
Leveraging hardware emulation to accelerate SoC
verification in multi-physics automotive

simulation environment via the Functional Mock-
up Interface

Pierre-Guillaume Le Guay, CEA, LIST
Henrique Vicente De Souza, CEA, LIST

Caaliph Andriamisaina, CEA, LIST
Emmanuel Molina Gonzalez, CEA, LIST

Tanguy Sassolas, CEA, LIST

© Accellera Systems Initiative 1

Agenda
• Context

• Integration of hardware emulation in automotive validation flow

• OpenModelica and ZeBu coupling

© Accellera Systems Initiative 2

Context (1/2)
• The growing complexity and functional demand of automotive HW/SW

requires extensive verification effort
– Verification effort increases to guarantee fault-free functionality to satisfy qualification

requirements
– Development cycles shorten and restrictive time-to-market obligations require

advancements for SW development and verification.
– To meet these needs, hardware emulation solutions have emerged as verification

solutions.

• The design of modern automotive SoCs requires also the use of multiple
simulation domain tools to validate the system in its future environment with
all its external interactions.
– It is now becoming necessary to build hybrid co-simulation models.

© Accellera Systems Initiative 3

Context (2/2)

© Accellera Systems Initiative 4

Functional Mock-up Interface

Sensors/Actuators
System-On-Chip

(decision making)Thermal System Vehicle, Cabin

Multiphysics modeling tools (Simulink, Modelica,
dSpace, …)

Emulator (ZeBu, …)

How to integrate hardware emulation like ZeBu in the automotive validation flow?

What is FMI?
• Open interface standard for model exchange between different modeling and simulation

environments
– A component implementing the FMI interface is known as Functional Mock-up Unit (FMU)

• The FMI standard supports
co-simulation model exchange

– Tool: a master which controls the data exchange between FMUs
• A FMU package consists of

– Model description file
• a XML file containing the definition of all exposed variables in the FMU and other static information

– FMU model implementation
• in form of source code and/or pre-compiled shared libraries.

– Additional files
• model icon (bitmap file), documentation files, maps and tables needed by the FMU, and/or all object libraries or dynamic link

libraries that are utilized.

© Accellera Systems Initiative 5

Tool
Solver

FMU
Model

Tool
FMU
Model

Solver

FMI execution steps

© Accellera Systems Initiative 6

Steps Functions Description

Instantiation fmi2Instantiate() FMU instance creation

Initialization mode fmi2EnterInitializationMode() • FMU notification to perform its internal model’s
initialization

• Possibility to set input variables with fmi2SetXXX and
to get output variables with fmi2GetXXX (XXX
corresponds to the variable type)

Runtime fmi2DoStep(fmi2Component c,
fmi2Real currentCommunicationPoint,
fmi2Real communicationStepSize,…)

• Slave initialization and co-simulation computation.
• The calculation is performed until the next

communication point
• fmi2DoStep function is called periodically

(communication step) by the master until the
simulation ends

Termination fmi2Terminate() Retrieving the simulation solution and terminate the
simulation

Commonly used emulation modes (1/2)
• In-circuit emulation (ICE)

– Pros
• Allow to directly connect physical devices to the

emulator
• Eliminate host PC communication

– Cons
• Rate adapter development can be complex

• Embedded testbench
– Pros

• Eliminate host PC communication

– Cons
• Testbench has to be synthesizable

© Accellera Systems Initiative 7

Source: Transaction-Based Verification And Emulation Combine For Multi-Megahertz Verification Performance

Commonly used emulation modes (2/2)
• Co-simulation

– Pros
• Easy to set up => use the existing testbench

– Cons
• Performance limited by the number of signals to

exchange between host and emulator

• Transaction-based verification (TBV)
– Pros

• Raises the level of verification abstraction
• Simplifies the communication between the

testbench and DUT
– Cons

• Need to develop protocol-specific transactors

© Accellera Systems Initiative 8

Source: Transaction-Based Verification And Emulation Combine For Multi-Megahertz Verification Performance

ZeBu transaction-based verification (TBV) execution
steps

© Accellera Systems Initiative 9

Steps Functions Description

Initialization open(location);
init();
getClock(“clock”);
connect();

• Mandatory operations
• Open and initialize the ZeBu board
• Get the clock driver

• Depending on the component used in the design,
configuration phases might be required

• AXI transactor configuration phase (setting the data
bit-width, the address bit-width) etc of the AXI
interface.

• Several operations, like memory load, signals dump
and so on, can be included in this step.

Runtime run(cycles);
speed = InVar;
OutVar = accel;

• Running the emulation for a defined amount of cycles.
• The current value of variables can be get or set during this

step.

