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Agenda

 Machine learning (ML) fundamentals

— A brief history of artifical intelligence

— The five tribes of machine learning

The tasks of ML algorithms
Regression as illustrative example
Deeper on neural networks
Generalized linear models
Theoritical machine learning

e Cognitive power control: ML in practice
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A brief history of artifical intelligence

Machine learning fundamentals

* Inspired from 3 different fields (McCulloh and Pitts, 1943) [1]:

— Functions of biological neurons
— Formal analysis (Russel and Whitehead)
— Theory of computation (Alan Turing)

 Computing Machinery and Intelligence (Alan Turing, 1950) [2]:

— Turing test, machine learning, genetic algorithms and reinforcement learning

 Darmouth seminar (John McCarthy, 1956) [3]:

— Artifical intelligence, Logic Theorist (LT) of Newell and Simon

e Perceptron (Frank Rosenblatt, 1962) [4]:

— Convergence theorem (Block et al., 1962) [5]
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A brief history of artifical intelligence

Machine learning fundamentals

 The Al failures or , Al winter®:

— Machine translation (1966) [6], automatic theorem proof, Lighthill report (1973) [7], limited
representation capabilities of perceptrons

* Expert systems (1980 — early 1990s):

— DENDRAL program (Buchanan et al., 1969) [8], MYCIN program for blood diseases comparable to
domain experts (450 simple rules) [9], first commercial success with XCON (1980)

— Expensive and difficult to maintain

* Backpropagation [10]:
— Steepest descent with chain rule (Bryson et al., 1969)
— First neural network application (Werbos, 1982)
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A brief history of artifical intelligence

Machine learning fundamentals

e Al as a science (1990s):

— Methodology driven by rigourous statistical analysis (Cohen, 1995) [11]

— Hidden Markov models (speech recognition), information theory (automatic translation),
Bayesian networks (reasoning), support vector machines, random forest...

 Recent achievements:

— Audio: speech recognition based on LSTM (Hochreiter, Schmidhuber and Gers), lip reading, audio
generation

— Image/video: OCR with CNN, cat network recognition in videos (2012) [12], self-driving cars
— Generative adversarial networks, reinforcement learning

« Communications, data availability, computational power, better algos
* Does the Al world run on neural networks?

IIIIIIIIIIIIIIIIIIIIIII

accellera o DV
© Accellera Systems Initiative 5

SYSTEMS INITIATIVE




The five tribes of machine learning

Machine learning fundamentals

* Inspiration and source of knowledge:

— Evolution, experience, culture, computers

* Paradigms of ML (Pedro Domingos, 2015) [13]:
 Tibe | Origins | MasterAlgorithm

Symbolists Logic, philosophy Inverse deduction

Connectionnists Neuroscience Backpropagation

Evolutionnaries Evolutionary biology Genetic programming

Bayesians Statistics Probabilistic inference

Analogizers Psychology Kernel machines
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The tasks of ML algorithms

Machine learning fundamentals

* Learning tasks:

— Supervised: What is the best mapping function between inputs and outputs?

— Unsupervised: What makes 2 samples similar?

— Semi-supervised: Can we cluster unlabelled data and learn efficiently under this uncertainty?
— Reinforcement learning: Given the rules and the goal to achieve, how can | optimize myself?

 Numerical data type:

— Classification / regression

e Statistical data type:

— Binary / categorical / ordinal / binomial / count / real-valued additive / real-valued multiplicative

* Multivariate and/or multidimensional
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Regression as illustrative example

Machine learning fundamentals

 Roadmap:
— Least square regression
— Gradient descent
— Maximum likelihood
— Maximum a posteriori
— Bayesian linear regression
— Gaussian process
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Least square regression

Machine learning fundamentals > Regression as illustrative example

* Training set: Dﬁf’) Y, * Normal equations:
Input & Target Given
n C (1) (1)
* Hypothesis: X - hg(0) = 87x = ) Oix; X = (xlz L ) y = (y; )
i=1 X£m) ... xr(Lm) y (m)

