

Low Power Extension in UVM Power

 Priyanka Gharat (
 Avnita Pal (

 Shikhadevi Katheriya (

Abstract- Incorporating Power Architecture either is in conjunction with or in sequence to functional verification

using different languages, many times with different team members using different tools, and divergent approaches
leading to potential errors, almost a fourth dimension to our strategy leveraging the test bench architecture. Industry
seems to be following a parallel path with respect to Methodologies based test bench Power Architecture, including
Unified Power Formats (UPF Both are fundamental requirements to IP and ASIC verification especially in the power
saving mobile world. It would be more efficient to do Methodologies based Functional Verification and Coverage
interleaved with Low Power Implementation. We have noted previo
corrected shortfalls and failings and have modified suitably to work within UVM, which is a much
Methodology.

This Poster demonstrates Power Libraries classes built in System Verilog
Library with Power Domains, Supply Sets, Switches, States and Low Power Strategies as Base Class which may be
used within UVM Environment. These Power Base Classes are further built for multi
Memory, Etc.

This proposal is to interleave Functional Verification Methodology and Power Architecture in a single existing and
widely deployed methodologies-based platform, like UVM.

● With low power strategies, based on UPF and multi
or verification engineers would now be able to have a strategy/plan whilst the design/verification is being
undertaken.

● As the needs for smaller and Low Power Aware designs needs increase doing the Power Architecture
Strategy, especially the Verification as an afterthought post Functional Verification may lead to unwanted
re-spins detrimental to costs as well as time to market guidelines.

● Bringing in Power Verification at an earlier stage will bring down the total time for incorporat
strategies resulting in far shorter design cycles.

An overall UPF structure is created using UVM classes which include different
domains, different scopes then supply nodes for each of the
library and can be extended for creating

Low Power Extension in UVM Power
Management

 Silicon Interfaces®
www.siliconinterfaces.com

Priyanka Gharat (priyanka@siliconinterfaces.com),
Avnita Pal (avnita@siliconinterfaces.com),
Shikhadevi Katheriya (shikha@siliconinterfaces.com)

Incorporating Power Architecture either is in conjunction with or in sequence to functional verification
using different languages, many times with different team members using different tools, and divergent approaches

potential errors, almost a fourth dimension to our strategy leveraging the test bench architecture. Industry
seems to be following a parallel path with respect to Methodologies based test bench Power Architecture, including

are fundamental requirements to IP and ASIC verification especially in the power
saving mobile world. It would be more efficient to do Methodologies based Functional Verification and Coverage
interleaved with Low Power Implementation. We have noted previous works in power libraries for VMM and have
corrected shortfalls and failings and have modified suitably to work within UVM, which is a much

I. INTRODUCTION

This Poster demonstrates Power Libraries classes built in System Verilog (UVM_Power) expanding UVM Package
Library with Power Domains, Supply Sets, Switches, States and Low Power Strategies as Base Class which may be
used within UVM Environment. These Power Base Classes are further built for multi-Cores, Bus Interface,

This proposal is to interleave Functional Verification Methodology and Power Architecture in a single existing and
based platform, like UVM.

With low power strategies, based on UPF and multi-core extensions, a low power or power aware designer
or verification engineers would now be able to have a strategy/plan whilst the design/verification is being

As the needs for smaller and Low Power Aware designs needs increase doing the Power Architecture
ially the Verification as an afterthought post Functional Verification may lead to unwanted

spins detrimental to costs as well as time to market guidelines.
Bringing in Power Verification at an earlier stage will bring down the total time for incorporat
strategies resulting in far shorter design cycles.

II. DESIGN AND IMPLEMENTATION

An overall UPF structure is created using UVM classes which include different tasks such
, different scopes then supply nodes for each of the domains which are created. These classes are used as

library and can be extended for creating structures based on DUT/SOC architecture.

Low Power Extension in UVM Power

)

Incorporating Power Architecture either is in conjunction with or in sequence to functional verification
using different languages, many times with different team members using different tools, and divergent approaches

potential errors, almost a fourth dimension to our strategy leveraging the test bench architecture. Industry
seems to be following a parallel path with respect to Methodologies based test bench Power Architecture, including

are fundamental requirements to IP and ASIC verification especially in the power
saving mobile world. It would be more efficient to do Methodologies based Functional Verification and Coverage

us works in power libraries for VMM and have
corrected shortfalls and failings and have modified suitably to work within UVM, which is a much-enhanced

