
MeSSMArch – A Memory System
Simulator for Hardware

Multithreading Architectures

Sushil Menon

NVIDIA

© Accellera Systems Initiative 1

Agenda

• Motivation (“Why build this simulator?”)

• TLM to the Rescue – Mapping Simulator Design
Requirements to TLM Guidelines

• Modeling a Generic Memory-System at the
Transaction-Level using TLM

• Simulator Validation

• Current Limitations – Scope for Future
Enhancements

• Conclusion

• Appendix

© Accellera Systems Initiative 2

Why Memory Hierarchies? – Problem

© Accellera Systems Initiative 3

High

Performance

Processors

Increasing

Software

Footprint

Large Memories

Integrate on

same die

Memory

Computer

Architect

Lets put the
memory off-chip…Bad Performance!

Why Memory Hierarchies? – Solution

© Accellera Systems Initiative 4

Caches

(Smaller memories)

RAM

(Larger memory)

Processor

Level#1 $
…..

…..

Level#N $

DRAM

On-chip

Off-chip

Hierarchy of

Memories

H
ig

h
er

 S
p

e
ed

 (
Te

m
p

o
ra

l L
o

ca
lit

y)

H
igh

e
r C

ap
acity (Sp

atial Lo
cality)

Fast Simulators – Trade-off result

accuracy for simulation-speed by

raising level of abstraction!

 Enable faster design-space

exploration!

Problematic Solution?! – Need for Simulators

© Accellera Systems Initiative 5

Processor

Level#1 $
…..

…..

Level#N $

DRAM

On-chip

Off-chip
Hierarchy of

Memories

Time-to-market

pressure

Too many configuration
options…best one???

Computer

Architect

TLM to the Rescue – Mapping Simulator Design
Requirements to TLM Guidelines

Design Requirement
Functionally Generic
No implementation-specific details,
easy to model and explore

Estimate System Performance
Only
Coarse-grained result accuracy, fast
simulation

Easily Extensible
Plug-n-play style architectural
exploration

TLM Guideline
Don’t model functionality of µ-

architectural features
Capture effects through timing

information

Model data exchange at
Transaction-Level

Timing-accuracy via lumped delays

Separate Computation from
Communication

Model computation details inside
the process and communication

details inside the channel

© Accellera Systems Initiative 6

Modeling a Generic Memory-System
at the Transaction-Level using TLM

• Memory-System Components:
– Generic Cache (full-flow covered)

– Memory Controller (only structure)*

– Serializing Interconnect (only structure)*

– Hardware-Thread (only structure)*

• Construct Memory-Hierarchy for a Hardware
Multithreaded Architecture

• Coarse-grained accuracy  All components modeled
as loosely-timed
– Implement b_transport() only

© Accellera Systems Initiative 7

*Refer the Appendix Section and the Paper for More Details

Generic Cache – Transaction-Level
Model

• Tag RAM – stores tag-address, dirty-bit, valid-bit and age-
counters of a way

• Cache Controller – implements state-machines that
capture functionality of cache

• Bus Interface Unit – implements interface for inter-
module communication

© Accellera Systems Initiative 8

Bus
Interface

Unit

Cache
Controller

Tag RAM #1
…

…

…Physical
Address

(Set, Way)
Cache

Address +
Physical
Address

Tag RAM #N

Trans Payload

Trans Payload

Target Socket

Initiator Socket

Generic Cache – Configuration Parameters

© Accellera Systems Initiative 9

Parameter Unit/
Options

Description

Cache Size Kilobytes Size of the cache

Cache Line-Size Bytes Size of a cache-line

Associativity <NA> # of ways in a set

of Comparators <NA> # of comparators used during a lookup

Write-Allocate Yes/No Allocation of a way-entry on a cache-miss

Write-Through Yes/No Generate write-transaction to lower-level
on write-hit

Way Prediction Yes/No Predict way of current access to reduce
lookup-time

Clock Period Nanosecs Time-period of a clock-cycle

Green entries indicate micro-architectural features

Generic Cache - µArch Features

• # of comparators
– Used in parallel tag-lookup – don’t do parallel lookup!