* Cost function: e(8) = ZZ[hg(xU)) y]* | o
= X , the analytical solution is
J Output

* Objective: Onin = argmin e(8) 6= X'X)"X"y
0
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Least Square Gradient Descent Max. Likelihood Max. A Posteriori

Gradient descent

Machine learning fundamentals > Regression as illustrative example

* Update rule for one training sample:

0 d
=0 — a—e(ﬂ) ——e(0) = ——[he(x) y]* = [he(x) — ylx;

d0; d0; 00; 2
Learning rate / ’
Y

Hi = Qi — a[hg(X(])) — y(f)]xlm ,Vie [1,n]

* Multiple training samples:

— Batch: — Stochastic (incremental):
m
: : ; For j:=1to m
0. =g, — zh DY — y(D ] D | o
i i—a . [ e(x ) y ]xl 9, =0, — a[hg(x(f)) _ y(])]xi(])
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Least Square Gradient Descent Max. Likelihood Max. A Posteriori

Maximum likelihood

Machine learning fundamentals > Regression as illustrative example

* Probabilistic interpretation:  yY) = @87x0) + £0) eMD~N(,0%) IID
o 1 (y(j)_gTX(J'))2>
DixD) @) = _
PO O) mae"p< 202

e Maximum likelihood: 0,z = argmax p(D|0)
0

Maximize L(O) = }le(y(j”x(j),ﬂ)

Maximize [(0) =logL(0) = mlog

m(y0) — oTx()?

J

\2mo 20'2

1
To minimize
(Least square equivalent to MLE + Gaussian noise model) 5078
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Maximum a posteriori

Machine learning fundamentals > Regression as illustrative example

TN

: D|0)p(0 Likelihood
* MAP EStImatOrZ GMAP = argmax p(GlD) = argmax p( Zl(l))z))( )\ Plrigl’l 0o
0 0
. . “____—Marginal likelihood
* Univariate case: 1 2 )2 \ Parameter posterior
- —Hu
Prior 0) = — — ~ N(u, 1
p(6) m@@( P ) (1, 1)
Maximize [(0) =logp(D|0) + logp((-))
= mlog = Z(y(J) — GTX(J)) + logi _ (9 10)?
V2o 202 =0 ’ V21
Y l—y—’
MLE Prevent overfitting

* Regularization:
— Ridge regression (L2), LASSO regression (L1), Elastic Net (L1+L2)
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Least Square Gradient Descent Max. Likelihood Max. A Posteriori

Bayesian linear regression

Machine learning fundamentals > Regression as illustrative example

e Goal:

— For the moment, we only have a point estimate of P(8|D)
— We want to have an analytical form of p(8[|D)

e After some work (1-dim multivariate case):

] 1 : 1 T 1 2
Parameter posterior:  0|D ~ N FA_ley’A_l with A = ?X X+T—21 and 0 ~ N(0,7%)

Posterior predictive (using p(y.|x,,D) = jp(y*lx*, 0)p(0|D)do ):

1
V.|X.,D ~ N (;xIA*XTy, xI A 1x, + 02>

l J
|

Normal equations when 7 — 0, everything is fine o 2018
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Least Square Gradient Descent Max. Likelihood Max. A Posteriori

(Gaussian process

Machine learning fundamentals > Regression as illustrative example

e Goal:

— For the moment, we have the posterior predictive distribution for a linear 10
relationship

— We want to be able to model any kind of 10 relationship
* Definition:

— A Gaussian Process (GP) is a collection of random variables. Any finite set of the
collection follows a joint Gaussian distribution.

