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Agenda

• Machine learning (ML) fundamentals
– A brief history of artifical intelligence

– The five tribes of machine learning

– The tasks of ML algorithms

– Regression as illustrative example

– Deeper on neural networks

– Generalized linear models

– Theoritical machine learning

• Cognitive power control: ML in practice
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A brief history of artifical intelligence
Machine learning fundamentals

• Inspired from 3 different fields (McCulloh and Pitts, 1943) [1]:
– Functions of biological neurons

– Formal analysis (Russel and Whitehead)

– Theory of computation (Alan Turing)

• Computing Machinery and Intelligence (Alan Turing, 1950) [2]:
– Turing test, machine learning, genetic algorithms and reinforcement learning

• Darmouth seminar (John McCarthy, 1956) [3]:
– Artifical intelligence, Logic Theorist (LT) of Newell and Simon

• Perceptron (Frank Rosenblatt, 1962) [4]:
– Convergence theorem (Block et al., 1962) [5]
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A brief history of artifical intelligence
Machine learning fundamentals

• The AI failures or „AI winter“:
– Machine translation (1966) [6], automatic theorem proof, Lighthill report (1973) [7], limited 

representation capabilities of perceptrons

• Expert systems (1980 – early 1990s):
– DENDRAL program (Buchanan et al., 1969) [8], MYCIN program for blood diseases comparable to 

domain experts (450 simple rules) [9], first commercial success with XCON (1980)

– Expensive and difficult to maintain

• Backpropagation [10]:
– Steepest descent with chain rule (Bryson et al., 1969)

– First neural network application (Werbos, 1982)
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A brief history of artifical intelligence
Machine learning fundamentals

• AI as a science (1990s):
– Methodology driven by rigourous statistical analysis (Cohen, 1995) [11]

– Hidden Markov models (speech recognition), information theory (automatic translation), 
Bayesian networks (reasoning), support vector machines, random forest...

• Recent achievements:
– Audio: speech recognition based on LSTM (Hochreiter, Schmidhuber and Gers), lip reading, audio 

generation

– Image/video: OCR with CNN, cat network recognition in videos (2012) [12], self-driving cars

– Generative adversarial networks, reinforcement learning

• Communications, data availability, computational power, better algos

• Does the AI world run on neural networks?
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The five tribes of machine learning
Machine learning fundamentals

• Inspiration and source of knowledge:
– Evolution, experience, culture, computers

• Paradigms of ML (Pedro Domingos, 2015) [13]:
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Tribe Origins Master Algorithm

Symbolists Logic, philosophy Inverse deduction

Connectionnists Neuroscience Backpropagation

Evolutionnaries Evolutionary biology Genetic programming

Bayesians Statistics Probabilistic inference

Analogizers Psychology Kernel machines



The tasks of ML algorithms
Machine learning fundamentals

• Learning tasks:
– Supervised: What is the best mapping function between inputs and outputs?

– Unsupervised: What makes 2 samples similar?

– Semi-supervised: Can we cluster unlabelled data and learn efficiently under this uncertainty?

– Reinforcement learning: Given the rules and the goal to achieve, how can I optimize myself?

• Numerical data type:
– Classification / regression 

• Statistical data type:
– Binary / categorical / ordinal / binomial / count / real-valued additive / real-valued multiplicative

• Multivariate and/or multidimensional
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Regression as illustrative example
Machine learning fundamentals

• Roadmap:

– Least square regression

– Gradient descent

– Maximum likelihood

– Maximum a posteriori

– Bayesian linear regression

– Gaussian process
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Least square regression
Machine learning fundamentals > Regression as illustrative example

• Training set:

• Hypothesis:

• Cost function:

• Objective:
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Least Square Gradient Descent Max. Likelihood Max. A Posteriori Bayesian Gaussian Process

𝐷 = 𝐱 𝑗 , 𝑦 𝑗
𝑗=1

𝑚

𝐱 → ℎ𝜽 𝐱 = 𝛉𝑇𝐱 =  

𝑖=1

𝑛

𝜃𝑖𝑥𝑖

𝑒 𝛉 =
1

2
 

𝑗=1

𝑚

ℎ𝛉 𝐱 𝑗 − 𝑦 𝑗 2

𝛉𝒎𝒊𝒏 = argmin
𝛉

𝑒 𝛉

• Normal equations:
Given

, the analytical solution is

𝐗 =
𝑥1
(1)