– Perform sequential tag-lookup and then divide the time by # of
comparators

– Equation: # 𝑜𝑓 𝑐𝑙𝑜𝑐𝑘 𝑐𝑦𝑐𝑙𝑒𝑠 =
𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑣𝑖𝑡𝑦

𝑜𝑓 𝐶𝑜𝑚𝑝𝑎𝑟𝑎𝑡𝑜𝑟𝑠

• Way Prediction
– Don’t model setting of multiplexor to channel data, etc.

– Perform normal lookup and conditionally adjust time based on
way accessed (prediction: LRU-way)

– Equation:

𝑖𝑓 𝑊𝑃 𝑒𝑛𝑎𝑏𝑙𝑒𝑑 & 𝐻𝑖𝑡𝑊𝑎𝑦 == 𝐿𝑅𝑈𝑊𝑎𝑦 𝑡ℎ𝑒𝑛 # 𝑜𝑓 𝑐𝑙𝑜𝑐𝑘 𝑐𝑦𝑐𝑙𝑒𝑠 = 1

© Accellera Systems Initiative 10

Generic Cache – Transaction-Level
Data Exchange

• Track cumulative # of clock-cycles during execution
of state-machines at current-level without context-
switching

• Conditionally forward transaction to lower-level –
lumped time-delay received on return-path

𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 𝑎𝑡 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐿𝑒𝑣𝑒𝑙
= # 𝑜𝑓 𝑐𝑦𝑐𝑙𝑒𝑠 𝑎𝑡 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑒𝑣𝑒𝑙 𝑥 𝑐𝑦𝑐𝑙𝑒 𝑡𝑖𝑚𝑒
+ 𝑙𝑜𝑤𝑒𝑟 𝑙𝑒𝑣𝑒𝑙 𝑙𝑢𝑚𝑝𝑒𝑑 𝑡𝑖𝑚𝑒 𝑑𝑒𝑙𝑎𝑦

• Return Total Transaction Time upstream as lumped
time-delay

© Accellera Systems Initiative 11

Memory Controller – Transaction-Level
Model

• Memory Mapping Unit – physical to raw-address translation
• Command Generation Unit – generates commands to be performed

on DRAM for data-access (stored in command queues)
• Row-Buffer – stores row-address of currently opened row
• Bus Interface Unit – implements interface for inter-module

communication

© Accellera Systems Initiative 12

Target Socket

Bus
Interface

Unit

Memory
Mapping

Unit

Command
Generation

Unit

Command
Queue #1

Command
Queue #N

Row Buffer
#1

Row Buffer
#N

Physical
Address

(Bank, Row,
Col)

Raw Address

Raw Address +
Command (RowAct,

ColAct, RowPre)

Row #

Row #

Trans Payload

Serializing Interconnect – Transaction-
Level Model

• Pending Transaction Buffer (PTB) – stores incoming
transaction payload

• Arbiter – implements algorithms to select transaction from
PTB for injection downstream

• Bus Interface Unit – implements interface for inter-module
communication

© Accellera Systems Initiative 13

Target Socket

Bus Interface Unit

Arbiter
Pending Transaction

Buffer
Selected

Buffer Index

Trans Payload

Tran
s P

aylo
ad

Initiator Socket

Starting of Buffer Drain
SystemC Thread Context

Hardware-Thread – Transaction-Level
Model

• Load/Store Unit – single-entry depth FIFO which when given a
load/store transaction, generates the transaction payload

