

Left Shift Mechanism to Mitigate Gate Level

Asynchronous Design Challenges
Rohit Kumar Sinha,

rohit.kumar.sinha@intel.com

Kavya Kotha,

 kavya.kotha@intel.com

Abstract-In the Intel’s IOTG(Internet of Things Group)SoC Design, it is often a challenge to signoff gate level Clock

Domain Crossing (CDC) or Reset Domain Crossing(RDC) verification because of the lack of IP/Subsystem hierarchal

collaterals, lack of clock-reset architectural understanding in back-end domain, waiver importing issues, strict schedule

pressure etc. However, with the advent of complex clock-reset architecture and due to the increase in reset signaling

complexity with the emergence of multiple reset domains, gate level clock and reset domain crossing verification becomes

an absolute need to ensure glitch free reset assertions during various power states. Therefore, there is a tangible need to

define a methodology to ensure all the CDC or RDC issues post low power cell insertions, scan insertion and synthesis

optimization are left-shifted in the Front-End CDC or RDC. This paper details about complex gate level CDC or RDC

challenges in the IOTG SoC design and proposed few simple techniques in the front-end verification to address issues

which are mainly related to implementation flows.

I. INTRODUCTION

The purpose of this paper is to describe the asynchronous design issues which are mainly related to design

implementation flows and address such issues with various front-end design verification techniques in the SoC

design. Below are some of the challenges leading to potential metastability issues that appear mainly the gate level

design.

• Synthesis changes such as optimization as sequential optimization, merging, duplication etc done with

respect to the RTL

• Clock-Reset paths changes during synthesis consist CTECHs(Component TECHnologies)

• Synthesis/PNR(Place and Route) introduces any new glitches in the async paths

• ECO(Engineering change order) changes leading to existing or broken CDC paths

• DFT(Design for Testability) Scan insertion changes during synthesis flows

• Introduction of isolation logic can impact clock and reset paths leading to glitches

• Isolation logic on a synchronized CDC path can result in combinational logic in the data path that should be

guarded against glitches.

• Enable path of the ICGs can create a new asynchronous path

• Introduction of isolation logic can create new CDC paths if the isolation enable signal is driven by an

asynchronous clock domain.

• Retention Save & Restore logic can have asynchronous signals driving save and restore, leading to

additional CDC paths.

II. TECHNIQUES TO ADDRESS GATE LEVEL ASYNC ISSUES

First of all, one needs to understand the motivation on why gate level async issues analysis needs to be performed and

what’s the additional quality enhancement Gate level CDC analysis brings to the table. When the power logic is not

instantiated in a design, the power intent is absent in the RTL and is extracted from the UPF file during synthesis. The late

implementation of the power intent information into the gate-level design may delay the start of power verification until after

the gate-level representation is available, and the power verification may create a critical path late in the design flow. Most

design teams are aware of possible design problems that can be introduced by the power control logic implementation. Clock

and CDC errors can occur when the power elements are incorrectly inserted in the clock tree, the reset tree, or the CDC paths.

These errors may result in incorrect functionality due to data loss or data corruption. In other cases, these errors may result in

intermittent errors that may not be reproduced in simulation and are extremely difficult to debug in silicon. These intermittent

errors may appear or disappear when the operating conditions, such as temperature, voltage, or frequency change.

mailto:rohit.kumar.sinha@intel.com
mailto:kavya.kotha@intel.com

A. Low power cell instrumentation leading to New or Broken CDC or RDC paths

Traditionally, following are the various design architectural techniques to handle low power instrumentation

related CDC/RDC issues

• Clock -Assertions Used to validate to both source & destination side are off while switching on the power-

This mechanism is a standard technique to ensure the safe asynchronous crossing by the means of design

architecture

• Synthesis- Launch and Capture clock for signals going through isolation cells.

As per the design review, we need to ensure the power control signal crossing one domain to another, and it is

signed off through manual reviews.

• At netlist level, need to ensure clock are gated during transition

• Verification - Review of default isolation value and value after reset deassertion need to validate between

Integration and Verification Team

• DFT – Scan review post scan-insertion flow

As per the standard design paranoia review, all the scan paths are reviewed post scan insertion and potential

metastability issues are checked accordingly.

Power aware designs specify power intent through UPF and rely on synthesis to correctly insert the power elements in

design. All power elements are available in the netlist at the gate level and allows to perform CDC verification. However,

CDC verification can be considered overdue at the gate level stage because there might be new CDC paths introduced in the

design, which may lead to multiple iterations to fix the RTL/UPF. The time it takes to fix the RTL and run the verification

again can impact the design schedules. Thus, it is highly recommended to verify power aware CDC at RTL level.

Proposed Flow:

As per the new proposed flow, we need to ensure that post Front end CDC and structural Low power signoff, UPF

aware CDC is enabled, and all the violations post low power cell instrumentation is reviewed and signed off.

Figure 1. proposed flow to handle low power Instrumentation

B. Glitches Created by Synthesis Optimization

1) Insertion of Clock Gating Logic

 Issue related to clock-gating insertions can only be detected at the netlist level CDC verification but it is mainly

ensured using the design architecture that asynchronous path from clock enable circuitry is not prone to

metastability threats

Figure 2 . Clock gating logic Insertion

2) Retiming during synthesis/APR

 Issue related to retiming can only be analyzed at the gate-level, however retiming is only done for the synchronous

paths and movement of logic across asynchronous paths are not done during the retiming process.

Figure 3. Before and after Retiming

3) Synthesis Optimization of muxes in the async path

Such method is used to identify potential glitches source in the async paths and providing the utility to RTL

designer to follow design practices which will prevent the mux decomposition which could potentially lead to glitches

at the gate level netlist.