⋯ 𝑥𝑛
(1)

⋮ ⋱ ⋮

𝑥1
(𝑚)

⋯ 𝑥𝑛
(𝑚)

𝐲 =
𝑦(1)

⋮
𝑦(𝑚)

𝛉 = 𝐗𝑇𝐗 −1𝐗𝑇𝐲

Input Target

Output



Gradient descent
Machine learning fundamentals > Regression as illustrative example
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Least Square Gradient Descent Max. Likelihood Max. A Posteriori Bayesian Gaussian Process

• Update rule for one training sample:

𝜃𝑖 ≔ 𝜃𝑖 − 𝛼
𝜕

𝜕𝜃𝑖
𝑒 𝛉

𝜕

𝜕𝜃𝑖
𝑒 𝛉 =

𝜕

𝜕𝜃𝑖

1

2
ℎ𝛉 𝐱 − y 2 = ℎ𝛉 𝐱 − y 𝑥𝑖

𝜃𝑖 ≔ 𝜃𝑖 − 𝛼 ℎ𝛉 𝐱 𝑗 − y 𝑗 𝑥𝑖
𝑗

, ∀ 𝑖 ∈ 1, 𝑛

• Multiple training samples:

– Batch:

𝜃𝑖 ≔ 𝜃𝑖 − 𝛼 

𝑗=1

𝑚

ℎ𝛉 𝐱 𝑗 − y 𝑗 𝑥𝑖
𝑗

Learning rate

– Stochastic (incremental):

For j :=1 to m

𝜃𝑖 ≔ 𝜃𝑖 − 𝛼 ℎ𝛉 𝐱 𝑗 − y 𝑗 𝑥𝑖
𝑗



Maximum likelihood
Machine learning fundamentals > Regression as illustrative example

• Probabilistic interpretation:
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Least Square Gradient Descent Max. Likelihood Max. A Posteriori Bayesian Gaussian Process

𝑦 𝑗 = 𝛉𝑇𝐱(𝑗) + 𝜀(𝑗) 𝜀(𝑗)~ 𝑁(0, 𝜎2) IID

𝑝(𝑦 𝑗 |𝐱 𝑗 , 𝛉) =
1

2𝜋𝜎
exp −

𝑦 𝑗 − 𝛉𝑇𝐱(𝑗)
2

2𝜎2

• Maximum likelihood: 𝛉𝑀𝐿𝐸 = argmax
𝛉

𝑝 𝐷|𝛉

Maximize 𝐿(𝛉) =  𝑗=1
𝑚 𝑝 𝑦 𝑗 |𝐱 𝑗 , 𝛉

Maximize 𝑙 𝛉 = log 𝐿(𝛉) = 𝑚 log
1

2𝜋𝜎
−

1

2𝜎2
 𝑗=1
𝑚 𝑦 𝑗 − 𝛉𝑇𝐱(𝑗)

2

To minimize 

(Least square equivalent to MLE + Gaussian noise model)



Maximum a posteriori
Machine learning fundamentals > Regression as illustrative example

• MAP estimator:
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Least Square Gradient Descent Max. Likelihood Max. A Posteriori Bayesian Gaussian Process

𝛉𝑀𝐴𝑃 = argmax
𝛉

𝑝 𝛉|𝐷 = argmax
𝛉

𝑝 𝐷|𝛉 𝑝 𝛉

𝑝 𝐷

• Univariate case:

𝑝 𝜃 =
1

2𝜋
exp −

𝜃 − 𝜇 2

2𝜎2
~ 𝑁(𝜇, 1)

𝑙 𝛉 = log 𝑝 𝐷|𝛉 + log 𝑝 𝛉

= 𝑚 log
1

2𝜋𝜎
−

1

2𝜎2
 

𝑗=1

𝑚

𝑦 𝑗 − 𝛉𝑇𝐱(𝑗)
2
+ log

1

2𝜋
−
1

2
𝜃 − 𝜇 2

Maximize

MLE Prevent overfitting

Prior

• Regularization:
– Ridge regression (L2), LASSO regression (L1), Elastic Net (L1+L2)