• Trace Parser – infrastructure to read and parse benchmark file

• Bus Interface Unit – implements interface for inter-module
communication

© Accellera Systems Initiative 14

Initiator Socket

Bus Interface Unit

Load/Store
Transaction

Starting of
Hardware-

Thread
SystemC
Thread
Context

Trace Parser

Load/Store Unit

Trans Payload

Trans Payload

Constructed Memory-Hierarchy for a Hardware
Multithreaded Architecture

© Accellera Systems Initiative 15

Any Number of Hardware-Threads

Any Number of Caches

Hardware-
Thread#0 Hardware-

Thread#N

Serializing
Interconnect

Level#0
Cache

Memory Controller

bind() bind()

bind()

bind()

bind()

bind()

Easy

Construction of

Hierarchy – Just

Instantiate and

bind!

**Sequentially

Consistency

Memory-Hierarchy 

correct functional

execution of mutual-

exclusion primitives

(refer the Appendix

and the Paper for

details)

Tracing a Memory Transaction

© Accellera Systems Initiative 16

Hardware-
Thread

Serializing
Interconnect

Level#0 Cache

Memory Controller

Step 1: Hardware-Thread acquires

access to Serializing Interconnect (If

Arbiter cannot grant access,

Hardware-Threads is Blocked)

Serializing

Interconnect

Reserves

Entry in

Pending

Transaction

Buffer for

Current

Transaction

Green Arrows Indicate

Hardware-Thread SystemC

Thread Context

Tracing a Memory Transaction

© Accellera Systems Initiative 17

Hardware-
Thread

Serializing
Interconnect

Level#0 Cache

Memory Controller

Step 2:

Serializing

Interconnect

Queues

Current

Transaction

and Blocks

Hardware-

Thread

Green Arrows Indicate

Hardware-Thread SystemC

Thread Context

Tracing a Memory Transaction

© Accellera Systems Initiative 18

Hardware-
Thread

Serializing
Interconnect

Level#0 Cache

Memory Controller
Red Arrows Indicate

Serializing Interconnect

Buffer Drain SystemC

Thread Context

Step 3: Arbiter

Picks

Transaction

and Injects it

downstream

Tracing a Memory Transaction

© Accellera Systems Initiative 19

Hardware-
Thread

Serializing
Interconnect

Level#0 Cache

Memory Controller
Red Arrows Indicate

Serializing Interconnect

Buffer Drain SystemC

Thread Context

Step 4: L0$ Performs Tag-Lookup (assume miss)

and returns time

Cumulative Lumped-Delay = tTagLookup

Tracing a Memory Transaction

© Accellera Systems Initiative 20

Hardware-
Thread

Serializing
Interconnect

Level#0 Cache

Memory Controller
Red Arrows Indicate

Serializing Interconnect

Buffer Drain SystemC

Thread Context

Step 5: L0$ Forwards Transaction

Downstream

Tracing a Memory Transaction

© Accellera Systems Initiative 21

Hardware-
Thread

Serializing
Interconnect

Level#0 Cache

Memory Controller
Red Arrows Indicate

Serializing Interconnect

Buffer Drain SystemC

Thread Context

Step 6: Memory Controller translates Physical

Address to Raw Address, accesses DRAM and

returns time

Cumulative Lumped-Delay = tTagLookup + tDRAM-access

Tracing a Memory Transaction

© Accellera Systems Initiative 22

Hardware-
Thread

Serializing
Interconnect

Level#0 Cache

Memory Controller
Red Arrows Indicate

Serializing Interconnect

Buffer Drain SystemC

Thread Context

Step 7: Transaction is returned to the Serializing

Interconnect on the backward-path. Arbiter

invokes wait() to update time and then notifies

hardware-thread of transaction completion.

