
MapGL: Interactive Application Mapping and
Profiling on a Grid of Processing Cells

Claudio Raccomandato

Politecnico di Torino

Emad M. Arasteh

Fowler School of Engineering
Chapman University

Rainer Dömer

University of California, Irvine

The participation to DVCon Europe 2023 has been supported by NXP Semiconductors

Outline

• Introduction

• Multi-core processors memory
bottleneck

• Grid of Processing Cells (GPC)

• The mapping problem

• Map Grid-based Layouts (MapGL)

• Overview

• Modules

• Channels and MARI library

• Performance exploration

• Project export

• Experiments and Results

• GoogLeNet CNN

• GoogLeNet on GPC
• MapGL demo

• GoogLeNet analysis
• Memory usage

• FIFOs delay

• Cores delay

• Conclusion

• Future Work

• Acknowledgments

1

Multi-core Processors Memory Bottleneck
Current architectures

• Shared interconnect and single memory [1]

Limitations

• By scaling the number of processors
• Memory bandwidth increases

• Interconnect contention grows

• Execution time slows down

• Caches become necessary

Observations

➢Cache coherence is complicated
and expensive

High bandwidth!

2

Grid of Processing Cells (GPC)
Alternative approach

• GPC architecture [2]
• Distributed memories

• Less contention, max 4 cores connected to each
memory

• Scalable along 2 dimensions

➢Cache-less

Limitations

• Software partitioning increases in complexity

• Programmability of grid platforms is not trivial

• Higher number of cores interactions

• No standard way of evaluating performance

3

The mapping problem
Manually writing functions

• Error-prone with more than 10 cores

• Tedious without visual information, especially for core
communication

Spreadsheet approach

• Fast prototyping

• Clear inner core communication

• Auto-generated code

Limitations

• Channels parameters manually set in the source code

4

Our proposal: MapGL
• CAD software that generates SystemC models and evaluate performances of GPC-like

processors (grid-based)

Modules Parameters

Memories/Channels View

IO or

External

Memory

Core

Channel

5

Modules
➢Module: describes the behavior of a core using C/C++ code

• Custom Modules can be imported in a project using a user defined JSON file
blur_x.hpp blur_x.json (imported in MapGL)

6

Channels and MARI library
➢Channel: allows two or more cores to communicate

• MapGL uses channels from our MARI library

MARI contains two type of interfaces:

1. Memory interface, connects a core to one memory
through TLM-2.0 Generic Protocol and blocking
communication

2. Channel interface, create a software channel in the
memory (e.g. FIFO) which enable cores communication
using methods like push() and pop()

• For debugging purposes, MARI can generate
a record of the memory accesses

• Memory accesses are encoded in a binary file

7

Performance exploration
MapGL can profile the architecture with two types of analysis:

• Memories usage analysis, statically evaluates how much space each memory uses for
storing application and channels. Then it generates a detailed report and a heatmap

• Timing analysis, fine-grain architecture latencies evaluation:
• MapGL uses the memory accesses recorded with the MARI library to backtrack the

application timing and identify various delay contributions. Then it generates a detailed
report and one heatmap per delay contribution

0us

480us

8

Project export
• MapGL project is stored inside a single JSON file

• During the export, custom modules dependencies
get referenced

➢The SystemC model get generated with an initial
testbench

• The generated Makefile allows users to compile and
run the simulation immediately

9

Case Study: GoogLeNet CNN

• The GoogLeNet is a state-of-the-art CNN for image classification
composed of 142 layers [3]

Mapping strategy

• 1 layer per core, exploiting GPC scalability

• Use as few additional core as possible to reduce area

• Map first the patterns that repeats the most and make them modular
• Input and output on the same axis

10

GoogLeNet on GPC
Mapping

➢150 cores, 15x10 grid

• 7 cores used for data forwarding

• 1 unused core

• Reuse of the same inception block
mapping thanks to its modularity

High-speed model (large FIFO)

• FIFO size set equal to payload size

• less stalls → less delay

Low-memory model (small FIFO)

