

Leaping Left: Seamless IP to SoC Hand-off

Swetha Thiagarajan, Rashika Madan, Hiran Morar, Sangeivi Sivagnanasundaram
Intel Corporation

1900 Prairie City Rd

Folsom, CA 95630

Abstract- IP packaging and qualification are an integral part of IP integration into SoC. Higher turn-around

times (TAT) to integrate Graphics IPs into SoC has been a constant challenge in the past. Inefficiencies in package

generation, undocumented hacks/workarounds and lack of automation are few of the causes resulting in low quality IP

drops. In addition, there weren’t any efficient methodologies to check IP design quality against Industry and SoC

standards. This required substantial manual effort to generate IP package and thorough testing at IPs before making an

SoC delivery.  In this paper, we introduce a novel Tools, Flows and Methodology (TFM) agnostic approach

to automated IP packaging along with a sophisticated Quality Assurance (QA) as well as a Quality Checker

(QC) infrastructure aiming to shift-left identification of integration bugs using a Continuous Integration (CI) system. The

methodology is based on robust and improved methods which can generate fully qualified drops to help reduce SoC

Integration TAT from 2-3 weeks to less than 3 days per milestone drop as shown in Figure 1. Within a Product Life Cycle

(PLC), there has been around one quarter savings and 50% reduction in resourcing through these efforts.

I. INTRODUCTION

With each IP maintaining a local copy of packaging tool in their environment to maximize customizations,

early packaging solutions lacked any form of standardization. Our initial solution was a diversified utility that

completely transformed an IP model to SoC-based model. While this provided extensive customization hooks, there

was a lack of centralization and heavy ties to TFM/environment.  This led to noticeable shortcomings which

included the need for IP and SoC’s build systems to be aligned as well as requiring the tools versions between both

to be converged. This apparent lack of portability eventually resulted in multiple integration bugs and hot fixes. Next

came export_to_soc, which addressed some of these limitations. With the improved package structure, fewer issues

were seen at Discrete and Integrated SoCs, resulting in better integration TAT. IPs didn’t need to maintain

individual copies of the flow anymore because of better centralization. However, tool customization across Soft-IPs

and Hard-IPs became expensive. Different approaches to CTECHs, Memories, DFT and Validation collateral

delivery are some of the areas where IP’s customizations come into picture. This solution also assumed SoC to be

using certain TFM which rendered unfeasible when SoC moved to a different TFM in the most recent project.

Additionally, the lack of a good quality assurance tool led to several front-end integration issues to go unnoticed and

being caught only at SoC. While SoC did have a quality assurance tool which can be used to run several static

checks on the generated package by parsing through log files, we weren’t able to efficiently utilize it due to IP

versus SoC environment dissimilarities and non-applicability of several checks to our Graphics IPs.

Ver1 Ver2 Ver3 Ver4 Ver5

Old PLC

New PLC

Ver1 Ver2 Ver3

Time Saved

IP Packaging + SoC
Integration

Figure 1. PLC and its dependency on IP to SoC Hand-off

A successful IP delivery is measured by the ease of integration into a SoC along with the Time to Market (TTM).

Enter: Export_IP, our TFM-agnostic IP packaging tool that aims to achieve the perfect balance between

customization and standardization, without compromising quality. The overall framework is consistent across all

Graphics IPs with customization hooks/switches available to help meet unique SoC delivery requirements. 

Export_IP is environment agnostic, works seamlessly on 2-step and 3-step compile methods, and can be used to

deliver to any SoC, irrespective of SoC TFM. We understand that speedy delivery of IP comes with its own

limitations. To ensure that the milestone drops meet quality prior to hand-off and is LRM compliant [1], QA is

added to ensure that the package is self-contained and compiles standalone on a clean RTL-only and RTL+Val

filelist. This qualified IP package then undergoes rigorous checking mechanism through an automated QC tool,

Orion, developed internally to support standardized dynamic testing so that it fully meets the IPSOC hand-off exit

criteria. Orion architecture and implementation are further discussed in Sections II and III.

II. ARCHITECTURE

A. Export_IP

While architecting Export_IP, our goal was to develop a robust IP packaging and qualification framework that is

TFM-agnostic. This helped in ensuring we don’t have to start over each time SoC changed TFMs, as we had to in

the past. We also combined the strengths of all our previous solutions, while addressing their shortcomings. As

illustrated in Figure 2, Export_IP was developed into three primary stages: create IP data, generate the package, and

run standalone QA. To create the IP data, Export_IP leverages built-in APIs from the IP’s native build system. This

enables us to build the same filelists across IP internal validation + SoC handoff [1]. The second stage takes the data

dump, converts them into industry standard filelists that can be plugged in to any downstream compiler. IPs can

customize how the collateral gets packaged, depending on SoC requirements. We have also introduced switches to

create flattened versions of the package, which can be used for Structural Design (SD) handoff. This allows

consistency across all downstream consumers of the package – simulation, emulation, SoC and SD – resulting in

fewer bug escapes.

MODEL

IP Package
Qualified Package

(for SoC)

Flattened IP
Package
(for SD)

Export_IP

QA

Figure 2. Export_IP Architecture

The final, and perhaps most instrumental stage is having a robust QA system around the generated package. In the

past, often issues were only caught at SoC integration, and the turnaround time to get them fixed was several weeks.

As a part of Export_IP, we aimed to qualify every filelist that we provided and shifting left identifying integration

bugs. VCS, Questa and Spyglass standalone were run, to ensure basic synthesizability of the RTL filelist. VCS sim

on the RTL + Val file-list was also implemented to ensure all validation collateral delivered was self-contained.