Cumulative Lumped-Delay Waited =

tTagLookup + tDRAM-access

Serializing

Interconnect

Buffer Drain

SystemC

Thread

Context is

Blocked due

to wait()

Tracing a Memory Transaction

© Accellera Systems Initiative 23

Hardware-
Thread

Serializing
Interconnect

Level#0 Cache

Memory Controller

Step 8: Control is

returned back to

Hardware-Thread

after timestamp

update

Green Arrows Indicate

Hardware-Thread SystemC

Thread Context

Hardware-

Thread returns

reserved

Pending

Transaction

Buffer entry

Simulator Validation
• Verify use-cases that signify fundamental tenets of

memory-hierarchy

© Accellera Systems Initiative 24

**Refer Appendix for Information about Benchmarks used and Paper for more

Use-Cases

Hardware
Thread

Serializing
Interconnect

Level#0 Cache

Memory
Controller

Sweep cache

line-size

Hardware
Thread

Serializing
Interconnect

Level#0 Cache

Memory
Controller

Sweep

DRAM page-size

Level#1 Cache

H/w
Thread#0

Serializing
Interconnect

Level#0 Cache

Memory
Controller

Level#1 Cache

H/w
Thread#1

H/w
Thread#2

Multiple Hardware Threads

Sweep

Arbitration

Algorithm

Test Scenario#1:

Cache Use-Case

Test Scenario#2: Memory-

Controller Use-Case

Test Scenario#3:

Multithreading Use-Case

Test Scenario 1: Sweep Cache Line-Size

© Accellera Systems Initiative 25

Larger Cache-Line  Higher

probability of Cache-hit (Spatial

Locality)  Reduced Miss-Rate Miss-rate reduces….

Larger Cache-Line  More Data

Fetched during Cache-miss 

Increased Miss-Penalty

…but miss-penalty

increases!

Test-Scenario 2: Larger DRAM pages reduce the
average DRAM access latency

© Accellera Systems Initiative 26

DRAM access latency

reduces with larger pages!

Larger DRAM page  Higher Probability of Row-Buffer hit (Spatial Locality) 

Lower DRAM access-latency

Test-Scenario 3: Prioritization of a thread is achieved
at the cost of performance of other threads

© Accellera Systems Initiative 27

Low Priority Medium Priority High PriorityPriorities

for Static

Priority

case
T2 and T1

are

prioritized

over T0 so

T0’s

performance

degrades

Current Limitations – Future Enhancement #1

© Accellera Systems Initiative 28

Hardware
Threads

Serializing Interconnect

Level#0 Cache

Memory Controller

Level#N Cache

…..

…..

Limitation: Only

Same Cache

Line-Size

Allowed!

Sm
al

le
r

Li
n

e
s

(l
o

w
er

 h
it

-t
im

e
s)

Larger Lin
es (lo

w
er m

iss-rate –
sp

atial lo
cality)

Enhancement:

Variable Cache

Line-Size --

Requires

implementing

logic to

split/merge

transactions that

differ in line-

sizes

Current Limitations – Future Enhancement #2

© Accellera Systems Initiative 29

Hardware
Threads

Serializing Interconnect

Level#0 Cache

Memory Controller

Level#N Cache

…..

…..

Limitation:

Blocking

Caches!

Enhancement: Non-Blocking Caches -

Requires implementing logic to pipeline

cache-transactions and allow reordering of

cache-transactions

Cannot issue out-of-order transactions to hide

miss-latency by issuing hit-after-miss because

Cache is Blocked!

Current Limitations – Future Enhancement #3

© Accellera Systems Initiative 30

Memory Controller

Hardware
Threads

Serializing Interconnect

Level#0 Cache

Level#N Cache

…..

…..

Hardware
Threads

Serializing Interconnect

Level#0 Cache

Level#N Cache

…..

…..

Core#0 Core#1

Coherent
Interconnect

Model does

not exist!!

No Coherence

Protocols!

No Coherence

Protocols!

Limitation: Cannot Explore

Typical “Multicore”

Architectures!

Enhancement: Coherent

memory-system - Requires

implementing coherency

protocols in cache and

interconnect

Shared Cache Hierarchy

Current Limitations – Future Enhancement #4

© Accellera Systems Initiative 31

Memory Controller

Hardware
Threads

Serializing Interconnect

Level#0 Cache

Level#N Cache

…..