Likelihood

Prior

Marginal likelihood

Parameter posterior



Bayesian linear regression
Machine learning fundamentals > Regression as illustrative example

• Goal: 
– For the moment, we only have a point estimate of 

– We want to have an analytical form of

• After some work (1-dim multivariate case):

© Accellera Systems Initiative 13

Least Square Gradient Descent Max. Likelihood Max. A Posteriori Bayesian Gaussian Process

𝑝 𝛉|𝐷

𝑝 𝛉|𝐷

𝛉|𝐷 ~ 𝑁
1

𝜎2𝐀
−1𝐗𝑇𝐲, 𝐀−1Parameter posterior: with 𝐀 =

1

𝜎2 𝐗
𝑇𝐗 +

1

𝜏2
𝐈

𝑦∗|𝐱∗, 𝐷 ~ 𝑁
1

𝜎2
𝐱∗
𝑇𝐀−1𝐗𝑇𝐲 , 𝐱∗

𝑇𝐀−1𝐱∗ + 𝜎2

Posterior predictive (using ) :𝑝 𝑦∗ 𝐱∗, 𝐷 =  𝑝 𝑦∗ 𝐱∗, 𝛉 𝑝 𝛉|𝐷 𝑑𝛉

𝛉 ~ 𝑁(𝟎, 𝜏2)and

Normal equations when 𝜏 → 0 , everything is fine



Gaussian process
Machine learning fundamentals > Regression as illustrative example

© Accellera Systems Initiative 14

Least Square Gradient Descent Max. Likelihood Max. A Posteriori Bayesian Gaussian Process

• Goal: 
– For the moment, we have the posterior predictive distribution for a linear IO 

relationship

– We want to be able to model any kind of IO relationship

• Definition:
– A Gaussian Process (GP) is a collection of random variables. Any finite set of the 

collection follows a joint Gaussian distribution.

– Notation: with 𝑘 a covariance function (i.e., psd)

• Idea:
– We compute a distribution over a function instead of a distribution over parameters

– Direct link between the prior and the posterior predictive, no need to marginalize over 
parameters

𝑓 𝐱 ~ 𝐺𝑃 𝑚 𝐱 , 𝑘(𝐱, 𝐱′)



Gaussian process
Machine learning fundamentals > Regression as illustrative example
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Least Square Gradient Descent Max. Likelihood Max. A Posteriori Bayesian Gaussian Process

• Basic GP:

• Noisy GP:

• Using the multivariate Gaussian conditional distribution formula (*) :

• Covariance function (also called kernels):
– Type: use the knowledge of inputs relationships (symmetry, ...)

– Parameters: solved by gradient descent for example

𝐲
𝐟∗

~ 𝑁 0,
𝐊 𝐊∗

𝐊∗
𝑇 𝐊∗∗

with 𝐲 = 𝐟 the target vector and 𝐟∗ the testing output (prediction)   

𝐲
𝐟∗

~ 𝑁 0,
𝐊 + 𝜎2𝐈 𝐊∗

𝐊∗
𝑇 𝐊∗∗

with 𝐲 = 𝐟 + 𝛆 the target vector

(*) The demonstration requires some time

𝐟∗|𝐱∗, 𝐱, 𝐲 ~ 𝑁 𝐊∗
𝑇 𝐊+ 𝜎2𝐈 −1𝐲 , 𝐊∗∗ − 𝐊∗

𝑇 𝐊+ 𝜎2𝐈 −1𝐊∗

argmax 𝑝 𝐲|𝐗



Neural networks
Machine learning fundamentals

• Roadmap:

– Generalized linear models

– Logistic regression

– Feed-forward neural networks

– Bias-variance dilemma

– Convolutional neural networks

– Recurrent neural networks
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Generalized linear models (1-dim)

• Exponential family
– Class of distributions

– Gaussian

– Bernoulli

• Generalized linear model assumptions
– Exponential family:

– Given 𝑥, we want to predict 𝐸 𝑇 𝑦 |𝐱; 𝛉

– Linear relationship (here 1-dim): 𝜂 = 𝛉𝑇𝐱

• Hypothesis
– Gaussian

– Bernoulli
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𝑝 𝑦; 𝜂 = 𝑏 𝑦 exp 𝜂𝑇𝑇 𝑦 − 𝑎 𝜂

