size: 256Kb, Cache Line-size: 64-bytes, # of comparators: 1, Associativity: 8-way, Write-back, Write-allocate, Way-

prediction: disabled, Clock Period: 1ns) 

 

 

Hardware Thread#1 

(Benchmark: mcf-100M) 

Hardware Thread#2 

(Benchmark: go-100M) 

for each thread. For the static prioritization case, we assign the following priorities: {Thread#0: Priority 3, 

lowest}, {Thread#1: Priority 2, medium}, {Thread#2: Priority 1, highest}. 

 Figure 20: Block Diagram of a System-Architecture for Test-Scenario 6 

Figure 21 showcases the plot for average memory-access latency vs. the selected arbitration algorithm. In the 

first-come-first-served case, all threads share the loss in performance more uniformly. However, in the static-

prioritization case, thread#2 (go-100M) and thread#1 (mcf-100M) are prioritized over thread#0 (art-100M), 

resulting in the degradation of performance of thread#0. The observability of the effects of this phenomenon 

indicates the successful passing of the test. 

Figure 21: Plot of Average Memory-Access Latency vs. Arbitration Algorithm for Test-Scenario 6 
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VI. CURRENT LIMITATIONS – SCOPE FOR FUTURE ENHANCEMENTS 

Although MeSSMArch successfully provides an approximation of memory-system performance, in its current 

state, it suffers from the following limitations: 

1. The support for only a fixed cache-line size throughout the entire hierarchy restricts the exploration 

of architectures where line-sizes differ at cache-levels. In a typical system, caches closer to the 

processor are configured to have smaller line-sizes to minimize data-flow to/from the next-level, in 

order to improve hit-times, and caches further away from the processor are configured to have larger 

line-sizes to improve miss-rates by exploiting spatial-locality. 

2. No support for non-blocking caches restricts the exploration of out-of-order execution hardware-

threads because, when the hardware-thread is stalled on a long-latency miss, it cannot issue another 

memory-transaction (that may result in a hit) because the cache is busy. 

3. No support for coherence protocols in the cache and interconnect restricts the exploration of 

multicore architectures. Although it may be structurally possible to construct a multicore architecture 

by connecting multiple memory-hierarchies to the same memory controller, the lack of coherence 

protocols implies that the invalidation-messages required to maintain coherence between the 

hierarchies will not be communicated due to their non-existence, resulting in functional 

incorrectness. 

4. No support for arbitration in the memory controller restricts the exploration of arbitrated multicore 

memory-hierarchies. Even if coherence protocols are supported in the cache and interconnect, the 

lack of an arbiter in the memory controller implies the lack of choice between transactions injected 

from different hierarchies, thus making it impossible to model behavior such as core-unfairness [17]. 

VII. CONCLUSION 

As systems grow increasingly complex, in order to cope with constraining time-to-market requirements, it is 

imperative that designers adopt the usage of efficient tools, which enable the rapid exploration of massive design-

spaces in a minimal turnaround time. This necessitates tackling the system-design problem by adopting flows that 

enable the co-design of hardware and software. The development of such flows is feasible only when designers 

adopt methodologies that enable the design of systems at higher-levels of abstraction. 

Although one of its challenges is the lack of a guideline for the definition of the scope of processes in a 

transaction-level platform, in our experience, the TLM methodology has been instrumental in enabling the easy 

transformation of an architecture-specification to an executable-model of the system at the transaction-level, thus 

enabling swift architectural-exploration. 
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