…..

Hardware
Threads

Serializing Interconnect

Level#0 Cache

Level#N Cache

…..

…..

Core#0 Core#1

Limitation: Cannot Model

Core Unfairness by re-

ordering transactions

from multiple cores! [17]

Coherency Aware
Interconnect

No Arbiter!

Enhancement: Arbitrated Coherency memory-

system - Requires implementing an Arbiter and

Arbitration Algorithms in Memory Controller

Shared Cache Hierarchy

Conclusion – Challenge – No Thread/Process Scope Guidelines
in TLM?

© Accellera Systems Initiative 32© Accellera Systems Initiative 32

Any Number of Hardware-Threads

Any Number of Caches

Hardware-
Thread#0 Hardware-

Thread#N

Serializing
Interconnect

Level#0
Cache

Memory Controller

bind() bind()

bind()

bind()

bind()

bind()

Is this

good?

Fully Partitioned Mapping

Conclusion – Challenge – No Thread/Process Scope Guidelines
in TLM?

© Accellera Systems Initiative 33© Accellera Systems Initiative 33

Any Number of Hardware-Threads

Any Number of Caches

Hardware-
Thread#0 Hardware-

Thread#N

Serializing
Interconnect

Level#0
Cache

Memory Controller

bind() bind()

bind()

bind()

bind()

bind()

How

about

this??

Semi Partitioned Mapping

Conclusion – Challenge – No Thread/Process Scope Guidelines
in TLM?

© Accellera Systems Initiative 34© Accellera Systems Initiative 34

Any Number of Hardware-Threads

Any Number of Caches

Hardware-
Thread#0 Hardware-

Thread#N

Serializing
Interconnect

Level#0
Cache

Memory Controller

bind() bind()

bind()

bind()

bind()

bind()

No Partitioning

What

about

this??

Conclusion – Our Experience using TLM

• Easy to transform an architecture-specification to an
executable-model

• Separation of computation from communication enables
flexible simulator design and architectural-exploration

• Modeling at Transaction-Level enables fast simulation
with reasonable accuracy for exploration

• But, need a guideline to define thread/process scope!

• And, if I ever get down to improving it:

– MeSSMArch v2.0 – A Memory System Simulator for Multicore
Hardware Architectures ? 

© Accellera Systems Initiative 35

References

© Accellera Systems Initiative 36

1. John L. Hennessy and David A. Patterson. 2011. Computer Architecture, Fifth Edition: A Quantitative Approach (5th ed.). Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA

2. Lukai Cai and Daniel Gajski. 2003. Transaction level modeling: an overview. In Proceedings of the 1st IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis (CODES+ISSS '03). ACM, New York, NY, USA, 19-24

3. Frank Ghenassia. 2006. Transaction-Level Modeling with Systemc: Tlm Concepts and Applications for Embedded Systems. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA.

4. "IEEE Standard for Standard SystemC Language Reference Manual," IEEE Std 1666-2011 (Revision of IEEE Std 1666-2005) , vol., no., pp.1,638, Jan. 9 2012

5. Ye Lu; Sezer, S.; McCanny, J., "TLM2.0 based timing accurate modeling method for complex NoC systems," Circuits and Systems (ISCAS), Proceedings of
2010 IEEE International Symposium on , vol., no., pp.2900,2903, May 30 2010-June 2 2010

6. Menon, S.; Suryaprasad, J., "A pattern based methodology for the design and implementation of multiplexed Master-Slave devices at the system-level
use-case: Modeling a Level-2 Cache IP module at transaction level," Networked Embedded Systems for Enterprise Applications (NESEA), 2010 IEEE
International Conference on , vol., no., pp.1,6, 25-26 Nov. 2010