(UVM_Power) expanding UVM Package
Library with Power Domains, Supply Sets, Switches, States and Low Power Strategies as Base Class which may be

Cores, Bus Interface,

This proposal is to interleave Functional Verification Methodology and Power Architecture in a single existing and

or power aware designer
or verification engineers would now be able to have a strategy/plan whilst the design/verification is being

As the needs for smaller and Low Power Aware designs needs increase doing the Power Architecture
ially the Verification as an afterthought post Functional Verification may lead to unwanted

Bringing in Power Verification at an earlier stage will bring down the total time for incorporating power

tasks such as creating power
which are created. These classes are used as

Fig 2. Hierarchical

Fig 1. Hierarchical Structure of UVM

. Hierarchical Structure of UVM Power Domain

System Verilog Package declared for Low Power UVM_LP (similarly to power formats used in UPF) and have
either a single base class for LP with tasks and functions defined for
domains and logic ports for switches, create supply_nets (VDD, VSS for each power
switches, connect_supply_nets to ports, associate supply_nets, create port & power states & tables,
strategies, like level shifters, isolations & retention
retention

Top level consists of base class (UVM_power)
UVM_power_memory, UVM_power_core and further class extend for UVM_power_multicore,
UVM_power_ARM, UVM_power_Intel, UVM_power_OPEN_SOURCE extending UVM_power_core.

The base class has several predefined methods (functions and tasks)

● Power Domains
● Supply sets/nets
● Connect Supply sets to Power Domains.
● Switches -

Delay_time_for_power_down;
● States - normal, standby, connect_standby, retention, sleep, dormant, deepsleep, hibernate,

power_down_state; {c0,c1,c2,c3,c4,c5,c6,c7,c8} power_up_state
● Assign States to Supply sets.
● Strategies for Level Shifters, Retention and Isolation.
● Mapping Strategies to Libraries.
● Virtual functions, tasks & sub

The template UVM has UVM_power_test top, UVM_power_Agent, UVM_power_Sequence, UVM_power_D
Monitor, Score board, etc..

Fig 3

III. UVM POWER PACKAGE ARCHITECTURE

System Verilog Package declared for Low Power UVM_LP (similarly to power formats used in UPF) and have
either a single base class for LP with tasks and functions defined for create_power_domains, create_supply_ports for
domains and logic ports for switches, create supply_nets (VDD, VSS for each power-domains) and logic_nets for
switches, connect_supply_nets to ports, associate supply_nets, create port & power states & tables,
strategies, like level shifters, isolations & retention – logic ports/nets and set the library cells for isolation and

class (UVM_power) and various extended packages for- UVM_power_device,
UVM_power_memory, UVM_power_core and further class extend for UVM_power_multicore,
UVM_power_ARM, UVM_power_Intel, UVM_power_OPEN_SOURCE extending UVM_power_core.

methods (functions and tasks) in the design-

Connect Supply sets to Power Domains.
 With signals, like Wait_For_Interrupt; Wait_For_Event;

Delay_time_for_power_down; Enable_wakeup_timer_interrupt_before_power_down
normal, standby, connect_standby, retention, sleep, dormant, deepsleep, hibernate,

power_down_state; {c0,c1,c2,c3,c4,c5,c6,c7,c8} power_up_state.
Assign States to Supply sets.

el Shifters, Retention and Isolation.
Mapping Strategies to Libraries.
Virtual functions, tasks & sub-routines for power up and power down, state transitions, etc

UVM_power_test top, UVM_power_Agent, UVM_power_Sequence, UVM_power_D

Fig 3. Flowchart of UVM Low Power Package

System Verilog Package declared for Low Power UVM_LP (similarly to power formats used in UPF) and have
create_power_domains, create_supply_ports for

domains) and logic_nets for
switches, connect_supply_nets to ports, associate supply_nets, create port & power states & tables, and then for

logic ports/nets and set the library cells for isolation and

UVM_power_device,
UVM_power_memory, UVM_power_core and further class extend for UVM_power_multicore,
UVM_power_ARM, UVM_power_Intel, UVM_power_OPEN_SOURCE extending UVM_power_core.

With signals, like Wait_For_Interrupt; Wait_For_Event;
Enable_wakeup_timer_interrupt_before_power_down.

normal, standby, connect_standby, retention, sleep, dormant, deepsleep, hibernate,

routines for power up and power down, state transitions, etc

UVM_power_test top, UVM_power_Agent, UVM_power_Sequence, UVM_power_Driver,

IV. ARCHITECTURE OF

Here we are framing an example which is an ARM processor or cluster with single core or it can be formed with
multi core processor needed to create a System Verilog encapsulated class with inbuilt task and functions defined in
it for Low Power UVM package.

