Low Power Extension in UVM Power
Management

Silicon Interfaces®™
www.siliconinterfaces.com

Priyanka Gharat (priyanka@siliconinterfaces.com),
Avnita Pal (avnita@siliconinterfaces.com),
Shikhadevi Katheriya (shikha@siliconinterfaces.com)

Abstract- Incorporating Power Architecture either is in conjunction with or in sequence to functional verification
using different languages, many times with different team members using different tools, and divergent approaches
leading to potential errors, almost a fourth dimension to our strategy leveraging the test bench architecture. Industry
seems to be following a parallel path with respect to Methodologies based test bench Power Architecture, including
Unified Power Formats (UPF Both are fundamental requirements to IP and ASIC verification especially in the power
saving mobile world. It would be more efficient to do Methodologies based Functional Verification and Coverage
interleaved with Low Power Implementation. We have noted previous works in power libraries for VMM and have
corrected shortfalls and failings and have modified suitably to work within UVM, which is a much-enhanced
Methodology.

1. INTRODUCTION

This Poster demonstrates Power Libraries classes built in System Verilog (UVM_Power) expanding UVM Package
Library with Power Domains, Supply Sets, Switches, States and Low Power Strategies as Base Class which may be
used within UVM Environment. These Power Base Classes are further built for multi-Cores, Bus Interface,
Memory, Etc.

This proposal is to interleave Functional Verification Methodology and Power Architecture in a single existing and
widely deployed methodologies-based platform, like UVM.

e With low power strategies, based on UPF and multi-core extensions, a low power or power aware designer
or verification engineers would now be able to have a strategy/plan whilst the design/verification is being
undertaken.

e As the needs for smaller and Low Power Aware designs needs increase doing the Power Architecture
Strategy, especially the Verification as an afterthought post Functional Verification may lead to unwanted
re-spins detrimental to costs as well as time to market guidelines.

e Bringing in Power Verification at an earlier stage will bring down the total time for incorporating power
strategies resulting in far shorter design cycles.

II. DESIGN AND IMPLEMENTATION
An overall UPF structure is created using UVM classes which include different tasks such as creating power

domains, different scopes then supply nodes for each of the domains which are created. These classes are used as
library and can be extended for creating structures based on DUT/SOC architecture.

Fig 1. Hierarchical Structure of UVM

UVM_Power_Env

uvm
Power_Scoreboard

UvnM_ !
Power_Agent UVIM_
] |Power_Sequencer

iy -
UvmM _ u'v_l\'.'l__
Power_Monitor | Power_Driver
t .Jf' i Y

Fig 2. Hierarchical Structure of UVM Power Domain

I11. UVM POWER PACKAGE ARCHITECTURE

System Verilog Package declared for Low Power UVM_LP (similarly to power formats used in UPF) and have
either a single base class for LP with tasks and functions defined for create power domains, create _supply ports for
domains and logic ports for switches, create supply nets (VDD, VSS for each power-domains) and logic_nets for
switches, connect supply nets to ports, associate supply nets, create port & power states & tables, and then for
strategies, like level shifters, isolations & retention — logic ports/nets and set the library cells for isolation and
retention

Top level consists of base class (UVM power) and various extended packages for- UVM_power device,
UVM_power memory, UVM power core and further class extend for UVM power multicore,
UVM_power ARM, UVM power_Intel, UVM_power OPEN_SOURCE extending UVM_power_core.

The base class has several predefined methods (functions and tasks) in the design-
e Power Domains

e Supply sets/nets
e Connect Supply sets to Power Domains.
e Switches - With signals, like Wait_For Interrupt; Wait _For Event;

Delay time for power down; Enable wakeup timer interrupt before power down.

e States - normal, standby, connect standby, retention, sleep, dormant, deepsleep, hibernate,
power_down_state; {c0,c1,c2,c3,c4,c5,c6,c7,c8} power up_state.

® Assign States to Supply sets.

e Strategies for Level Shifters, Retention and Isolation.

e Mapping Strategies to Libraries.

e Virtual functions, tasks & sub-routines for power up and power down, state transitions, etc

The template UVM has UVM_power _test top, UVM_power_ Agent, UVM_power Sequence, UVM_power Driver,
Monitor, Score board, etc..

UVM_LP_PKG
L4
L4
UVM_Power Memory UVM_Power_Device

P T

Fig 3. Flowchart of UVM Low Power Package

IV. ARCHITECTURE OF UVM_POWER PACKAGE FOR MULTI-CORE

Here we are framing an example which is an ARM processor or cluster with single core or it can be formed with
multi core processor needed to create a System Verilog encapsulated class with inbuilt task and functions defined in
it for Low Power UVM package.

The top level consists of base class (ARM_Muli_cluster UVM LP TEST) and various extended packages for-
UVM_Power Agent, UVM power multi cluster transaction, UVM_power_sequencer, UVM_power driver. Also
there will be several agents for multiple protocols and interfaces like UVM Power Agent PCle,
UVM Power Agent AXI, UVM Power Agent ARM_CHI etc. for large SoC design.