— Notation: f() ~GP(m(x),k(x,X)) with k a covariance function (i.e., psd)

* |dea:

— We compute a distribution over a function instead of a distribution over parameters

— Direct link between the prior and the posterior predictive, no need to marginalize over
parameters
2018
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(Gaussian process

Machine learning fundamentals > Regression as illustrative example

(*) The demonstration requires some time

K K, _ : -
* Basic GP: [f{] ~N (O, KT K. ) with y = f the target vector and f* the testing output (prediction)

: y K+0%1 K, o
o NOISV GP: [f*] ~N (0, KT K**D with y = f + € the target vector

e Using the multivariate Gaussian conditional distribution formula (*) :

f X, X y~NEKI[K+o’l"'y, K., —KI[K+0°I]"'K))

e Covariance function (also called kernels):

— Type: use the knowledge of inputs relationships (symmetry, ...)
— Parameters: argmax p(y|X) solved by gradient descent for example
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Neural networks

Machine learning fundamentals

 Roadmap:
— Generalized linear models
— Logistic regression
— Feed-forward neural networks
— Bias-variance dilemma
— Convolutional neural networks
— Recurrent neural networks
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Logisitic Reg. Feed-forward NN Convolutional Net Recurrent Nets

Generalized linear models (1-dim)

Natural parameter

° Exponential fam”y K Sufficient statistic
— Log partition function
— Class of distributions p(y;n) = b(y) exp(nTT(y) — a(n))
— Gaussian (D np=p  (2) TW=y  B)am)=n*/2 (4 b() = (1/V2r)exp(-y?/2)
— Bernoulli (1) n=log(¢/(1—¢)) (2) T(y) =y (3) a(m) =log(1+e™)  (4) b(n) =1
* Generalized linear model assumptions
— Exponential family:  y|x; @ ~ ExponentialFamily(n) } MLE computed by GD for 1 sample

— Given x, we want to predict E[T(y)|x; 0]

al(0;
o ~[EIT )% 0] — ¥l

— Linear relationship (here 1-dim): 7 = 0'x

* Hypothesis
— Gaussian he(x) = E[y|x;0] = u=n=0"x

— Bernoulli he®X) =E[y|x;0]=¢p=1/(1+e77) = 1/(1 n e_ng)
2018
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Logistic regression

e Bernoulli distribution p(Ix0)=¢71—-¢)»
— sigmoid as hypothesis hg(x) = 1/(1 + e 0'x ) =¢
— logistic loss (cost) e(0) =¢p Y1 —¢ )Y

 Same form for the GD (result as expected):
0; =0; — a[hg(x(j)) — y(j)]xi(j) ,Vie [1,n]

* Perceptron algorithm

. Te >
he(X)z{l if O X_O

0 if 7x <0

* Newton (using the Hessian):  0:=0 — H ' /,l(0)

2018
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Feed-forward neural network

\
_ff } f Z, = WpXp 4 X, = f(zy)
| O * Backpropagation
J J y Based on chain rule:
wlizl 2] X[Z]W[B] zl%) de  0de dy ox!? oxl1]
\ x O wltl gl [ y, owll — gy ax[21 gx[1] gWI1]
* Terms:

— Weights, activation or transfer functions

* Universality:
— Finite single hidden layer networks can theoritically compute any continuous function

* |n practice:
— Normalize and decorrelate inputs, tangent hyperbolic, learning rate per weight, momentum, seocnd-

order methods, training and test set 2018
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Bias-variance dilemma

* Mean square error of an estimator ™mse@® = E[(F —»)*Iy] = bias(®)* + var(®)

* Solution (among others) for model selection

A — Polynomial regression example: High-order

Low-order
MSE Variance Yy A

iqc2
Blas True

>
Model complexity

Measure
 For neural networks:
— Training (70%) / validation (15%)
/ test (15%) split »X
X 1
test |- 2018
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Convolutional neural networks

* Deep neural nets suffer from the vanishing/exploiding gradient problem

— From chain rule axxn = W[If'(z,,) hasanimportant role with many layers
n-1
* Convolutional neural nets: E ; o
— Not fully connected nets and weight sharing SR

