
Maximizing Formal ROI through 
Accelerated IP Verification Sign-off

Scott Peverelle, Hao Chen, Kamakshi Sarat Vallabhapurapu, Rosanna 
Yee, Hee Chul Kim, Johann Te, Jacob Hotz



Introduction
• The value of formal verification in ASICs has been recognized across 

the industry and is increasing in usage

• Our team concurs and is looking to increase our breadth of formal 
usage



Problem Statement
• Formal verification can be very powerful

• But we have limited ROI due to relatively low adoption rate

• Low adoption rate typically driven by perception that formal is limited 
in what it can handle
• Large designs (# of gates and flops)

• High sequential depth

• Lack of engineer expertise to deal with complexity

• For formal to reach its full potential, we need to address these issues
• Complexity handling techniques (e.g. abstractions)

• Good partitioning and planning

• Formal reuse



A Hybrid IP Verification Strategy
• Old verification strategy centered on layers of simulation reuse 

environments (unit, cluster, IP)

• New strategy: push as much to formal as practical
• Primarily at unit level

• Formal at cluster level possible as well

• Leverage simulation and formal’s respective strengths



Why this Hybrid Strategy?
• We want to shift left wherever possible

• Formal can typically start finding bugs earlier than simulation

• Handles unit level designs better (usually) where verification typically 
starts earliest

• Simulation (or emulation) better handles the very deep sequential 
cases that often need to be verified at IP level



Our Project Life Cycle



Formal Shift Left vs. Dynamic Verification

• Hybrid approach using 
FV on unit level finds 
bugs faster

• DV alone may not find 
all bugs

• Bugs it does find are 
usually found later -> 
greater schedule 
impact



Where is Dynamic Verification Still Useful?
• Reminder that we are proposing a hybrid methodology, not FV only

• FV is great but still has limitations even with advanced techniques

• Focus DV on areas FV struggles with
• Big clusters or IP level (large gate count)

• Long sequences to be verified

• Examples:
• PCIe or media PHY training and linkup

• Bandwidth measurements

• IP or SoC power state transitions

• FW and ASIC co-simulation (could also be done in emulation)



Comprehensive Signoff Methodology



FV Planning in Hybrid Context
• Important at planning stage to carefully pick where FV will be applied 

versus other techniques to cater to strengths

• Define unit level and cluster level verification environments

• Think about potential for FV reuse
• Reuse in other FV environments

• Reuse of some FV code in DV



Hybrid Planning Example



Parallel RTL Coding and FV Bringup
• As mentioned earlier, we propose doing FV bringup at the same time 

RTL is still being coded

• Inspired by test-driven development concept

• Aggressive shift left with corresponding schedule benefits

• Immediate feedback to designers helps reduce amount of re-coding 
when an issue is found

• Designers are co-owners of FV bringup tasks and environment and 
work closely with FV experts



Unit Level Exploration and Signoff
• Formal signoff criteria for FPV

• 100% functional coverage hit

• No failing checkers

• All assertions are fully proven or bounded proven past relevant coverage 
sequential depth

• Additional formal apps are leveraged as appropriate for signoff
• SEC for dynamic clock gating equivalency

• CSR for blocks with registers 

• XPROP for all blocks 

• Connectivity on cluster and chip level

• CDC app for blocks with CDC crossings; includes FPV with metastability 
injection



Scope of Formal Apps



Formal Reuse
• Reuse can occur in another formal environment, or in a simulation 

environment

• Use of FVC modes are key to enabling this in our methodology

• Benefits:
• Validation of unit level assumptions

• Reducing duplication of modeling and coverage code



Unit Level FV Architecture



FVC Reuse Example



Architectural FPV
• Another optional technique that can be applied once FVCs have 

essential checking and modeling coding ready

• Does not rely on RTL being available

• Can catch cluster level issues very early (shift left)

• Constraints will be verified by the formal reuse mechanism



FVC Configuration for Architectural FPV



Results – Shift Left
• FV on block level (and arch FPV) catches issues much earlier



Results – Shift Left Unit Example
• Results from one of our unit FV environments from the target IP

• A deadlock issue was identified the same day RTL for it was coded
• Test environment was already available -> just run the checkers with the new 

RTL

• Quickly verify if the fix works

• Spec issues were identified quickly as well
• Incorrect calculation of an address in spec documents

• Led to a violation of a spec requirement’s associated checker on return type 
for an access to this space

• We have found issues like this with DV in past projects, but only much later



Results – Quality
• We are also able to locate ‘super-bugs’ with this flow that are 

otherwise very difficult to find

• Architectural FPV helps with this, and has highest ROI when done 
early

• On our cluster environment, we were able to prove absence of 
deadlock for certain cases despite RTL having large flop count and 
sequential depth



Deadlock Proof Example
• Arch FPV was done on a 

cluster level
• Cluster contained many 

unit models 
communicating overall 
several protocols

• End-to-end checkers 
were used to prove 
absence of deadlocks

• DV approach would not 
have been exhaustive



Results – Quality
• Flow can also catch difficult bugs in interactions with 3rd party IP

• Simulation often finds these very late if at all

• Issues like these have been a problem on past projects

• On latest project, found some such examples in formal before IM1 
milestone

• Only need the 3rd party RTL and some protocol checkers and 
modeling code to catch issue



Other Results – Team Growth
• Lack of formal expertise is a major barrier to greater formal adoption

• Our approach provided many opportunities for team members to try 
formal for the first time and get comfortable with it

• Majority of verification engineers on IP were doing FV at some point

• For many, first time on a real project

• Also resulted in learnings regarding formal reuse, architectural FPV



Future Work
• Create more common abstraction models, not just FBMs for reuse 

across unit level models

• Continue to build team capability, have more engineers who are 
capable of more advanced FV work
• Arch FPV 

• Advanced complexity reductions

• Formal signoff using a range of apps

• Refine our planning
• FV versus DV division partitioning 

• Maximize reuse potential

• Get Arch FPV started earlier for best ROI



Conclusion
• Hybrid methodology greatly expanded scope of formal usage with 

substantial quality and schedule benefits

• We can leverage FV and DV each where they are strongest without 
verification gaps

• Many more team members gained experience with formal with 
expected benefits to future projects



Questions



Contact Information
scott.peverelle@intel.com