• FIFO size set to 64B

image

output

11

GoogLeNet memory usage
• Each memory can store up to 8MB

• Blue memories low memory usage

• Red memories high memory usage

Observations

• The first transformations of the input image require more
memory

• the smaller FIFOs used in the low-memory model flatten
the memory usage

Total memory usage

• high-speed: 175MB of which 52MB are used by the FIFOs

• low-memory: 123MB of which 13KB are used by the FIFOs

low-memory

high-speed

0MB

8MB

0MB

8MB

13

GoogLeNet FIFOs delay
• MapGL normalizes the timing heatmaps, the red core

represent the slowest

Setup
• Off-chip DRAM: 50ns read/write
• On-chip SRAM: 2.5ns read/write
• Multiplexer propagation: 0.25ns

Observations
• The first transformations of the input image have higher

communication delays
• Correlation between the payload size and its delay

Total FIFOs delay
• high-speed: 82ms
• low-memory: 100ms

low-memory

0ms

5ms

high-speed

0ms

4ms

14

GoogLeNet cores delay
• MapGL normalizes the timing heatmaps, the red core

represent the slowest

Setup

• The computational delay of each core was calculated
starting from the complexity of each layer (number of
additions and multiplications)

• The Ara vector processor [4] was used as reference with
its 16.9 DP-GFLOPS

Observations

• The third convolution takes the most time

Total cores delay
• high-speed / low-memory: 117ms
• Throughput feeding 500 images: ~23 fps

low-memory

0ms

34ms

high-speed

0ms

34ms

15

Conclusion and Future Work
• MapGL editor was introduced

• A GPC-based GoogLeNet CNN was interactively mapped

• Two SystemC models were automatically generated and studied using MapGL built-in
analysis tools and MARI library

• The results showed that the low-memory model is a valuable alternative to the high-speed
one to highly reduce memory usage

• Hidden bottleneck was identified, a fine-grain pipeline would increase the throughput

Future work

• Automatically adjust the application
mapping based on the results

• Support for other grid-base architectures

• Verilog/VHDL project export capability

• Integration with the GPC compiler

Acknowledgments

• Thanks to NXP Semiconductors for
sponsoring the participation to DVCon
Europe 2023

• And Politecnico di Torino for supporting the
research

16

References
[1] G. Liu, T. Schmidt, A. Dingankar, D. Kirkpatrick, and R. Dömer, “Optimizing Thread-to-Core Mapping

on Manycore Platforms with Distributed Tag Directories,” in Proceedings of the Asia and South
Pacific Design Automation Conference (ASPDAC), Jan. 2015

[2] R. Dömer, “A Grid of Processing Cells (GPC) with Local Memories,” Center for Embedded and
Cyber-physical Systems, University of California, Irvine, Tech. Rep. CECS-TR-22-01, Apr. 2022.

[3] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A.
Rabinovich, “Going deeper with convolutions,” in 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2015, pp. 1–9

[4] M. Cavalcante, F. Schuiki, F. Zaruba, M. Schaffner, and L. Benini, “Ara: A 1-ghz+ scalable and energy-
efficient risc-v vector processor with multiprecision floating-point support in 22-nm fd-soi,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 28, no. 2, pp. 530–543, 2020

17

	Slide 1: MapGL: Interactive Application Mapping and Profiling on a Grid of Processing Cells
	Slide 2: Outline
	Slide 3: Multi-core Processors Memory Bottleneck
	Slide 4: Grid of Processing Cells (GPC)
	Slide 5: The mapping problem
	Slide 6: Our proposal: MapGL
	Slide 7: Modules
	Slide 8: Channels and MARI library
	Slide 9: Performance exploration
	Slide 10: Project export
	Slide 11: Case Study: GoogLeNet CNN
	Slide 12: GoogLeNet on GPC
	Slide 13: GoogLeNet memory usage
	Slide 14: GoogLeNet FIFOs delay
	Slide 15: GoogLeNet cores delay
	Slide 16: Conclusion and Future Work
	Slide 17: References