Figure 4. propagation of glitch through CDC path

Vendor tool first reports all the muxes present in the synchronized crossings using these two schemes

a. Recirculation MUX Synchronization Scheme
 This scheme marks those clock crossings as synchronized where the first flip-flop in the destination clock domain

is driven by a MUX. The clock domain crossing happens through one of the MUX input pins and the other MUX

input pin is driven by the destination flip-flop output.

Figure 5 Recirculation MUX Synchronization Scheme

b. MUX-Select Sync (Without Recirculation) Synchronization Scheme

This scheme is the same as the Recirculation MUX Synchronization Scheme except for the MUX need not be a

recirculation MUX.

Figure 6. MUX-Select Synchronization Scheme

https://spdocs.synopsys.com/dow_retrieve/R-2020.12/vg/spyglass/spyglass_olh/clock-reset/Recirculation_MUX_Synchronization_Scheme.htm#ww1421846

• Add //infer_mux_override in the RTL of the MUX that were reported by above two schemes

Figure 7. pragma to identify muxes in CDC paths

EDA tools will check mux_inferencing RTL code to determine if an pragma //infer_mux_override exists via

Ac_cross_analysis rule

• CDC tool will check the mux-inferencing RTL code to determine if an //infer_mux_override pragma exists

and if it is the correct place via the Ac_cross_analysis rule

• Seeing this pragma synthesizable tool can in distinguish the CDC muxes

• If designers do not correctly specify “infer_mux_override” on MUXes on CDC paths, DC may infer glitch

MUX structure

C. Glitch in Reset Paths

Glitches in the reset paths are mainly introduce due to incorrect modelling in the RTL as shown in Fig8.

Sometimes synthesis tool instantiates regular mux instead of the glitch-free mux resulting in the unexpected glitches

in the reset path.

 Figure 8. Glitches in Reset paths

D. Design Practices

Following are some of the design practices which are adopted to ensure that metastability issues are not

specifically introduced after synthesis and APR stage and front-end CDC analysis covers all the asynchronous

design challenges.

• Avoiding complex synthesis change done with respect to the RTL. This is the standard step that we should

not be enabling any complex synthesis optimization to

• Clock-Reset paths only consist of CTECHs

• Synthesis/PNR doesn’t introduce any new glitches

• Ensuring ECO changes don’t introduce any new glitches

• DFT Full-Chip GLS is done with Test_Enable

• Val Full-Chip Power Aware GLS with zero-delay, SDF-max, SDF min

III. RESULTS

The techniques mentioned in Section II were first implemented in ARM-based SoC design and it is currently in

the POR stage. In the hierarchical SoC design, the flow was integrated at p05 milestone itself and all the CDC/RDC

related issues that are introduced during the implementation flows are analyzed in the front-end asynchronous

analysis using techniques such as power aware CDC, glitch analysis, following standardized design practices or

extensive design reviews.

Figure 9 shows the example of a broken clock issue found in the design. A clock was originally gated with latch- based

clock gating. When the clock was crossing the power domain, an isolation control signal was added. Due to the isolation

control signal, an additional gating signal was created in the clock path when it reaches to the second power domain, and

became prone to glitch.

Figure 9. Broken clock path due to isolation control signal

Figure 10 captures an example of new CDC path creation due to the presence of isolation control signal. Here, when the

signal was crossing the power domain, an isolation MUX was added to the path. Due to this addition, UPF inserts an isolation

MUX that is driven from an asynchronous clock domain. The additional path between asynchronous clock domains is

unexpected in the design and can cause meta-stability on the receiver side.

Figure 10. New CDC crossing created due to isolation control signal

Figure 11 shows an example of a broken CDC synchronizer due to the presence of power logic in the CDC path. A 2-DFF

synchronizer was introduced in the CDC path between known asynchronous clocks. UPF inserted an isolation MUX between

Tx and Rx to the isolation signal crossing power domain. UPF also inserted an unexpected isolation MUX that created a

combinational logic which was driven from multiple clock domains. Such combinational logics are undesirable on the CDC

paths. Designers must update the UPF to ensure extra isolation from asynchronous clock domain is not inserted in the CDC

path.

Figure 11. Two-DFF CDC synchronizer broken due to additional combinational logic in the TX-Rx path

In the Fig12, violation results of IOTG subsystem has been mentioned and as per the data, these are the additional UPF

aware CDC analysis that have been to be done before CDC signoff is done at the front-end domain

Number of

UPF

instrumented

Sync CDC issues

missing

synchronizer

Sync CDC issues with

partial

synchronization

Setup Clock

Glitch

SYNCCDC_DDA

TAPATH_FULL

243 95 76 72 17

IV. SUMMARY

 In this paper, we presented several gate level CDC/RDC verification challenges, and a proposed various solution

to address the problems. We have also demonstrated the solution through verifying one of our SoC design, and

presented the issues discovered. We showed that many of these issues are hard to catch bugs at the front-end domain

that cannot be caught easily with simulation or traditional verification techniques. Left shifting gate level challenges

and ensuring all aspects of gate level CDC/RDC verification is covered, requires a full suite of methods involving

enabling various flows, design practices, RTL change etc. Also, techniques such as power aware CDC or glitch

detection at the RTL stage can be scalable to IPs, Subsystems, or all flavor of SoCs.

REFERENCES
[1] Chris Kwok, Priya Viswanathan, Ping Yeung, “Addressing the Challenges of Reset Verification in SoC Designs”, DVCon USA 2015

[2] Questa ResetCheck, HYPERLINK "https://www.mentor.com/products/fv/questa-reset-check"
https://www.mentor.com/products/fv/questa-reset-check