ARM Multi cluster UYM Low power class Test Intent
ARM Mulh cluster VM Lo Power class Ermronment

ARM LOW Power AMBA CHI- 5 ACP AXI BUS

ARM Multi cluster UVM Lower Power DUT

Fig 4. Hierarchical view of UVM Low Power Package for multi core

V. EVIDENCE: INCORPORATING UVM_POWER PACKAGE TO UVM

We are providing the sample code for the UVM Power Package as defined and which may be incorporated in UVM

Libraries
package uvm_power pkg;
import uvm_pkg::*;
class uvm_low_power;
/I"uvm_component utils(uvm_low_power); - Factory Registration
//function new (string name, uvm_component uvm_low_power);
//lendfunction : new — Construction
class low_power;
function string create_power domain(input string domain_name,input string states, input int
index);
string power _domain[];
power domain=new[index];
for(int i=0;i<index;i++)

begin
power_domain[i] = {"PD _",domain name}; // domain created here
return power_domain[i];
end
endfunction

function string create_supply port (input string in_port, input string type of signal);
if(type_of signal=="power high")
return {in_port,” VDDH"};
else if(type_of signal=="power low")
return {in_port," VDDL"};
else if(type_of signal=="ground")
return {in_port," VSS"};
else
return "NULL";
endfunction

function string create_supply net(input string in_signal, input string type of signal);
if(type_of signal=="power")
return {in_signal," Pwr"};
else if(type of signal=="ground")
return {in_signal," Gnd"};
else
return {in_signal," net"};
endfunction

function string connect supply net(input string in_port, input string in_net);
return {in_port," ",in_net};
endfunction

function bit isolation_cell(input in_signal);
isolation_cell = in_signal;
endfunction

function bit retention_cell(input in_signal,restore);
reg memory;
memory = in_signal;
if(restore == 1) // when restore is enabled then the signal is available at the o/p side.
retention_cell = memory;
endfunction

function bit power switch(input in_signal,switch_control);

if(switch_control == 1)

power switch =in_signal;

else
power_switch = 1'bx;
endfunction
endclass
endpackage

V.EVIDENCE: INCORPORATING UVM_POWER PACKAGE TO UVM

As you can see invoking the Low Power Package is as simply as “A” “B” “C” and the good part is that the “A” will
come as part of the Low Power Package. In step B, we have included the library package and the header files as well
as writing the test bench with instantiating the necessary classes, etc. The Low Power Class can be extended and run

the necessary build, connect and run phases.

In Step C here we are passing a dynamic array of the top level modules present in the DUT which would need to
have Power Domains. These are typically already instantiated in the test bench top module and can be extracted
using an external python script. The calls to the functions will return the value as required in our Low Power

domain.

A. Defining Low Power Macros

“define uwvm_object_utils|T)

“define uvm_field_string[ARG,FLAG)
“define uvm_field_object(ARG,FLAG)
“define uwm_field_int(ARG,FLAG)

/" define uvm_field_queue_int{ARG,FLAG)

S/ uvm_object_utils_begin(TYPE)
S uvm_field_* macroinvocations here
/" uvm_object_utils_end

class lp_uvm_macros extends uvm_object;

string str;

|p_uwm_macros subdata;

int field;

Int queue[S];
“uvm_object_utils_begin{lp_uvm_macros)
“uwm_field_string(str, UVM_DEFAULT)
“uvm_field_object{subdata, UVM_DEFALLT)

“uvm_field_int{field, UVM_DEC)

“uwm_field_gueue_int(gueue,

UVM_DEFAULT)

“uvm_object_utils_end

endclass

B. Importing UVM Low Power in TB

“include "pkg_Ip.sv"

“include "uvm_macros.svh"
J{include "Ip_uvm_macros. svh"
import uvm_pkg::*;

import uvm_power_pkg::*;

module th;

reg clock, reset;

string domains[];

string states[];

inti;

mymod mm(clock, reset);

class |p extends low_power;

J/build phase

function void build_phase({uvm_phase phase);
endfunction

//connect phase
function void connect_phase(uvm_phase phase);
endfunction

J/run phase
taskrun_phase{uvm_phase phase);
phase.raise_objection(this);
begin
UVm_top SEeqUence seq;

seg=uvm_top_sequence:type_id:create("seq");
#5;
seq.start{seguencer);

end

phase.drop_objection(this);

endtask

endclass

C. Instantiating Power Classes

Iplpd;

initial
besin
clock=0;
1pl = naw{);
i=3; /findex
domains=newli;
domains="{"USB", "DIMA", "CPU", "WISHBONE"},
#40 Sfinish;
end

alwizys

besgin

#5 clock="~dock;
end

always @|posedge clock)
begin

port=|pl.creste_supply_port{domains[j],"power_medium"};

net=Ipl.create_supply_netidomains[j],"power");
it
end
Jfinstances ofthe low-power module
Jf isolation_cellisol);

{/ retention_cell ret();

endmaodule

VI. EVIDENCE: EXTENDING UVM_POWER PACKAGE FOR MULTI-CORE

As given in 1V, this is code incorporating the UVM Power Libraries and extending the same to multi-core,

particularly for powerup and powerdown.