— Rectified linear unit (ReLU) layers

Sigmoid | RelLU |

-/ :

Function
Derivative

\ 4

Conv 1: Edge+Blob Conv 3: Texture Conv 5: Object Parts Fc8: Object Classes

2018
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Logisitic Reg. Feed-forward NN Convolutional Net

Recurrent neural networks

/ Delay ) (" V- Yty Yierr) )
connection
~ v v v
P = | C)a-G)e6)
Unfold W w
lu lu lu
\ X U W h V y / \ X(t—l) X(t) X<t+1) /
* Backprop through time highly sensible to vanishing/exploiding gradient
. y
e Solutions "f”
— Truncate backprop: _ _ | )
* Different time delays C<t_1> N % » )
* Elman network, Jordan networks ’I‘ ’_li-‘é_\
— LSTM: constant error carousel + forget gate tanh
Y(t—l > Vi) 2018
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Theories of machine learning

Machine learning fundamentals

e Statistical learning theory

— Given the number of samples and hypothesis space, what is the generalization
error bound w.r.t. training error ?

e Computational learning theory

— Given the hypothesis space and the generalization error, how many training
samples are required ?

— Probably approximately correct (PAC) learning algorithm

IIIIIIIIIIIIIIIIIIIIIII
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Agenda

 Machine learning (ML) fundamentals

* ML in practice: Cognitive power control
— LTE resource allocation and cognitive power control
— A typical ML workflow and data management
— Power trajectories and ideal power saving
— Neural network predictor
— Reinforcement learning predictor
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LTE resource allocation

Machine learning in practice

Server I I / *

(FTP, Youtube, . Base Station
(MAC scheduler)

Time (ms) 1 ms = 14 OFDM symbols
e

—>>

UE |

Frequency (Hz)

Payload Payload  Control Channel
for UE i for UE | (PDCCH) for all UEs

* Every millisecond, the PDCCH should be decoded:

— Scenario 1: The UE has found a grant in the PDCCH and will use it to receive or transmit payload.
— Scenario 2: There is no grant in the PDCCH and power has been used in vain to decode the PDCCH.

A0l L
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Cognitive power control

Machine learning in practice

* If a UE knows in advance that it won‘t receive any grants in the next
millisecond, it can avoid PDCCH decoding, and therefore save power.

* The base station MAC scheduler distributes payload data and grants

— From UE perspective, non-deterministic Cognitive UE

-

Grant{1{0/1(/1/1/0/1/0(1(1/0/(0}|?

Modulation Coding Scheme

traffic timing patterns

Transport Block Size

Retransmission

\
1ms )\ §
Observation Window (10 ms) R ANDVEF?Q,JT@NW
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A typical ML workflow

Machine learning in practice

INDEICKClIAIi I Streaming data, simulated/live network data,

meta-parameter definition and collection, storage.

|

PAVEICR (el NNI M Efficient data format for queries, split into
chunks according markers, format dependent.

ERCEMUSEONIEIOII No differences between formats at the end
of this step, need to be able to communicate with experts.

'lamnd 4. Feature preprocessing

Data splitting if needed before,

normalize and clean features, training set should be obtained.

5. Feature selection

Dimensionality reduction algorithms, or
automated feature selection via regularization.

SRVICLIRCININIAN Choice of the algorithms (supervised

learning, reinforcement learning, ...)

7. Model evaluation

Choice of the algorithms (supervised
learning, reinforcement learning, ...)