7. Benny Akesson. An introduction to SDRAM and memory controllers. URL: http://www.es.ele.tue.nl/premadona/files/akesson01.pdf

8. Onur Mutlu. Computer Architecture, Spring 2015, Lecture 21: Main Memory, Carnegie Mellon University. URL:
http://www.ece.cmu.edu/~ece447/s15/lib/exe/fetch.php?media=onur-447-spring15-lecture21-main-memory-afterlecture.pdf

9. Milo M. K. Martin. Introduction to Computer Architecture, Fall 2010, Unit 10: Hardware Multithreading, University of Pennsylvania. URL:
https://www.cis.upenn.edu/~milom/cis501-Fall10/lectures/10_multithreading.pdf

10. Amir Roth, "A High-Bandwidth Load-Store Unit for Single- and Multi-Threaded Processors", . January 2004

11. Intel® Hyper-Threading Technology: Technical User’s Guide. January 2003. URL: http://cache-www.intel.com/cd/00/00/01/77/17705_htt_user_guide.pdf

12. Daniel J. Sorin, Mark D. Hill, and David A. Wood. 2011. A Primer on Memory Consistency and Cache Coherence (1st ed.). Morgan & Claypool Publishers.

13. L. Lamport. 1979. How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs. IEEE Trans. Comput. 28, 9 (September 1979),
690-691. DOI=10.1109/TC.1979.1675439 http://dx.doi.org/10.1109/TC.1979.1675439

14. Adaptive Resonance Theory 2 (ART 2) Benchmark. URL: https://www.spec.org/cpu2000/CFP2000/179.art/docs/179.art.html

15. MCF Benchmark. URL: https://www.spec.org/cpu2006/Docs/429.mcf.html

16. Game of Go (Go) Benchmark. URL: https://www.spec.org/cpu2006/Docs/445.gobmk.html

17. Mutlu, O.; Moscibroda, T., "Parallelism-Aware Batch Scheduling: Enabling High-Performance and Fair Shared Memory Controllers," Micro, IEEE , vol.29,
no.1, pp.22,32, Jan.-Feb. 2009, doi: 10.1109/MM.2009.12

http://www.es.ele.tue.nl/premadona/files/akesson01.pdf
http://www.ece.cmu.edu/~ece447/s15/lib/exe/fetch.php?media=onur-447-spring15-lecture21-main-memory-afterlecture.pdf
https://www.cis.upenn.edu/~milom/cis501-Fall10/lectures/10_multithreading.pdf
http://cache-www.intel.com/cd/00/00/01/77/17705_htt_user_guide.pdf
http://dx.doi.org/10.1109/TC.1979.1675439
https://www.spec.org/cpu2000/CFP2000/179.art/docs/179.art.html
https://www.spec.org/cpu2006/Docs/429.mcf.html
https://www.spec.org/cpu2006/Docs/445.gobmk.html

Thank You! 

Questions/Thoughts/Comments?

© Accellera Systems Initiative 37

APPENDIX

© Accellera Systems Initiative 38

Design-space of Widely used System
Models

© Accellera Systems Initiative 39

Resembles

TLM 2.0 LT

Resembles

TLM 2.0 AT

Graph Showing the Design-space of Widely used System Models [2]

TLM - Overview

• Separate Computation from Communication

• TLM 2.0 LT – {Timed Computation} + {Untimed
Communication}

• TLM 2.0 AT – Timed {Computation + Communication}

© Accellera Systems Initiative 40

Computation

Module A: Initiator

Computation

Module B: Target

Communication
Channel

Port Exporting Interface Interface Method Call Transaction

Advantages of the TLM Methodology

• Early Software Development
– Functional TLM platform can be constructed from system-

architecture specification – aids pre-silicon software
development

• Architectural Analysis
– Timed TLM platforms comprising of parameterized

components can be used for swift architectural-
exploration

• Functional Verification
– TLM platforms represent an executable specification,

functional o/p can be compared with RTL for verification

© Accellera Systems Initiative 41

This Information is Borrowed from [3]