class my_power extends uvm_power;

//" uvm_component_utils(my_power) Factory

//build phase
function void build_phase(uvm_phase phase);

Registeration

//Constructor
function new(string name =
parent);
super.new(name,parent);
endfunction
uvm_power power;

nn

initial begin
power = new();

// down_state =
uvm_power_pkg::uvm_power::cl;
power.powerup(2);
power.powerdown(3);

power.sequential_power_down_up_multi_core_f();

power.power_up_another_core_f();

end

Sl
PR BT WA ReusT,
rand bit Wait_for_Event,
Fand it Daday_tima_for_povar down;
i it

Erabie_wakeup_tmer_isterrupt_befom_power_dewn;

Jimates
typedaf anum

-hm-m_nmm-.-;mr_mﬁdby_!iup,hbimuq,um‘-n

A _Bralin] pover_downn_fiate;

typedalenum 20,60 22 63 04 .27 8 | power_up mate;

peoweRr_Hown_sinbe Sowrs_suie;
el _up virte v _tate)

wirtinl Fusetion iatpowerupFapoe (200 us_matel
bagn
catelup_mane|
0= hagan
S ingiew{ 7t iz in st mode'l;
and
c1- Sdbpley{“kuto it}
&2: Sdngliy| Tamaorary IEie "L
c3: Saspiey{” i1 and |2 cactes witoe Nush™)
cd: Sclapley{"CPU lyin desp tesp™];

#b: Dty (Sl 1R LoTe TEM Baless whuming)

c?: Sdspany{“ch + LLC may b flush 7
eB: Seluplay{"c TolLL may Baflueh)
EnozesE
and
Endiindtan

, uvm_component

endfunction

//connect phase

function void connect_phase(uvm_phase phase);

endfunction

//run phase

task run_phase(uvm_phase phase};

phase.raise_objection(this);

begin

uvm_top_sequence seq;

seq =

uvm_top_sequence::type_id::create

#5;

end

seq.start(sequencer);

-~

phase.drop_objection(this);

endtask
endclass

wirtiasl Fusction int poswsrdawn finput [2 Dacwer_downl

bagin
o _itute)
madem_mandby: bagin
Sdapbwg{"Teisin modern sasdiy mode®);
and
veaptagin
Sdmoley(itisin 2een mods ™}
ahd
ribamace: bagin

Fdmplay| "t i Inzcie hitaate tste and dstan

o from RAN TO RO,
and
connect_andby begn
Sditsplay{™ s conme_standoy™;
wnd
siena_off_brui bapn
Sdisplwyf~ma operstion is performed};
g
WASCHE
wrid
sndfunstian
sndcieEe
famgey clam
CIBAS UVET)_ oA _ IOy & NI U _Praen]

{iCode neads rsbe wfimen

tunction reall;

s el

Sdigplay|Trinisaide uvm_power_memory}
{Danvien
Cla5E GV _povwe_ device et e G _ S0

[fCede need to b4 writtan

furzion naw);

LE-LE L Lo
Sdinglay{"v ininsade uwen_powsr_devioel;
wndfunction
ELEHE
Neorw
€l enaim_ T _coore & ki nel uivmi_ g
{fCods nesds e DewrTma
fursction newll
gt Al
Sdisplay{ "t I3 insde v _poswr_core™);
wndfunstion
wirpanl funetion power_dewn_snother_cors_TL
W
Seleplayl it e indide powa r doen mnDthercam ™)
sndiunction
wirtuhl fanction power_ug_anathe_mre_flk
{ineedsto Da witen
Sdiisplay{™it i iral de powe rup another core™);
angdfunstion
emdciney
€lans wvm_porser_madth_iore edends
T iR _Eom
typadafstrua [
bit [3:030_OF CORES;
pit [3:0080_0F (DRES_M_PROC
bt (3000 _OF_MROC_IN_CLUSTER,
biz [3:0[M0_0F_CLUSTER;
It core;
wirtusl function power_un(L
i needs1o be writsen
s lay 1t 18 inside power ud multi core
wndfunetion
wnacieng

RESULT

Temporary state

It is in modern standby mode

2027
ENFE £
DESIGN AMD WVERIFICATION™

~ [onn B oo N 9
LWV L L 1w

LENT ERENGE AND BAFIE TN

it 1is inside sequential_power_down_up_multi_core_f
It is inside power up another core

VIC5

Incorporating Power Management architecture within UVM methodologies alleviates challenges of functional
verification engineer and power management divide. We proposed in-built Power Domain Classes as extension to
UVM Package as the Library may be extended to Devices, multi-Cores, Memories, Bus Interface, etc. giving one
package for implementation ease. Consolidation of Functional Verification and Power Management will lead to
reduced verification time and better chance to meet the time to market deadlines.

[1] UVM Community (accellera.org) https://accellera.org/community/uvm
[2] Guide to changes in IEEE 1801-2013 (UPF 2.1) (techdesignforums.com)

[3] Verification Methodology Manual for Low Power https://www.synopsys.com/company/resources/synopsys-

press/vmm-low-power.html

Simulation

Report

CONCLUSION

REFERENCES