SYSTEMS INITIATIVE
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Observations:

Machine learning is
inherently an iterative
exploration

Efficient infrastructure
needed (step 1 and 2)

Expert knowledge is
mandatory (step 3)

Always prepare for
scalability (step 6)

Visualize and analyze
samples (step 3, 4 and 7)

Manage meta-parameters
(step 1,2 and 7)
2018
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Data management

Machine learning in practice

Dashboard Examples Manual About
Summary
| Download | | Columns | | Select All | | Deselect Al | | Refresh Details | Search: |
shapeFile campTag lastStartPos firstStartPos shapeTag firstStartTime colTag deltaStartTime
log-bb-2018-08-27-09-25-43-000_270-305_1-1 HoemeToWork [48.115750,11.601948] [48.115752 11.601934] Open Facebook 1535352847.0 TestApp 18.0
log-bb-2018-08-27-09-25-43-000_362-415_1-1 HomeToWork [48.104640,11.604992] [42.104613,11.604928] Open Mail 153535631550 TestApp 330
log-bb-2018-08-27-09-25-43-000_469-510_1-1 HomeToWork [48.094526,11.600209] [48.094536,11.609312] Open Google Maps 15353534600 TestApp 26.0
log-bb-2018-08-27-09-25-43-000_529-656_1-1 HoemeToWork [48.078419,11.613907] [48.078525,11.614374] Open YouTube 15353541540 TestApp 290
log-bb-2018-08-27-18-29-17-045_25-35_1-1 WorkToHome [48.078689,11.615514] [48.078681,11.615551] FTP DL 5MB 1535384753.0 defaut 40
log-bb-2018-08-27-18-28-17-045_222-257_1-1 WorkToHome [48.108481,11.604270] [48.108493,11.604219] Open Messenger 1535385635.0 defaut 30.0
log-bb-2018-08-27-18-28-17-045_259-292_1-1 WorkToHome [48.1084285,11.604284] [428.108481,11.604272] Open Google Maps 1535385669.0 defaut 22.0
log-bb-2018-08-27-18-29-17-045_319-386_1-1 WorkToHome [48.116078,11.602174] [48.115788,11.602400] Open Facebook 1535385878.0 defaut 490
log-bb-2018-08-27-18-29-17-046_388-422_1-1 WorkToHome [48.116088,11.602134] [42.116021,11.602177] Open Messenger 15353859350 defaut 29.0
log-bb-2018-08-27-18-29-17-046_438-461_1-1 WorkToHome [48.123700,11.597157] [48.123701,11.597250] Open Mail 1535386146.0 defaut 18.0
log-bb-2018-08-27-18-28-17-045_487-508_1-1 WorkToHome [48.126607,11.597089] [48.126581,11.587077] Open YouTube 1535386313.0 defaut 15.0
log-bb-2018-08-27-18-29-17-046_585-502_1-1 WorkToHome [48.133354 11.607773] [42.13334511.607768] FTP DL 5MB 1535388651.0 defaut 40
log-bb-2018-08-27-18-28-17-045_608-657_1-1 WorkToHome [48.133035,11.607926] [48.133189,11.607845] Open Messenger 1535388725.0 defaut 59.0
Wimcsmb_imu_intel. com\cogpowASHAPE_autolusers\jahsue\contd
log-bb-2018-08-29-09-50-33-727_784-795_1-1 HomeToWork [48.07835511.613734] [48.078766,11.615019] Idie screen off 1535528114.0 Defaut 770
log-bb-2018-08-29-09-50-33-727_12-22_11 HomeToWork [48.133257 11.607871] [48.133261,11.607869] FTP DL 5MB 1535526215.0 Defaut 6.0
log-bb-2018-08-29-09-50-33-T27_166-202_1-1 HoemeToWork [48.118594 11.599829] [48.119585 11.599830] Open Facebook 1535526810.0 Defaut 26.0
log-bb-2018-08-29-09-50-33-727_271-304_1-1 HomeToWork [48.108631,11.603942] [48.108635,11.603918] Open Messenger 1535527106.0 Defaut 15.0
log-bb-2018-08-29-09-50-33-727_317-367_1-1 HomeToWork [48.104627 11.604915] [48.104519,11.604900] Open Mail 1535527232.0 Defaut 200
log-bb-2018-08-29-09-50-33-727_470-5633_1-1 HomeToWork [48.084337, 11.606746] [42.086398,11.606537] Open Google Maps 1535527716.0 Defaut 54.0
log-bb-2018-08-29-09-50-33-727_557-563_1-1 HomeToWork [48.082814,11.600064] [48.082827,11.608660] Open Podcasts 1535527825.0 Defaut 40
log-bb-2018-08-29-09-50-33-727_539-768_1-2 HoemeToWork [48.080149,11.613519] [48.079911,11.610079] Open Facebook 1535527917.0 Defaut 51.0
log-bb-2018-08-29-09-50-33-727_639-768_2-2 HomeToWork [48.080377,11.614505] [42.080177,11.613613] Open Facebook 15355279700 Defaut 20,0
Wimcsmb.imu.intel. com\cogpow\SHAPE_autoWwsers\jahsueiconts
log-bb-2018-08-29-21-48-12-925_11-21_1-1 Munich [48.078581,11.616544] [48.078674,11.615948] FTP DL 5MBE 1535565897.0 WorkToEnglischerGarten 8.0
log-bb-2018-08-29-21-48-12-925_115-152_1-1 Munich [48.086247,11.606428] [42.085412,11.606356] Open Google Maps 1535566310.0 WorkToEnglischerGarten  20.0
log-bb-2018-08-29-21-48-12-925_161-168_1-1 Munich [48.087184,11.607155] [48.086978,11.607168] Open Podcasts 1535566352.0 WorkToEnglischerGarten 4.0
|shapeFiIe | campTag | lastStartPos | firstStartPo | |shapeTag | |ﬁr5lStartTime | |coITag | |de|taSlar1Time
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Details

