
© Accellera Systems Initiative

Incorporating Power Architecture either is in conjunction with or in
sequence to functional verification using different languages, many times
with different team members using different tools, and divergent
approaches leading to potential errors, almost a fourth dimension to our
strategy leveraging the test bench architecture.

• Industry seems to be following a parallel path with respect to:
• Methodologies based test bench
• Power Architecture, including Unified Power Formats (UPF

• Both are fundamental requirements to IP and ASIC verification especially
in the power saving mobile world.

• It would be more efficient to do Methodologies based Functional
Verification and Coverage interleaved with Low Power Implementation.

We have noted previous works in power libraries for VMM and have
corrected shortfalls and failings and have modified suitably to work within
UVM, which is a much enhanced Methodology.

Problem Statement/Introduction

Implementation Details/Diagram

Proposed Methodology/Advantages

Implementation Details/Flow Chart

UVM design includes Top level base class of UVM_power and various extended packages for

UVM_power_device, UVM_power_memory, UVM_power_core and further class extend for

UVM_power_multicore. UVM_power_pkg which is top level package has predefined base

classes for data based on power signal need for transaction, Initialization of different power

state which can be used by the scope defined different level, Supply net used to connect to

different Power domains.

An overall UPF structure is created using UVM classes which include different task as

creating power domain, different scopes then supply nodes for each of the domain which

are created. These classes are used as library and can be extended for creating structure

based on DUT/SOC architecture.

Priyanka Gharat, Shikhadevi Katheriya, Avnita Pal

Low Power Extension In UVM
Power Management

1. UVM Community (accellera.org) https://accellera.org/community/uvm
2. Guide to changes in IEEE 1801-2013 (UPF 2.1) (techdesignforums.com)
3. Verification Methodology Manual for Low Power

https://www.synopsys.com/company/resources/synopsys-press/vmm-low-
power.html

Results Table Conclusion

• Incorporating Power Management architecture within UVM
methodologies alleviates challenges of functional verification engineer
and power management divide

• Proposed in-built Power Domain Classes as extension to UVM Package
as Library may be extended to Devices, multi-Cores, Memories, Bus
Interface, Etc giving one package for implementation ease

• Consolidation of Functional Verification and Power Management will
lead to reduced verification time and better chance to meet the time to
market deadlines.

REFERENCES

This Poster demonstrates Power Libraries classes built in SystemVerilog
(UVM_Power) expanding UVM Package Library with Power Domains, Supply
Sets, Switches, States and Low Power Strategies as Base Class which may
be used within UVM Environment. These Power Base Classes are further
built for multi-Cores, Bus Interface, Memory, Etc.

This proposal is to interleave Functional Verification Methodology and
Power Architecture in a single existing and widely deployed methodologies
based platform, like UVM.

• With low power strategies, based on UPF and multi-core extensions, a low
power or power aware designer or verification engineers would now be able to
have a strategy/plan whilst the design/verification is being undertaken.

• As the needs for smaller and Low Power Aware designs needs increase doing
the Power Architecture Strategy, especially the Verification as an afterthought
post Functional Verification may lead to unwanted re-spins detrimental to
costs as well as time to market guidelines.

• Bringing in Power Verification at an earlier stage will bring down the total time
for incorporating power strategies resulting in far shorter design cycles.

This top level package has

predefined base classes including

Low power UPF strategies such as

Level Shifter, Retention and

Isolation based on the user defined

design.

Based on the Power state of

different Power domain various

virtual functions, task and

subroutine are being called.

This top level UVM_power_pkg is

incorporated in test bench and

further extended based on

specification defined in UVM

design.

package uvm_power_pkg;

import uvm_pkg::*;

class uvm_low_power;

//`uvm_component_utils(uvm_low_power); - Factory

Registration

//function new (string name, uvm_component

uvm_low_power);

//endfunction : new - Construction

class low_power;

function string create_power_domain(input string

domain_name,input string states, input int index);

string power_domain[];

power_domain=new[index];

for(int i=0;i<index;i++)

begin

power_domain[i] = {"PD_",domain_name}; // domain

created here

return power_domain[i];

end

endfunction

function string create_supply_port (input string in_port, input

string type_of_signal);

if(type_of_signal=="power_high")

return {in_port,"_VDDH"}; ...

else if(type_of_signal=="power_low")

return {in_port,"_VDDL"};

else if(type_of_signal=="ground")

return {in_port,"_VSS"};

else

return "NULL";

endfunction

function string create_supply_net(input string in_signal, input string

type_of_signal);

if(type_of_signal=="power")

return {in_signal,"_Pwr"};

else if(type_of_signal=="ground")

return {in_signal,"_Gnd"};

else

return {in_signal,"_net"};

endfunction

function string connect_supply_net(input string in_port, input string

in_net);

return {in_port,"_",in_net};

endfunction

function bit isolation_cell(input in_signal);

isolation_cell = in_signal;

endfunction

function bit retention_cell(input in_signal,restore);

reg memory;

memory = in_signal;

if(restore == 1)

retention_cell = memory;

endfunction

function bit power_switch(input in_signal,switch_control);

if(switch_control == 1)

power_switch = in_signal;

else power_switch = 1'bx;

endfunction

endclass

endpackage

Sample code for Low Power Package Library

