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Why Memory Hierarchies? – Problem
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Why Memory Hierarchies? – Solution
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Fast Simulators – Trade-off result 

accuracy for simulation-speed by 

raising level of abstraction! 

 Enable faster design-space 

exploration!

Problematic Solution?! – Need for Simulators
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TLM to the Rescue – Mapping Simulator Design 
Requirements to TLM Guidelines

Design Requirement
Functionally Generic
No implementation-specific details, 
easy to model and explore

Estimate System Performance 
Only
Coarse-grained result accuracy, fast 
simulation

Easily Extensible
Plug-n-play style architectural 
exploration

TLM Guideline
Don’t model functionality of µ-

architectural features
Capture effects through timing 

information

Model data exchange at 
Transaction-Level

Timing-accuracy via lumped delays

Separate Computation from 
Communication

Model computation details inside 
the process and communication 

details inside the channel
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Modeling a Generic Memory-System 
at the Transaction-Level using TLM

• Memory-System Components:
– Generic Cache (full-flow covered)

– Memory Controller (only structure)*

– Serializing Interconnect (only structure)*

– Hardware-Thread (only structure)*

• Construct Memory-Hierarchy for a Hardware 
Multithreaded Architecture

• Coarse-grained accuracy  All components modeled 
as loosely-timed
– Implement b_transport( ) only
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*Refer the Appendix Section and the Paper for More Details



Generic Cache – Transaction-Level 
Model

• Tag RAM – stores tag-address, dirty-bit, valid-bit and age-
counters of a way

• Cache Controller – implements state-machines that 
capture functionality of cache

• Bus Interface Unit – implements interface for inter-
module communication
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Generic Cache – Configuration Parameters
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Parameter Unit/
Options

Description

Cache Size Kilobytes Size of the cache

Cache Line-Size Bytes Size of a cache-line

Associativity <NA> # of ways in a set

# of Comparators <NA> # of comparators used during a lookup

Write-Allocate Yes/No Allocation of a way-entry on a cache-miss

Write-Through Yes/No Generate write-transaction to lower-level 
on write-hit

Way Prediction Yes/No Predict way of current access to reduce 
lookup-time

Clock Period Nanosecs Time-period of a clock-cycle

Green entries indicate micro-architectural features



Generic Cache - µArch Features

• # of comparators
– Used in parallel tag-lookup – don’t do parallel lookup!

– Perform sequential tag-lookup and then divide the time by # of 
comparators

– Equation: # 𝑜𝑓 𝑐𝑙𝑜𝑐𝑘 𝑐𝑦𝑐𝑙𝑒𝑠 =
𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑣𝑖𝑡𝑦

# 𝑜𝑓 𝐶𝑜𝑚𝑝𝑎𝑟𝑎𝑡𝑜𝑟𝑠

• Way Prediction
– Don’t model setting of multiplexor to channel data, etc.

– Perform normal lookup and conditionally adjust time based on 
way accessed (prediction: LRU-way)

– Equation: 

𝑖𝑓 𝑊𝑃 𝑒𝑛𝑎𝑏𝑙𝑒𝑑 & 𝐻𝑖𝑡𝑊𝑎𝑦 == 𝐿𝑅𝑈𝑊𝑎𝑦 𝑡ℎ𝑒𝑛 # 𝑜𝑓 𝑐𝑙𝑜𝑐𝑘 𝑐𝑦𝑐𝑙𝑒𝑠 = 1
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Generic Cache – Transaction-Level 
Data Exchange

• Track cumulative # of clock-cycles during execution 
of state-machines at current-level without context-
switching

• Conditionally forward transaction to lower-level –
lumped time-delay received on return-path

𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 𝑎𝑡 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐿𝑒𝑣𝑒𝑙
= # 𝑜𝑓 𝑐𝑦𝑐𝑙𝑒𝑠 𝑎𝑡 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑒𝑣𝑒𝑙 𝑥 𝑐𝑦𝑐𝑙𝑒 𝑡𝑖𝑚𝑒
+ 𝑙𝑜𝑤𝑒𝑟 𝑙𝑒𝑣𝑒𝑙 𝑙𝑢𝑚𝑝𝑒𝑑 𝑡𝑖𝑚𝑒 𝑑𝑒𝑙𝑎𝑦

• Return Total Transaction Time upstream as lumped 
time-delay
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Memory Controller – Transaction-Level 
Model

• Memory Mapping Unit – physical to raw-address translation
• Command Generation Unit – generates commands to be performed 

on DRAM for data-access (stored in command queues)
• Row-Buffer – stores row-address of currently opened row
• Bus Interface Unit – implements interface for inter-module 

communication
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Serializing Interconnect – Transaction-
Level Model