1 𝜂 = 𝜇 2 𝑇 𝑦 = 𝑦 3 𝑎 𝜂 =  𝜂2 2 4 𝑏 𝜂 =  1 2𝜋 exp  −𝑦2 2

1 𝜂 = log  𝜙 1 − 𝜙 2 𝑇 𝑦 = 𝑦 3 𝑎 𝜂 = log 1 + 𝑒𝜂 4 𝑏 𝜂 = 1

Natural parameter

Sufficient statistic

Log partition function

𝑦|𝐱; 𝛉 ~ ExponentialFamily(𝜂)

ℎ𝛉 𝐱 = 𝐸 𝑦|𝐱; 𝛉 = 𝜇 = 𝜂 = 𝛉𝑇𝐱

ℎ𝛉 𝐱 = 𝐸 𝑦|𝐱; 𝛉 = 𝜙 =  1 1 + 𝑒−𝜂 =  1 1 + 𝑒−𝛉
𝑇𝐱

𝜕𝑙 𝜃𝑖
𝜕𝜃𝑖

∝ − 𝐸 𝑇 𝑦 |𝐱; 𝛉 − 𝑦 𝑥𝑖

MLE computed by GD for 1 sample

GLM Logisitic Reg. Feed-forward NN Bias-variance Convolutional Net Recurrent Nets



Logistic regression

• Bernoulli distribution 
– sigmoid as hypothesis

– logistic loss (cost)

• Same form for the GD (result as expected):

• Perceptron algorithm

• Newton (using the Hessian): 
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ℎ𝛉 𝐱 =  1 1 + 𝑒−𝛉
𝑇𝐱 =𝜙

𝑝 𝑦|𝐱; 𝛉 = 𝜙 𝑦 1 − 𝜙 1−𝑦

𝑒 𝛉 = 𝜙 𝑦 1 − 𝜙 1−𝑦

𝜃𝑖 ≔ 𝜃𝑖 − 𝛼 ℎ𝛉 𝐱 𝑗 − y 𝑗 𝑥𝑖
𝑗

, ∀ 𝑖 ∈ 1, 𝑛

+

𝑥1

𝑥2

𝑥𝑛

𝑦

ℎ𝛉 𝐱 =  1 if 𝛉𝑇𝐱 ≥ 0
0 if 𝛉𝑇𝐱 < 0

𝛉 ≔ 𝛉 − 𝐻−1 𝛻𝛉𝑙 𝛉

𝜃1

𝜃𝑛

GLM Logisitic Reg. Feed-forward NN Bias-variance Convolutional Net Recurrent Nets



Feed-forward neural network

• Terms:
– Weights, activation or transfer functions

• Universality:
– Finite single hidden layer networks can theoritically compute any continuous function

• In practice:
– Normalize and decorrelate inputs, tangent hyperbolic, learning rate per weight, momentum, seocnd-

order methods, training and test set
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+

+

+
• Backpropagation

Based on chain rule:
𝐖[3]

𝐖[2]

+

+

𝐖[1] 𝐱[𝟏]
𝐱[𝟐]

𝐟𝐟

𝐟

𝐳[1]
𝐳[2]

𝐳[3]
𝐲

𝜕𝑒

𝜕𝐖[𝟏]
=

𝜕𝑒

𝜕𝐲

𝜕𝐲

𝜕𝐱[2]
𝜕𝐱[2]

𝜕𝐱[1]
𝜕𝐱[1]

𝜕𝐖[1]

𝐳𝑛 = 𝐖𝑛𝐱𝑛−1 𝐱𝑛 = 𝐟(𝐳𝑛)

𝐱[0]

GLM Logisitic Reg. Feed-forward NN Bias-variance Convolutional Net Recurrent Nets



Bias-variance dilemma

• Mean square error of an estimator

• Solution (among others) for model selection
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𝑚𝑠𝑒  𝑦 = 𝐸  𝑦 − 𝑦 2|𝑦 = 𝑏𝑖𝑎𝑠(  𝑦)2 + 𝑣𝑎𝑟(  𝑦)

Bias2

VarianceMSE

Model complexity

– Polynomial regression example:

x

y

True

Measure

xtest

High-order

Low-order

• For neural networks:
– Training (70%) / validation (15%) 