TLM – Salient Features/Guidelines

1. Separate Module Computation from Inter-module
Communication
– Model computation details inside the process

– Model communication details inside the channel

2. Avoid Modeling Functionality of Micro-architectural
Features
– Capture their effects through timing information

3. Simulate data exchange at Transaction-Level
– Raise level of timing-abstraction from cycle-accuracy to

timing-accuracy via lumped delays

© Accellera Systems Initiative 42

Timing-Accuracy vs. Cycle-Accuracy

© Accellera Systems Initiative 43

Total Transaction Time = t

Cycle-Accurate
(Slower Simulation)
(Finer Result Accuracy)

Transaction
Start

Transaction
End

Transaction
Start

Transaction
End

Timing-Accurate
(Faster Simulation)

(Coarser Result Accuracy)

Clock

Multiple Context-Switches

Single Context-Switch

Thread Processes Event

Thread Misses Event

wait (t)

Hardware Multithreading Architectures
• Multiple Threads share a Unified Memory-

Hierarchy
– Thread scheduling may be coarse-grained,

fine-grained or simultaneous-multithreaded
(SMT)

• Replicate “software state” for each thread
(PC, registers)

• Share “hardware state” (caches, branch
predictors etc.)

• Reason: improve exploitation of ILP
– Hardware may provide many execution

resources
– Single instruction stream cannot fully utilize

those resources
– Share resources between multiple threads to

increase utilization

• No memory-coherence issues since
hierarchy is shared!

© Accellera Systems Initiative 44

Hardware
Thread

Serializing Interconnect

Level#0 Cache

Level#N Cache

…..

…..

Hardware
Thread

Memory Controller

Multicore Architectures
• Multiple “cores” share a

memory hierarchy
• “Cores” contain memory

hierarchies
– May also contain multiple

threads

• Reason: improve exploitation
of TLP
– Replicate hardware “cores” to

enable true parallelism by
providing a “private”
memory-hierarchy

• Memory-coherence issues
arise when private
hierarchies do not present
the same view of memory
– Need coherence protocols

© Accellera Systems Initiative 45

Coherency Aware
Interconnect

Memory Controller

Core#0 Core#1

Shared Cache Hierarchy

Sequential Consistency - Theory

© Accellera Systems Initiative 46

1. Transactions from single-
processor are in-order

2. Transactions from different
processors may be interleaved

Snapshots of actual text in paper

borrowed from [13]

Sequential Consistency – Illustration

© Accellera Systems Initiative 47

Processor#1

Transaction#1

Transaction#2

Processor#2

Transaction#1

Transaction#2
Shared Buffer

Assume that each Processor needs to send it’s transactions in
program-order to the Shared Buffer

What combinations of transaction ordering are possible in the
Shared Buffer?

Sequential Consistency – Illustration

© Accellera Systems Initiative 48

Shared Buffer

Transaction#1

Transaction#2

Transaction#1

Transaction#2

Shared Buffer

Transaction#1

Transaction#2

Transaction#1

Transaction#2

Shared Buffer

Transaction#1

Transaction#2

Transaction#1

Transaction#2

Shared Buffer

Transaction#1

Transaction#2

Transaction#1

Transaction#2

Shared Buffer

Transaction#1

Transaction#2

Transaction#1

Transaction#2

All of these
transaction

orderings are
sequentially
consistent!

1. Transactions from
each processor are in
program-order

2. Transactions
between processors
can be interleaved

Sequential Consistency – Illustration

© Accellera Systems Initiative 49

Shared Buffer

Transaction#2

Transaction#1

Transaction#2

Transaction#1

Shared Buffer

Transaction#2

Transaction#1

Transaction#2

Transaction#1

Shared Buffer

Transaction#2

Transaction#1

Transaction#2

Transaction#1

…. and the other
remaining

combinations

Not Sequentially Consistent! – From the perspective of each processor,
it’s transactions have been re-ordered!

