Left shift catching of critical low power bugs with Formal Verification

Manish Kumar, Madan Kumar, Srobona Mitra, Madhusudhana Lebaka
Qualcomm India Pvt Ltd

Problem Statement/Introduction

- With increasing complexity of power-aware designs (100+ collapsible domains), it is challenging to validate all the power features within project timelines.
- PA simulation is delayed due to prerequisites - Passing RTL sims, and PA TB developed.
- Creating Power aware TB is resource and time consuming.
- PA testcases at SOCs take days to complete.
- Difficult for PA verification test suite to ensure completeness.
- Late verification in low power often leads to costlier ECOs.
- Need for methodologies that addresses current challenges in PA verification.

Proposed Methodology

- Enablement of Formal methodologies for low power verification.
- Verification of power aware checks using formal.
- Verification of custom checks for low power elements (isolations, retentions) using information model.

Advantages:

- Early interception: Formal flows for low power can be enabled as soon as RTL+UPF is available.
- Bugs caught even before PA TB is developed.
- Highly mature low power design available for PA sims.
- Reduction of costly ECOs.

Methodology evolution/Challenges

1. Collaboration with vendors to support UPF and liberty constructs.
2. Formal tools should adapt to continuously evolving UPF constructs.
3. Scalability is a challenge for bigger SOCs - optimizations done to restrict compute requirements to an acceptable limit.
4. Worked with vendors to model connectivity scenarios in low power.
5. Collaboration with vendors to define and validate information model support.
6. Formal COI complexity on bigger SOCs was addressed. Scope for more improvement.

Implementation Details

- RTL + UPFs processed by tools to generate Power design database.
- Automated SVA properties using information model query APIs.
- Power aware connectivity models for SoC integration scenarios.
- User friendly configuration and reporting formats.

Results Table

<table>
<thead>
<tr>
<th>Connectivity checks</th>
<th>Auto checks</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of properties(K)</td>
<td>Run time(Hrs)</td>
</tr>
<tr>
<td>1x</td>
<td>4x</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>40</td>
<td>80</td>
</tr>
<tr>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>60</td>
<td>120</td>
</tr>
<tr>
<td>70</td>
<td>140</td>
</tr>
<tr>
<td>80</td>
<td>160</td>
</tr>
<tr>
<td>90</td>
<td>180</td>
</tr>
<tr>
<td>100</td>
<td>200</td>
</tr>
</tbody>
</table>

Conclusion

- Formal validation of low power. Powerful information model checks.
- Early enablement – Reduction of ECOs.
- Improved UPF quality through exhaustive checks.
- Reduced effort in PA verification closure.
- Move towards formal low power signoff.

REFERENCES


© Accellera Systems Initiative