/ test (15%) split
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Convolutional neural networks
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• Deep neural nets suffer from the vanishing/exploiding gradient problem

– From chain rule has an important role with many layers 

• Convolutional neural nets:
– Not fully connected nets and weight sharing

– Rectified linear unit (ReLU) layers

𝜕𝐱𝑛
𝜕𝐱𝑛−1

= 𝐖𝑛
𝑇𝐟′ 𝐳𝑛

Sigmoid ReLU

Function

Derivative

GLM Logisitic Reg. Feed-forward NN Bias-variance Convolutional Net Recurrent Nets



Recurrent neural networks

• Backprop through time highly sensible to vanishing/exploiding gradient

• Solutions
– Truncate backprop: 

• Different time delays

• Elman network, Jordan networks

– LSTM: constant error carousel + forget gate
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+

+

𝐔𝐱 𝐡𝐖

Delay 
connection

Unfold

𝐡 𝑡−1 𝐡 𝑡 𝐡 𝑡+1

𝐱 𝑡−1 𝐱 𝑡 𝐱 𝑡+1

𝐲 𝑡−1 𝐲 𝑡 𝐲 𝑡+1

+

𝐲

𝐖 𝐖

𝐕
𝐔 𝐔 𝐔

𝐕 𝐕 𝐕

𝐱 𝑡

𝐲 𝑡

𝐜 𝑡𝐜 𝑡−1

𝐲 𝑡
𝐲 𝑡−1

GLM Logisitic Reg. Feed-forward NN Bias-variance Convolutional Net Recurrent Nets



Theories of machine learning
Machine learning fundamentals

• Statistical learning theory

– Given the number of samples and hypothesis space, what is the generalization 
error bound w.r.t. training error ?

• Computational learning theory

– Given the hypothesis space and the generalization error, how many training 
samples are required ?

– Probably approximately correct (PAC) learning algorithm
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Agenda

• Machine learning (ML) fundamentals

• ML in practice: Cognitive power control

– LTE resource allocation and cognitive power control

– A typical ML workflow and data management

– Power trajectories and ideal power saving

– Neural network predictor

– Reinforcement learning predictor

© Accellera Systems Initiative 24



LTE resource allocation
Machine learning in practice
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Payload

for UE i

Payload

for UE j

Network

UE i

Base Station 

(MAC scheduler)

Server

(FTP, Youtube, ...)

UE j

Time (ms)

F
re

q
u

e
n

c
y
 (

H
z
)

1 ms = 14 OFDM symbols

Control Channel

(PDCCH) for all UEs

• Every millisecond, the PDCCH should be decoded:
– Scenario 1: The UE has found a grant in the PDCCH and will use it to receive or transmit payload.

– Scenario 2: There is no grant in the PDCCH and power has been used in vain to decode the PDCCH.



Cognitive power control
Machine learning in practice

• If a UE knows in advance that it won‘t receive any grants in the next 
millisecond, it can avoid PDCCH decoding, and therefore save power. 

• The base station MAC scheduler distributes payload data and grants
– From UE perspective, non-deterministic 

traffic timing patterns
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Observation Window (10 ms)

Observe Predict

Cognitive UE

1 ms

1  0  1  1  1  0  1  0  1  1  0  0  ?Grant

Modulation Coding Scheme

Transport Block Size

Retransmission



Streaming data, simulated/live network data, 
meta-parameter definition and collection, storage.

A typical ML workflow
Machine learning in practice
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1. Data collection

Efficient data format for queries, split into 
chunks according markers, format dependent.

No differences between formats at the end 
of this step, need to be able to communicate with experts.

Data splitting if needed before, 
normalize and clean features, training set should be obtained.

Dimensionality reduction algorithms, or 
automated feature selection via regularization.

Choice of the algorithms (supervised 
learning, reinforcement learning, ...)

Choice of the algorithms (supervised 
learning, reinforcement learning, ...)