Why is MeSSMArch Sequentially
Consistent?

© Accellera Systems Initiative 50

Load/Store Unit of Hardware-
Thread has FIFO of single-
entry depth only  Since

Parser reads benchmark in-
order, impossible for

Load/Store unit to re-order
them!

This satisfies requirement 1

Arbiter in Serializing Interconnect may re-order
transactions between hardware-threads, but
cannot re-order transactions from the same

hardware-thread, because the hardware-thread
always issues them in-order!
This satisfies requirement 2

Memory Controller – Configuration
Parameters

© Accellera Systems Initiative 51

Parameter Unit/
Options

Description

DRAM Page-size Bytes Size of a DRAM page – effectively Row-buffer size

Cache Line-Size Bytes Size of a cache-line

of DRAM Banks <NA> # of banks in a multi-banked DRAM

Memory Data-bus Size Bits Size of the data-bus connecting memory controller
and DRAM

Memory Timing
Parameters

Cycles tRCD, tCL, tRP

DRAM Memory Type Sync/Async Affects derived tRAS memory-timing parameter

Physical Address to Raw
Address Mapping

Byte
Interleaved/Bank

Seq/Row Seq

Affects decoding of Physical Address to Raw Address

Clock Period Nanosecs Time-period of a clock-cycle

Green entries indicate micro-architectural features

Serializing Interconnect –
Configuration Parameters

© Accellera Systems Initiative 52

Parameter Unit/
Options

Description

of Outstanding
Transactions

Transactions Denotes the size of the Pending
Transaction Buffer

Arbitration
Algorithm

First-
pending/FCFS/Static

Priority/Prioritize
Hits

Algorithm determining the
transaction picked from the
Pending Transaction Buffer for
injection downstream

Hardware-Thread – Configuration
Parameters

© Accellera Systems Initiative 53

Parameter Unit/
Options

Description

Benchmark File Path to file Benchmark file to read, parse
and execute

Master Priority Integer (lower
number implies
higher priority)

Static-priority for the thread
(used only for the static-
prioritization arbitration
algorithm)

Generic Cache – Performance Counters

© Accellera Systems Initiative 54

Statistic Unit

of caches-hits and cache-misses (further classified into
reads/writes)

of transactions

of overhead-writes generated by write-policy (write-
through/write-back)

of transactions

Miss-classification into capacity/compulsory/conflict # of transactions and %ages

Way-prediction accuracy and inaccuracy # of transactions and %ages

Cache-bandwidth (effective and wasted) Bytes per time unit

Memory Controller – Performance
Counters

© Accellera Systems Initiative 55

Statistic Unit

Row-buffer hit-rate and miss-rate (per-bank and
average)

%ages and # of transactions

Average memory-transaction latency time units

Average memory-bandwidth Bytes per time unit

of row-activates, col-activates, row-precharges per
bank

<NA>

Hardware-Thread – Performance Counters

© Accellera Systems Initiative 56

Statistic Unit

of memory-transactions issued <NA>

Total Thread Execution Time time-units

Bus-contention time, Bus-queuing time, Effective-
execution time

time-units and %ages

Average memory-transaction execution time time-units

Benchmarks used for Use-Case
Verification

• Collect dynamic execution-trace for each SPEC CPU
benchmark

• Pick first 100-million instructions

• Simulate all memory-transactions present in the first
100-million instructions

© Accellera Systems Initiative 57

SPEC CPU
Benchmark

of Memory
Transactions

Brief Description

art-100M 19888117 Adaptive Resonance Theory – Image
Recognition/Neural Networks [14]

mcf-100M 32362081 Single-Depot Vehicle Scheduling [15]

go-100M 35497321 Artificial Intelligence: Game of Go [16]

The End

© Accellera Systems Initiative 58

