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Multi-core Processors Memory Bottleneck
Current architectures

• Shared interconnect and single memory [1]

Limitations

• By scaling the number of processors
• Memory bandwidth increases 

• Interconnect contention grows

• Execution time slows down

• Caches become necessary

Observations

➢Cache coherence is complicated                      
and expensive

High bandwidth! 
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Grid of Processing Cells (GPC)
Alternative approach

• GPC architecture [2]
• Distributed memories

• Less contention, max 4 cores connected to each 
memory

• Scalable along 2 dimensions

➢Cache-less

Limitations

• Software partitioning increases in complexity

• Programmability of grid platforms is not trivial

• Higher number of cores interactions 

• No standard way of evaluating performance 
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The mapping problem
Manually writing functions

• Error-prone with more than 10 cores

• Tedious without visual information, especially for core 
communication

Spreadsheet approach

• Fast prototyping

• Clear inner core communication

• Auto-generated code

Limitations

• Channels parameters manually set in the source code
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Our proposal: MapGL
• CAD software that generates SystemC models and evaluate performances of GPC-like 

processors (grid-based)

Modules Parameters

Memories/Channels View

IO or 

External 

Memory

Core

Channel
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Modules
➢Module: describes the behavior of a core using C/C++ code

• Custom Modules can be imported in a project using a user defined JSON file
blur_x.hpp blur_x.json (imported in MapGL)

6



Channels and MARI library
➢Channel: allows two or more cores to communicate

• MapGL uses channels from our MARI library

MARI contains two type of interfaces:

1. Memory interface, connects a core to one memory 
through TLM-2.0 Generic Protocol and blocking 
communication

2. Channel interface, create a software channel in the 
memory (e.g. FIFO) which enable cores communication 
using methods like push() and pop()

• For debugging purposes, MARI can generate                
a record of the memory accesses

• Memory accesses are encoded in a binary file
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Performance exploration
MapGL can profile the architecture with two types of analysis:

• Memories usage analysis, statically evaluates how much space each memory uses for 
storing application and channels. Then it generates a detailed report and a heatmap

• Timing analysis, fine-grain architecture latencies evaluation:
• MapGL uses the memory accesses recorded with the MARI library to backtrack the 

application timing and identify various delay contributions. Then it generates a detailed 
report and one heatmap per delay contribution 

0us

480us
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Project export
• MapGL project is stored inside a single JSON file

• During the export, custom modules dependencies 
get referenced

➢The SystemC model get generated with an initial 
testbench

• The generated Makefile allows users to compile and 
run the simulation immediately
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Case Study: GoogLeNet CNN

• The GoogLeNet is a state-of-the-art CNN for image classification 
composed of 142 layers [3]

Mapping strategy

• 1 layer per core, exploiting GPC scalability

• Use as few additional core as possible to reduce area

• Map first the patterns that repeats the most and make them modular
• Input and output on the same axis
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GoogLeNet on GPC
Mapping

➢150 cores, 15x10 grid

• 7 cores used for data forwarding

• 1 unused core

• Reuse of the same inception block
mapping thanks to its modularity

High-speed model (large FIFO)

• FIFO size set equal to payload size

• less stalls → less delay 

Low-memory model (small FIFO)

• FIFO size set to 64B

image

output
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GoogLeNet memory usage
• Each memory can store up to 8MB

• Blue memories low memory usage

• Red memories high memory usage

Observations

• The first transformations of the input image require more 
memory

• the smaller FIFOs used in the low-memory model flatten 
the memory usage

Total memory usage

• high-speed: 175MB of which 52MB are used by the FIFOs

• low-memory: 123MB of which 13KB are used by the FIFOs

low-memory

high-speed

0MB

8MB

0MB

8MB
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GoogLeNet FIFOs delay
• MapGL normalizes the timing heatmaps, the red core 

represent the slowest

Setup
• Off-chip DRAM:  50ns read/write
• On-chip SRAM:  2.5ns read/write
• Multiplexer propagation: 0.25ns

Observations
• The first transformations of the input image have higher 

communication delays
• Correlation between the payload size and its delay

Total FIFOs delay
• high-speed: 82ms
• low-memory: 100ms

low-memory

0ms

5ms

high-speed

0ms

4ms
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GoogLeNet cores delay
• MapGL normalizes the timing heatmaps, the red core 

represent the slowest

Setup

• The computational delay of each core was calculated 
starting from the complexity of each layer (number of 
additions and multiplications)

• The Ara vector processor [4] was used as reference with 
its 16.9 DP-GFLOPS

Observations

• The third convolution takes the most time

Total cores delay
• high-speed / low-memory: 117ms
• Throughput feeding 500 images: ~23 fps

low-memory

0ms

34ms

high-speed

0ms

34ms
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Conclusion and Future Work
• MapGL editor was introduced

• A GPC-based GoogLeNet CNN was interactively mapped

• Two SystemC models were automatically generated and studied using MapGL built-in 
analysis tools and MARI library

• The results showed that the low-memory model is a valuable alternative to the high-speed 
one to highly reduce memory usage

• Hidden bottleneck was identified, a fine-grain pipeline would increase the throughput

Future work

• Automatically adjust the application 
mapping based on the results 

• Support for other grid-base architectures

• Verilog/VHDL project export capability

• Integration with the GPC compiler 
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