Search: | |

MName & Value

campMsg

WorkToHome

colTag defaut

deltaStariTime 18.0
iPhone-2260904b
[48.123701,11.587250]
1535386146.0

campTag

device
firstStartPos
firstStartTime

Previous E 2 3 Next
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Example of LTE modem trace

- |
TCF’Chunk
MA (DL Gr [...
SNR(CC 1 [..
SNR(CC 1 [..
RSSI(CC [...
RSSI(CC
RSRQ (CC
RSRQ (CC
RSRP (CC
RSRP (CC [.
DL PRB Bo |...
DL PRB Bo |...
TCP Flag |...
TCP Flag ...
TCP Flag [... TIIRTIVEED I T 1TIHE [T
RLC PDU N [.. : : : I l:
RLC PDU N [..] | ! . | g . ! i 8 L
TCP Flag ... AAIIRIE 53 BEFTAFCL AN FRIH ISR e [1E /1N :
IP Packet [... AN U || O LR M Y U I | U B RN Y R B B LA R e :
TCP Flag [.. R0 M 0 A 0 T 0 Y 1 T 0 e et ST A I N END il
IP Packet [...
IP Length (d
IP Length (u L O I IIIII II DT T T TN I|IIIII|

1)
1) 1] |
HARQ Proc |...] II 0 0O T 0 SO RO TR AR IMIII BUNTLL I
d) O T T O T B N T

III hIIIIIIIIIIII [V OO 11
HARQ Proc [...

LT 1T 1| ]
R 1 [ [ |
BSR (LCG 3)

BSR LGB 2) NN AR RN TR (R NN AN AU RNCIRERIA AL R (AENURI RN AR IR AN N 1NN R IILL
BSR (LCG 1)
B 0 1) | i | | | 1

cQl Type (CC 1) | I | | | 1l |
calind( [..]
calind( [..] 5
Path L ogs | . a0 S e BN BN | B
TX Power () 1 i 4 : | | ¥ 4 i i E | 5 F | E | | | B i | E b I i I

PHR Val

DL HARQ( [..