The top level consists of base class (ARM_Muli_cluster_UVM_LP_TEST) and various extended packages for
UVM_Power_Agent, UVM_power_multi_cluster_transaction, UVM_power_sequencer, UVM_power_driver. Also
there will be several agents for multiple protocols and interfaces like UVM_Power_Agent_PCIe,
UVM_Power_Agent_AXI, UVM_Power_Agent_ARM_CHI etc. for large SoC design.

Fig 4. Hierarchical view of UVM Low Power Package for multi core

RCHITECTURE OF UVM_POWER PACKAGE FOR MULTI-CORE

Here we are framing an example which is an ARM processor or cluster with single core or it can be formed with
processor needed to create a System Verilog encapsulated class with inbuilt task and functions defined in

class (ARM_Muli_cluster_UVM_LP_TEST) and various extended packages for
nt, UVM_power_multi_cluster_transaction, UVM_power_sequencer, UVM_power_driver. Also

there will be several agents for multiple protocols and interfaces like UVM_Power_Agent_PCIe,
UVM_Power_Agent_AXI, UVM_Power_Agent_ARM_CHI etc. for large SoC design.

. Hierarchical view of UVM Low Power Package for multi core

Here we are framing an example which is an ARM processor or cluster with single core or it can be formed with
processor needed to create a System Verilog encapsulated class with inbuilt task and functions defined in

class (ARM_Muli_cluster_UVM_LP_TEST) and various extended packages for-
nt, UVM_power_multi_cluster_transaction, UVM_power_sequencer, UVM_power_driver. Also

there will be several agents for multiple protocols and interfaces like UVM_Power_Agent_PCIe,

V. EVIDENCE

We are providing the sample code for the UVM Power Package as defined and which may be incorporated in UVM
Libraries
package uvm_power_pkg;
 import uvm_pkg::*;
 class uvm_low_power;
 //`uvm_component_utils(uvm_low_power);
 //function new (string name, uvm_component uvm_low_power);
 //endfunction : new – Construction

class low_power;
 function string create_power_domain(input string domain_name,input string states, input int

index);
 string power_domain[];
 power_domain=new[index];
 for(int i=0;i<index;i++)
 begin
 power_domain[i] = {"PD_",domain_name}; // domain created here
 retur
 end
 endfunction

 function string create_supply_port (input string in_port, input string type_of_signal);
 if(type_of_signal=="power_high")
 return {in_port,"_VDDH"}; ...
 else if(type_of_signal=="power_low")
 return {in_port,"_VDDL"};
 else if(type_of_signal=="ground")
 return {in_port,"_VSS"};
 else
 return "NULL";
 endfunction

function string create_supply_net(input string in_signal, input string type_of_signal);

if(type_of_signal=="power")
return {in_signal,"_Pwr"};

else if(type_of_signal=="ground")
return {in_signal,"_Gnd"};

else
return {in_signal,"_net"};

endfunction

function string connect_supply_net(input string in_port, input string in_net);
return {in_port,"_",in_net};

endfunction

function bit isolation_cell(input in_signal);

isolation_cell = in_signal;
endfunction

function bit retention_cell(input in_signal,restore);

reg memory;
memory = in_signal;
if(restore == 1) // when restore is enabled then the signal is available at the o/p
retention_cell = memory;

endfunction

VIDENCE: INCORPORATING UVM_POWER PACKAGE TO UVM

We are providing the sample code for the UVM Power Package as defined and which may be incorporated in UVM

//`uvm_component_utils(uvm_low_power); - Factory Registration
//function new (string name, uvm_component uvm_low_power);

Construction

create_power_domain(input string domain_name,input string states, input int

string power_domain[];
power_domain=new[index];
for(int i=0;i<index;i++)

power_domain[i] = {"PD_",domain_name}; // domain created here
return power_domain[i];

function string create_supply_port (input string in_port, input string type_of_signal);
if(type_of_signal=="power_high")

return {in_port,"_VDDH"}; ...
else if(type_of_signal=="power_low")

return {in_port,"_VDDL"};
else if(type_of_signal=="ground")

return {in_port,"_VSS"};

return "NULL";

function string create_supply_net(input string in_signal, input string type_of_signal);
if(type_of_signal=="power")

return {in_signal,"_Pwr"};
else if(type_of_signal=="ground")

return {in_signal,"_Gnd"};

return {in_signal,"_net"};

function string connect_supply_net(input string in_port, input string in_net);
return {in_port,"_",in_net};

function bit isolation_cell(input in_signal);
isolation_cell = in_signal;

function bit retention_cell(input in_signal,restore);

if(restore == 1) // when restore is enabled then the signal is available at the o/p
retention_cell = memory;