• Pending Transaction Buffer (PTB) – stores incoming 
transaction payload

• Arbiter – implements algorithms to select transaction from 
PTB for injection downstream

• Bus Interface Unit – implements interface for inter-module 
communication
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Hardware-Thread – Transaction-Level 
Model

• Load/Store Unit – single-entry depth FIFO which when given a 
load/store transaction, generates the transaction payload

• Trace Parser – infrastructure to read and parse benchmark file

• Bus Interface Unit – implements interface for inter-module 
communication
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Constructed Memory-Hierarchy for a Hardware 
Multithreaded Architecture
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Tracing a Memory Transaction
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Tracing a Memory Transaction
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Tracing a Memory Transaction
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Tracing a Memory Transaction
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Tracing a Memory Transaction
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Tracing a Memory Transaction
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Tracing a Memory Transaction
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Tracing a Memory Transaction
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Simulator Validation
• Verify use-cases that signify fundamental tenets of 

memory-hierarchy
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**Refer Appendix for Information about Benchmarks used and Paper for more 

Use-Cases
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Test Scenario 1: Sweep Cache Line-Size
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Larger Cache-Line  Higher 

probability of Cache-hit (Spatial 

Locality)  Reduced Miss-Rate Miss-rate reduces….

Larger Cache-Line  More Data 

Fetched during Cache-miss 

Increased Miss-Penalty

…but miss-penalty 

increases!



Test-Scenario 2: Larger DRAM pages reduce the 
average DRAM access latency

© Accellera Systems Initiative 26

DRAM access latency 

reduces with larger pages!

Larger DRAM page  Higher Probability of Row-Buffer hit (Spatial Locality) 

Lower DRAM access-latency 



Test-Scenario 3: Prioritization of a thread is achieved 
at the cost of performance of other threads
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Current Limitations – Future Enhancement #1
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Current Limitations – Future Enhancement #2
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Current Limitations – Future Enhancement #3
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Current Limitations – Future Enhancement #4
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Conclusion – Challenge – No Thread/Process Scope Guidelines 
in TLM?
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Conclusion – Challenge – No Thread/Process Scope Guidelines 
in TLM?
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Conclusion – Challenge – No Thread/Process Scope Guidelines 
in TLM?
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Conclusion – Our Experience using TLM

• Easy to transform an architecture-specification to an 
executable-model

• Separation of computation from communication enables 
flexible simulator design and architectural-exploration

• Modeling at Transaction-Level enables fast simulation 
with reasonable accuracy for exploration

• But, need a guideline to define thread/process scope!

• And, if I ever get down to improving it:

– MeSSMArch v2.0 – A Memory System Simulator for Multicore
Hardware Architectures ? 
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Thank You! 

Questions/Thoughts/Comments?
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Design-space of Widely used System 
Models
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Resembles 

TLM 2.0 LT

Resembles 

TLM 2.0 AT

Graph Showing the Design-space of Widely used System Models [2]



TLM - Overview

• Separate Computation from Communication

• TLM 2.0 LT – {Timed Computation} + {Untimed 
Communication}

• TLM 2.0 AT – Timed {Computation + Communication}
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Advantages of the TLM Methodology

• Early Software Development
– Functional TLM platform can be constructed from system-

architecture specification – aids pre-silicon software 
development

• Architectural Analysis
– Timed TLM platforms comprising of parameterized 

components can be used for swift architectural-
exploration

• Functional Verification
– TLM platforms represent an executable specification, 

functional o/p can be compared with RTL for verification
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This Information is Borrowed from [3]



TLM – Salient Features/Guidelines

1. Separate Module Computation from Inter-module 
Communication
– Model computation details inside the process

– Model communication details inside the channel

2. Avoid Modeling Functionality of Micro-architectural 
Features
– Capture their effects through timing information

3. Simulate data exchange at Transaction-Level
– Raise level of timing-abstraction from cycle-accuracy to 

timing-accuracy via lumped delays
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Timing-Accuracy vs. Cycle-Accuracy
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Hardware Multithreading Architectures
• Multiple Threads share a Unified Memory-

Hierarchy
– Thread scheduling may be coarse-grained, 

fine-grained or simultaneous-multithreaded 
(SMT)

• Replicate “software state” for each thread 
(PC, registers)

• Share “hardware state” (caches, branch 
predictors etc.)