UL TB Siz [...
UL PRB Nu [...
CQlReq (CC
UL MCS (CC
UL Grant (CC
UL NACK (... | | | | | |

UL ACK (CC 1) L ! ' | [/ _[J| |
DL MCS Ta [..] Il
DLMCS (C[.]

DL MCS Ta [..] RO RRE LT e (s (Onrrrm e e nme o ampnee e n mmrnee e III|II|I [T
DLSI\;"I:CS(C[] NN | [|IEAIA [ 11! [ T I II| |
PDSCHTX [.]| =~ : HIInl 1111 O M BTN 8
DL RB Num [..] T T 0T R T A IIII
]
|
]
]

1
1
1

AL L
DL TBS (C ... Lo L . I
L 111 [T TCOC TTCEAT T : [ [T BT
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Feature

FEATURE : L
— Origin: extract

DL Grant time
series - 26 ms
snapshot

- For more informatiom, see "Physical layer proc
- For summary (might be release-not-compatiklel
- MCS5 2%, 30 or 31 with sizeInByte = (

[TOD0: Change MCS Index to modulation scheme mapp
arg{l} = carrier index starting from 1

[CRTEGORY :

— Lzbel: ocrdinal <3>

— Description: integer or real number (arbitrary
— Example: relative score, significant only for
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Power trajectories

Machine learning in practice

Goal Estimation of the power saving enabled by a ML algorithm at design time without demonstrator.
[14]
: | (d) Power
Pa Power consump?tlon of (a) Standard i (c) Power Consumption
standard behavior . -
Power : Consumption Outcome,
: : Consumption, | of Predicted
Pb Power saving potential P i Traffic, Pd
o ! : P A
Pc Power saving with Genius ! ¢ ! Computational
including prediction Prediction , A Cost of
- ' Non-Ideal o
errors Assumption v ! _ Prediction
Predictor
P, Total estimated power (b) Ideal Power Output
: Consumption,
saving
Py
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Goal

Modem trace data set

Machine learning in practice

(6 PB/week; 1 trace ~ 500 MB) .

= Different places and operators

= Traffic type (FTP DL, FTP UL, FTP UL/DL)

o o
o] w -

o=
~l

DL Grant Traffic Intensity

©
—_—

SYSTEMS INITIATIVE

Radio conditions (far cell, near cell, middle)

UL Grant Traffic Intensity

© Accellera Systems Initiative

31

= ' .
L @ g ! L + ¥
sl 5% + o O ++ X+ &
oy, B FTP DL (blue) " +
- * FTPUL (red) | + © x +
- _x |FTPDL/UL (green) a & ¢
- A& + (good RF) e s
X O o O
I x (bad RF)
T % 0 (middle RF) " *

Data set from Intel® XMM™ 7480 Modem for LTE-Advanced Services [15] trace server

e Other requirements (e.g., SW build, CA config)
73 traces selected from ~100000 traces
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Goal

1

DL Grant Traffic Intensity

o
N

SYSTEMS INITIATIVE

FTP DL (blue)
FTP UL (red)
FTP DL/UL (green) |

+ (good RF)

X (bad RF) -
O (middle RF)

o
oo
]

O
D
I

o
N

Ideal Power Saving (Ratio)

© Accellera Systems Initiative

ldeal power saving

Machine learning in practice

Estimation of the ideal power saving given live network traces assuming genius prediction

FTP DL traces are more
promising than FTP UL ones due
to the large power contribution
of UL payload data transmission

Bad RF conditions lead to a more
sporadic reception, i.e., more
power saving opportunities

Up to 12% modem power saving
potential by optimizing PDCCH
monitoring
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Prediction approach

Machine learning in practice

Cognitive UE

* Parameter selection

Analysis Predictor Classifier — Relevant parameters to infer scheduling

Principal Component Cost-Sensitive

| — Modulation coding scheme

crant |1/0 1/1/1/0/1/0/1/1/0!/0 : — Number of resource blocks
Ex. Param. 1 | — Re-transmission occurences
Ex. Param. 2
Ex. Param. 3 B * Neural network predictor
fr;; A Y / — Shallow approach: 2 hidden layers of 15 and 20 neurons

