
© Accellera Systems Initiative

Introduction

RAL Implementation Steps

RAL Implementation Steps

Different Inbuilt Sequences in UVM
uvm_reg_bit_bash_seq:Step – 2:

Sougata Bhattacharjee, 

Senior Staff Engineer, Samsung Semiconductor (SSIR), Bangalore, India

Email: Sougata.b@samsung.com

Leveraging RAL and alternate automation (cocotb) 

techniques to improve Register Verification in UVM

[1] Universal Verification Methodology (UVM) 1.2 User’s Guide by Accellera

[2] How to connect SystemVerilog with Python by Amiq Consulting

[3] Cocotb: a Python-based digital logic verification framework by Benn Roser, University of Pennsylvania.

Cocotb Conclusion

1. The register access sequences present in the existing Testbench 

comprised of 453 lines of code, but with the implementation of Bit-

bash algorithm the coding lines have been reduced to 278. So, the 

significant 61% decrease in the coding length has been very helpful 

for increasing the quality and saving time of verification.

2. Implementing RAL-based functionalities related to the inbuilt 

sequences has notably increased the efficiency of the existing 

Testbench. The difference in result can be observed in reusability, 

reduction in 30% of the coding effort, and increase in around 40% of 

the functional completeness in Register verification as compared to 

the existing Testbenches.

3. To reduce the simulation time and to check the HDL path, Backdoor 

checks have been introduced in addition to Frontdoor algorithms.

4. Cocotb has further enhanced the process of register verification by 

implementing the register access sequences in python which makes it 

20% less verbose and further reduces the debugging effort. 

Cocotb is a co-routine co-simulation 

environment that enables to write codes 

in verification-like software and it does 

this by connecting the RTL codes 

implemented in any HDL code with the

REFERENCES

• Although RAL provides reusability but some of the sequences take time 

to complete, and this problem can be solved by further automation 

using Cocotb.

- Cocotb is a coroutine co-simulation testbench implemented in python 

with support for SV/UVM constructs by utilizing the inbuilt libraries of 

cocotb in python (pyuvm).

a] Thorough and rigorous 

verification - checks every 

field of the register like a 

stream of walking 0/1 

counter and hence can 

unearth critical bugs.

b] Ability to check whether

Step – 1:

Any register can be called by its name instead of the address from the 

sequence, and when it is triggered it maps the content of the register through 

the address map in the register model. The register model has all the 

information regarding the attributes and other access functionalities of the 

register through the register database.

• The utility of Register 

Abstraction Layer (RAL) is that 

the sequences and the code used 

can be reused even if there is a 

change in the DUT address map 

related to the physical registers 

which is not the case with the 

address-based verification

It then produces the reg_sequence_item and with the help of an adapter 

and converts it into a bus sequence item. An adapter is bidirectional in 

nature and has two functionalities in the name of bus2reg and reg2bus. 

Step – 3:

➢ The transaction then reaches the Agent interface through which it 

accesses the contents of the physical register from the DUT. The 

response then routes back with the help of the predictor path and then 

reaches the adapter to update the contents of the mirror value. The 

mirror value is sitting in the register model, contains the current state of 

the DUT register, and is updated by the predictor after each write and 

read cycle. It is important to note that the mirror value should not be 

out of date. This process described above can be termed as Frontdoor. 

➢ Alternatively, the register contents can be accessed directly with the 

help of HDL paths by setting up the add_hdl_path_slices in the reg 

model, and this type of access is known as Backdoor access.

any of the RTL signals are
stuck at 0 or 1. 

uvm_reg_hw_reset_seq:

This sequence checks the default value of the register specified in the register 

model. It resets the DUT and reads all the registers in the address map range 

and then compares it with the mirror value.

uvm_reg_shared_access_seq:
The register model has some specific group of registers which has an effect 

on other sub-blocks within the address map through which it can be accessed.

c] Automated and part of UVM RAL- saves a lot of coding efforts.

python testbench through cocotb which can be thought 

of as a VPI. In general, there are two ways to interact 

with cocotb in python. 

➢ The other way is to utilize the inbuilt libraries of 

cocotb supporting the UVM RAL construct and then

➢ The first is to build the interaction of SystemVerilog
with the C model, and 

then the C model will 

interact with python

with the help of Client-Server and Socket based 

connections. 

instantiate it with the python Testbench with the help of libraries 

called pyuvm. 