3. Feature extraction

4. Feature preprocessing

5. Feature selection

2. Data preprocessing

6. Model training

7. Model evaluation

Observations:
• Machine learning is 

inherently an iterative
exploration

• Efficient infrastructure 
needed (step 1 and 2)

• Expert knowledge is 
mandatory (step 3)

• Always prepare for 
scalability (step 6)

• Visualize and analyze 
samples (step 3, 4 and 7)

• Manage meta-parameters 
(step 1, 2 and 7)



Data management
Machine learning in practice
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Analysis of modem traces 
Machine learning in practice
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DL Grant time 

series - 26 ms 

snapshot

Example of LTE modem trace
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Power trajectories
Machine learning in practice

Pa Power consumption of 

standard behavior

Pb Power saving potential

Pc Power saving with 

including prediction 
errors

Pd Total estimated power 

saving

Goal Estimation of the power saving enabled by a ML algorithm at design time without demonstrator. 

[14]



Modem trace data set
Machine learning in practice
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Goal Data set from Intel® XMM™ 7480 Modem for LTE-Advanced Services [15] trace server 

(6 PB/week; 1 trace ~ 500 MB)

 Different places and operators

 Traffic type (FTP DL, FTP UL, FTP UL/DL)

UL Grant Traffic Intensity

D
L

 G
ra

n
t 

T
ra

ff
ic

 I
n

te
n

s
it

y
• Radio conditions (far cell, near cell, middle)

• Other requirements (e.g., SW build, CA config)

• 73 traces selected from ~100000 traces
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Ideal power saving
Machine learning in practice

Goal Estimation of the ideal power saving given live network traces assuming genius prediction

• FTP DL traces are more 
promising than FTP UL ones due 
to the large power contribution 
of UL payload data transmission

• Bad RF conditions lead to a more 
sporadic reception, i.e., more 
power saving opportunities

• Up to 12% modem power saving 
potential by optimizing PDCCH 
monitoring
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Observation Window (10 ms)

Principal Component 
Analysis

Cognitive UE

1 ms

1  0  1  1  1  0  1  0  1  1  0  0  ?Grant

Ex. Param. 1

Ex. Param. 2

Ex. Param. 3

Predictor
Cost-Sensitive 

Classifier

• Parameter selection
– Relevant parameters to infer scheduling

– Modulation coding scheme

– Number of resource blocks

– Re-transmission occurences

• Cost-sensitive classifier
– Cost imbalance between false negatives and false positives, i.e., 

missing a grant implies throughput degradation.

– Cost-sensitive classification uses decision theoritic approach to define 
a threshold on the neural network output

• Neural network predictor
– Shallow approach: 2 hidden layers of 15 and 20 neurons

– MSE with Levenberg-Marquardt backpropagation

– Linear output activation function: Better separability

2% mean FNR

Prediction approach
Machine learning in practice



System design

• Computational complexity
– Typical baseband DSP at 300 MHz

– Power consumption of 1 mW/MHz [1]

– No instruction optimizations: SIMD, vector floating point unit

– 5 kFLOPs for one prediction: 2 % of a typical DSP time budget

– 5 GFLOPs for training: Other approaches should consider the online/offline training trade-off

• Increase of the classical EDA complexity
– Area vs. power vs. delay vs. tolerated error rate (and its impact on the overall system)

– Account for the undeterministic nature of such system, assess the reliability of simulated data 

• Synergies among ML applications
– Exploitation of the similarities between classical machine learning algorithms
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Supervised predictor performance
Machine learning in practice
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• Main results

– 12% maximal potential power saving

– 2% mean FNR

– 2% DSP time budget

– 1,7% mean power increase compared to ideal 
power consumption

– Traffic dependent performance but promising 
results for well-defined traffic scenarios



Reinforcement learning approach [16]
Machine learning in practice

• Variable cell behavior:
– Online training, but high power consumption for NN

• NS3 simulator:
– No live network testing possible

• Q-learning: 
– Light-weight through tabular representation, e.g. Q-learning
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Q-learning
Machine learning in practice
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Conclusion

• Machine learning system
– Built with data, statistical tools, robust workflow and expert knowledge

• Machine learning for power saving
– Scenario-specific trace data collection

– Power model at dedicated abstraction level

– Power consumption estimation of ML algorithms at design time

– Power trajectories for end-to-end power saving estimation

• Cognitive power control outlook
– Qualify and quantify network reactions with network simulator

– Online/offline trade-off through reinforcement learning

– Accuracy improvement with traffic classifier, statistical modeling and LSTM

– Divide-and-conquer approach with federated learning and trace segmentation
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Questions
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