• Reason: improve exploitation of ILP
– Hardware may provide many execution 

resources
– Single instruction stream cannot fully utilize 

those resources
– Share resources between multiple threads to 

increase utilization

• No memory-coherence issues since 
hierarchy is shared!
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Multicore Architectures
• Multiple “cores” share a 

memory hierarchy
• “Cores” contain memory 

hierarchies
– May also contain multiple 

threads

• Reason: improve exploitation 
of TLP
– Replicate hardware “cores” to 

enable true parallelism by 
providing a “private” 
memory-hierarchy

• Memory-coherence issues 
arise when private 
hierarchies do not present 
the same view of memory
– Need coherence protocols
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Sequential Consistency - Theory
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1. Transactions from single-
processor are in-order

2. Transactions from different 
processors may be interleaved

Snapshots of actual text in paper 

borrowed from [13]



Sequential Consistency – Illustration
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Assume that each Processor needs to send it’s transactions in 
program-order to the Shared Buffer

What combinations of transaction ordering are possible in the 
Shared Buffer?



Sequential Consistency – Illustration
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Sequential Consistency – Illustration
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Not Sequentially Consistent! – From the perspective of each processor, 
it’s transactions have been re-ordered!



Why is MeSSMArch Sequentially 
Consistent?
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Load/Store Unit of Hardware-
Thread has FIFO of single-
entry depth only  Since 

Parser reads benchmark in-
order, impossible for 

Load/Store unit to re-order 
them!

This satisfies requirement 1

Arbiter in Serializing Interconnect may re-order 
transactions between hardware-threads, but 
cannot re-order transactions from the same 

hardware-thread, because the hardware-thread 
always issues them in-order!
This satisfies requirement 2



Memory Controller – Configuration 
Parameters
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Parameter Unit/
Options

Description

DRAM Page-size Bytes Size of a DRAM page – effectively Row-buffer size

Cache Line-Size Bytes Size of a cache-line

# of DRAM Banks <NA> # of banks in a multi-banked DRAM

Memory Data-bus Size Bits Size of the data-bus connecting memory controller 
and DRAM

Memory Timing 
Parameters

Cycles tRCD, tCL, tRP

DRAM Memory Type Sync/Async Affects derived tRAS memory-timing parameter

Physical Address to Raw 
Address Mapping

Byte
Interleaved/Bank 

Seq/Row Seq

Affects decoding of Physical Address to Raw Address

Clock Period Nanosecs Time-period of a clock-cycle

Green entries indicate micro-architectural features



Serializing Interconnect –
Configuration Parameters
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Parameter Unit/
Options

Description

# of Outstanding 
Transactions

Transactions Denotes the size of the Pending
Transaction Buffer

Arbitration
Algorithm

First-
pending/FCFS/Static

Priority/Prioritize 
Hits

Algorithm determining the 
transaction picked from the 
Pending Transaction Buffer for 
injection downstream



Hardware-Thread – Configuration 
Parameters
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Parameter Unit/
Options

Description

Benchmark File Path to file Benchmark file to read, parse 
and execute

Master Priority Integer (lower 
number implies 
higher priority)

Static-priority for the thread 
(used only for the static-
prioritization arbitration 
algorithm)



Generic Cache – Performance Counters
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Statistic Unit

# of caches-hits and cache-misses (further classified into 
reads/writes)

# of transactions

# of overhead-writes generated by write-policy (write-
through/write-back)

# of transactions

Miss-classification into capacity/compulsory/conflict # of transactions and %ages

Way-prediction accuracy and inaccuracy # of transactions and %ages

Cache-bandwidth (effective and wasted) Bytes per time unit



Memory Controller – Performance 
Counters
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Statistic Unit

Row-buffer hit-rate and miss-rate (per-bank and 
average)

%ages and # of transactions

Average memory-transaction latency time units

Average memory-bandwidth Bytes per time unit

# of row-activates, col-activates, row-precharges per 
bank

<NA>



Hardware-Thread – Performance Counters
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Statistic Unit

# of memory-transactions issued <NA>

Total Thread Execution Time time-units

Bus-contention time, Bus-queuing time, Effective-
execution time

time-units and %ages

Average memory-transaction execution time time-units



Benchmarks used for Use-Case 
Verification

• Collect dynamic execution-trace for each SPEC CPU 
benchmark

• Pick first 100-million instructions

• Simulate all memory-transactions present in the first 
100-million instructions
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SPEC CPU
Benchmark

# of Memory 
Transactions

Brief Description

art-100M 19888117 Adaptive Resonance Theory – Image 
Recognition/Neural Networks [14]

mcf-100M 32362081 Single-Depot Vehicle Scheduling [15]

go-100M 35497321 Artificial Intelligence: Game of Go [16]



The End
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