Observation Window (10 ms)

— MSE with Levenberg-Marquardt backpropagation

- . po — Linear output activation function: Better separability
e Cost-sensitive classifier

— Cost imbalance between false negatives and false positives, i.e., 0
missing a grant implies throughput degradation. 2% mean FNR

— Cost-sensitive classification uses decision theoritic approach to define 5018

a threshold on the neural network output DESIGN AND VERIFICATION™
accellera DVCON

. - CONFERENCE AND EXHIBITION
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System design

 Computational complexity

— Typical baseband DSP at 300 MHz
— Power consumption of 1 mW/MHz [1]

— No instruction optimizations: SIMD, vector floating point unit
— 5 kFLOPs for one prediction: 2 % of a typical DSP time budget
— 5 GFLOPs for training: Other approaches should consider the online/offline training trade-off

Arithmetic Operation | Complexity
Addition 1 FLOP
Subtraction 1 FLOP
Multiplication 2 FLOPs
Division 4 FLOPs
Exponential 8 FLOPs

* Increase of the classical EDA complexity

— Area vs. power vs. delay vs. tolerated error rate (and its impact on the overall system)

— Account for the undeterministic nature of such system, assess the reliability of simulated data

* Synergies among ML applications

— Exploitation of the similarities between classical machine learning algorithms

accellera -
© Accellera Systems Initiative
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Supervised predictor performance

Machine learning in practice

| (d) Power

(a) Standard (c) Power Consumption * Main resu |tS
Power Consumption Outcome,
Consumption of Predicted

— 12% maximal potential power saving
Gemus Computational
Prediction A Cost of — 2% mean FNR
\4

l
I
l
i
! Trafﬁc
I
|
I
|

Assumption Non- Ideal Prediction o .
Predictor — 2% DSP time budget
b) Ideal Power . )
(C)Onsurnption Omp”t — 1,7% mean power increase compared to ideal
P, power consumption

— Traffic dependent performance but promising
results for well-defined traffic scenarios
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Reinforcement learning approach [16]

Machine learning in practice

e Variable cell behavior:

— Online training, but high power consumption for NN

e NS3 simulator:

— No live network testing possible

* Q-learning: |
Grant Event Downlink Grant
s Only Uplink Grant

No Grants

— Light-weight through tabular representation, e.g. Q-learning

Reward

Positive:
. Expected DL(UL) Grant = Received DL(UL) [

Action Downlink Grant
a Only Uplink Grant

No Grants

Negative:
- Expected UL Grant - Received DL grant
- Received NACK

2018
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SYSTEMS INITIATIVE

Q-learning

Machine learning in practice

Q-Value 3%+ Entries
Q(s,a) For each input(and history) the estimated

Long-term reward for each action

|
Q-Learning jq'(s, a) = (1-a)-Q(s,a) + (@ - max Qs a) -y +7)

Grant |ceececee. RF
Events Action
Agent E '
[}
LTE Modem e p  QValue
. Table
A
Calculate E
Rewards .
: A
Reward |->— Q-Learning

© Accellera Systems Initiative
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Conclusion

Machine learning system

Built with data, statistical tools, robust workflow and expert knowledge

Machine learning for power saving

Scenario-specific trace data collection

Power model at dedicated abstraction level

Power consumption estimation of ML algorithms at design time
Power trajectories for end-to-end power saving estimation

Cognitive power control outlook

Qualify and quantify network reactions with network simulator
Online/offline trade-off through reinforcement learning

Accuracy improvement with traffic classifier, statistical modeling and LSTM
Divide-and-conquer approach with federated learning and trace segmentation

© Accellera Systems Initiative 38
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Questions
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