We are providing the sample code for the UVM Power Package as defined and which may be incorporated in UVM

create_power_domain(input string domain_name,input string states, input int

power_domain[i] = {"PD_",domain_name}; // domain created here

function string create_supply_port (input string in_port, input string type_of_signal);

if(restore == 1) // when restore is enabled then the signal is available at the o/p side.

function bit power_switch(input in_signal,switch_control);

if(switch_control == 1)
power_switch = in_signal;

else
power_switch = 1'bx;

endfunction
endclass
endpackage

V. EVIDENCE:

As you can see invoking the Low Power Package is as simply as “A” “B” “C” and the good part is that the “A” will
come as part of the Low Power Package. In step B, we have included the library package and the header files as well
as writing the test bench with instantiating the necessary classes, etc. The Low Power Class can be extended and run
the necessary build, connect and run phases.

In Step C here we are passing a dynamic array of the top level modules present in the DUT which would ne
have Power Domains. These are typically already instantiated in the test
using an external python script. The calls to the functions will return the value as required in our Low Power
domain.

function bit power_switch(input in_signal,switch_control);
if(switch_control == 1)

power_switch = in_signal;

power_switch = 1'bx;

: INCORPORATING UVM_POWER PACKAGE TO UVM

As you can see invoking the Low Power Package is as simply as “A” “B” “C” and the good part is that the “A” will
come as part of the Low Power Package. In step B, we have included the library package and the header files as well

the test bench with instantiating the necessary classes, etc. The Low Power Class can be extended and run
the necessary build, connect and run phases.

In Step C here we are passing a dynamic array of the top level modules present in the DUT which would ne
have Power Domains. These are typically already instantiated in the test bench top module and can be extracted
using an external python script. The calls to the functions will return the value as required in our Low Power

As you can see invoking the Low Power Package is as simply as “A” “B” “C” and the good part is that the “A” will
come as part of the Low Power Package. In step B, we have included the library package and the header files as well

the test bench with instantiating the necessary classes, etc. The Low Power Class can be extended and run

In Step C here we are passing a dynamic array of the top level modules present in the DUT which would need to
bench top module and can be extracted

using an external python script. The calls to the functions will return the value as required in our Low Power

VI. EVIDENCE: E

As given in IV, this is code incorporating the UVM Power Libraries and extending the same to multi
particularly for powerup and powerdown.

EXTENDING UVM_POWER PACKAGE FOR MULTI-CORE

As given in IV, this is code incorporating the UVM Power Libraries and extending the same to multi
particularly for powerup and powerdown.
As given in IV, this is code incorporating the UVM Power Libraries and extending the same to multi-core,

RESULT

Incorporating Power Management architecture within UVM methodologies alleviates challenges of functional
verification engineer and power management divide. We proposed in
UVM Package as the Library may be extended
package for implementation ease. Consolidation of Functional Verification and Power Management will lead to
reduced verification time and better chance to meet the time to market deadlines.

[1] UVM Community (accellera.org) https://accellera.org/community/uvm

[2] Guide to changes in IEEE 1801-2013 (UPF 2.1) (techdesignforums.com)

[3] Verification Methodology Manual for Low Power https://www.synopsys.com/company/resources/synopsys
press/vmm-low-power.html

CONCLUSION

Incorporating Power Management architecture within UVM methodologies alleviates challenges of functional
verification engineer and power management divide. We proposed in-built Power Domain Classes as extension to

may be extended to Devices, multi-Cores, Memories, Bus Interface, etc. giving one
package for implementation ease. Consolidation of Functional Verification and Power Management will lead to
reduced verification time and better chance to meet the time to market deadlines.

REFERENCES

UVM Community (accellera.org) https://accellera.org/community/uvm

2013 (UPF 2.1) (techdesignforums.com)

Methodology Manual for Low Power https://www.synopsys.com/company/resources/synopsys

Incorporating Power Management architecture within UVM methodologies alleviates challenges of functional
built Power Domain Classes as extension to

Cores, Memories, Bus Interface, etc. giving one
package for implementation ease. Consolidation of Functional Verification and Power Management will lead to

Methodology Manual for Low Power https://www.synopsys.com/company/resources/synopsys-