Termination free(pt);
close();

Free pointers, …, close the ZeBu board

FMU to ZeBu adaptation: functions

© Accellera Systems Initiative 10

FMI functions ZeBu functions

Initialization
fmi2Instantiate(…)
fmi2EnterInitializationMode(…)

zebu = Board::open(workLocation);
zebu->init();
zebu->getClock(“top.clk”);
zebu->getDriver("top.dut_cosim");
driver->connect();
*reg_speed = zebu->getSignal("top.reg_speed");
*reg_accel = zebu->getSignal("top.reg_accel");
*reg_brake = zebu->getSignal("top.reg_brake");

Runtime fmi2DoStep(…,duration,…) driver->run(cycles);

Reading data
fmi2GetInteger(…)
fmi2GetReal(…)
…

OutVar[1] = *reg_accel;
OutVar[3] = *reg_brake;

Writing
data

fmi2SetInteger(…)
fmi2SetReal(…)
…

speed = InVar[2];
*reg_speed = speed;

Termination fmi2Terminate() zebu->close();

FMU to ZeBu adaptation: synchronization

© Accellera Systems Initiative 11

FMI master ZeBu FMU ZeBu DUT (SoC)

fmi2SetXXX
Store to input buffer Paused @t

driver->run(cycles);

Running

Paused @t + cycles

fmi2DoStep(duration)

fmi2GetXXX
Read from buffer

fmi2Ok

Perform read from DUT to update output buffer

Perform write to DUT

fmi2Instantiate
Open board, getClock, init, …

fmi2Terminate Free pointers, …, close board Stop

Automatic generation of ZeBu FMU
• Inputs

– zAxiTable.csv contains
• Name, address, direction (input or output), type, intial value,

description and dependency between variables
– FMI-compliant testbench

• Specialization of the FMI functions to implement the testbench
• Model generation script generates

– C++ file (zInitVariables.cc)
• Set the address and initialize the value of all variables

– XML file (modelDescription.xml)
• FMI description of available interfaces

• ZeBu FMU package
– zFmi.so – shared library
– modelDescription.xml – XML-based model description
– DUT backend folder – optional other resources

• FPGA bitstreams

© Accellera Systems Initiative 12

Automatic FMU generation flow

zInitVariables.cc

zAxiTable.
csv

FMI-compliant
testbench

g++Model generation
script

ZeBu FMU

modelDescription.xml zFmi.so DUT

zip

Model description example

EXPERIMENTS

© Accellera Systems Initiative 13

Overview
• Evaluation based on a multi-physics

environment
– a FMU vehicle model in OpenModelica
– a multi-core processor based on RISC-V

rocket core emulated on ZeBu (ZeBu
FMU)

• Data exchange and the
synchronization between the two
FMUs controlled by PyFMI master

• Experiment’s goal
– To control the vehicle speed of the

FMU vehicle with one rocket core

© Accellera Systems Initiative 14

OpenModelica Vehicle
STELLAR on ZeBu

Velocity
command

Acceleration
command

Braking
command

PyFMI

Scenario example

Vehicle model in OpenModelica

• Complexity of OpenModelica vehicle
– 150 non-trivial equations and variables
– Whole system consists of 10 main sub-systems

• Provides standard interface definitions for automotive subsystems and vehicle models.
• Designed to promote compatibility between the various automotive libraries and provide a flexible, powerful structure for vehicle

modelling.

© Accellera Systems Initiative 15

Adding inputs/outputs to
communicate

to external components

Initial model Modified model

STELLAR: Parallel Heteregenous and Low-power
Multicore Architecture

• A big.LITTLE like 64-bit heterogeneous multicore
– Small cores

• Rocket without FPU based
• 8ko L1 caches

– Big cores
• Triple issue BOOM based
• 32ko L1 caches

– L1 cache coherency (MESI)
– Instructions monitor (ROCC)

• Complete AMBA interconnection
– Generated by Synopsys Core Assembler
– AXI4 + AHB + APB network
– I2C, UART and timers peripherals

• Main features
– Smart monitoring

• Performance, ageing, power consumption, BB zones
– Heterogeneous management (FAMP and HW accelerators)
– Semi-automatic MPSoC generation

© Accellera Systems Initiative 16

Results

• Master simulation information: final simulation time = 240s and step size = 1s
– The co-simulation duration is 5s

• Thanks to ZeBu, the hardware-based control accelerates the co-simulation (up to 100x compared to RTL
simulation)

© Accellera Systems Initiative 17

Conclusion
• Integration of ZeBu Server-3 emulator platform into a multi-physics

automotive simulation environment through the use of FMI

• The proposed approach is based on creating a FMI to ZeBu adaptation
functions
– An automatic FMU generation flow is also proposed.

• Validation of the integration
– Co-simulation between OpenModelica (modeling a vehicle) and ZeBu (implementing a

RISC-V based multicore architecture) for vehicle speed control
– The hardware-based control accelerates the co-simulation (up to 100x compared to RTL

simulation)

© Accellera Systems Initiative 18

Thank you

Any questions?

© Accellera Systems Initiative 19

	Leveraging hardware emulation to accelerate SoC verification in multi-physics automotive simulation environment via the Functional Mock-up Interface
	Agenda
	Context (1/2)
	Context (2/2)
	What is FMI?
	FMI execution steps
	Commonly used emulation modes (1/2)
	Commonly used emulation modes (2/2)
	ZeBu transaction-based verification (TBV) execution steps
	FMU to ZeBu adaptation: functions
	FMU to ZeBu adaptation: synchronization
	Automatic generation of ZeBu FMU
	ExpEriments
	Overview
	Vehicle model in OpenModelica
	STELLAR: Parallel Heteregenous and Low-power Multicore Architecture
	Results
	Conclusion
	Thank you��Any questions?