Finally, the resulting package is passed through our automated handoff QC tool, Orion, which guarantees all

additional collateral required by SoC (waivers files, configuration files, lots) [1] were present and met the committed

PLC milestone requirements as shown in Figure 3. IPs also had the flexibility to easily configure the checks per the

same PLC milestone requirements. QC resolves both configurability and environment issues that were faced in the

past.

IP Package
(filelist)

Configuration
Files

Manual Checklist

Orion QC

Final Report

Figure 3. Orion Architecture

III. IMPLEMENTATION

A. Packaging

The IP package directory structure is defined by the IP via configuration inputs and is created at the beginning of

the flow. Export_IP then uses native build tool APIs to generate a metadata file (libs_data.yaml) which contains all

the IP data required to build the package. This data includes source files, Verilog include/lib directories, compile-

time options, validation collateral, etc. The APIs used to build this data are the same ones that are used during IP

internal model builds, to ensure consistency across IP validation + IP to SOC handoff. Through customization hooks

(i.e., callbacks), IPs can define how to transform the metadata into a pre-defined IP package structure. Here, they

can also choose to filter certain collateral such as internal BFMs and testbench/coverage files not intended for SoC

consumption and/or add additional collateral such as register configurations, checker/trackers, connectivity

information and DFT collateral that are needed for SoC validation. The metadata is then translated into industry

standard filelists - typically one for RTL (rtl.f) and one for Val (val.f). Figure 4 demonstrates sample directory

structure for one of the IPs where tool is customized to add VCLP, upf and spyglass CDC collateral while still

maintaining standardized filelists, verilog files and include directories. Since Structural design (SD) TFMs require

IP drops to come in a single, flattened directory, we also introduced a method in Export_IP to generate the same

content in flat area to help streamline IP2SOC + IP2SD handoffs.

Figure 4. Packaged IP using export_ip

To help ensure correctness of the generated package/filelists, Export_IP comes with a light built-in qualification

flow which is maintained through a combination of central and IP specific Makefiles. While central makefile is

responsible for overall QA environment and supporting new checks, IP makefile maintains commands specific to

IPs to launch these checks. This scalable QA setup allows IPs to effortlessly enable/disable QA tests based on IP

readiness and commitment to SoC. Currently, Spyglass DesignRead compilation on the RTL filelist to ensure basic

synthesizability and multi-vendor standalone simulation on RTL, RTL+Val filelists to ensure strong LRM

compliance [1] are supported. A code snippet provided in Figure 5 depicts how an export_ip QA callback relies on

both central and IP makefiles and utilized switches to direct run areas and disable tests.

Figure 5. Code Snippet – Export_IP callback to invoke QA using makefiles

Code snippet in Figure 6 walks us through 3 step VCS compilation to ensure the package is able to compile

standalone. Since these commands are IP specific, they are maintained in local makefiles and owned by IP.

Figure 6. Code Snippet – 3 Step VCS to qualify IP Package

B. Qualification

Orion has a top-level wrapper that helps IPs toggle the following underlying scripts as shown in Figure 7:

1. Kick off additional checks which are not a part of IP gatekeeper but are required by SoC.

2. File existences check to ensure all files required by SoC (including metadata) are present inclusively. Table

I captures the checks and offered by Orion and their intent.  

3. Verify the final report of each underlying check to ensure there are no un-waived violations or fatal errors.

Each component is written as a module subroutine that can be extended by IP team.

4. Collate all the various logs/reports in the package to create a final aggregated report.

5. Automated email generator to send out release notes and QC results to the IP Integration team.

Orion Wrapper

Execution

Reporting

Summarizing

File Checker

Orion QC

Figure 7. Orion Implementation

TABLE I

ORION QUALITY CHECKER CATEGORIES

Category Intent

Front-End Basic VCS elaboration checks,

illegal cells, macro definition, illegal

macro usage in the RTL.

Back-End No latches SoC interface,

no undriven pins, CTECH compliance.

SIP compliance Usage of global macros or vendor-

specific macros, LRM compliance.

Emulation Ensure design is multi-platform

compliant (Zebu, Veloce, etc.)

File existence Ensure any additional/meta files are

present in the package.

Manual/custom Additional custom checks an IP can add

based on their unique requirements.

 Orion wrapper is a simple script that calls other scripts and functions to generate the data and report the quality

of the design as shown in Figure 8. Then the summarizing script will generate the csv file for the final report as

shown in Figure 9.

Figure 8. Code Snippet - Wrapper Function Call

Figure 9. Code Snippet - Summarizer CSV Generation

C. Challenges

Deployment of Export_IP and Orion QA came with its fair share of challenges. We categorized them in three

main categories:

1) Compute efficiency: Due to the large size of Graphics IPs e.g. 150,000+ files in Graphics Processing Unit

(GPU), scalability of the Export_IP flow was crucial. Multiple features have been implemented to enhance

the flow’s compute efficiency. We added a --use-tmp feature to build and validate the package on tmp disk

to limit file I/O on NFS and avoid thrashing. Improvements are tabulated in Table II.

TABLE II

IP PACKAGING TAT IMPROVEMENT WITH TMP DIRECTORY USAGE AND PARALLELIZING QA

IP Previous Program Latest Program % Improvement

Display 58 min 24 min 59%

Media 164 min 117 min 29%

GPU 363 min 280 min 22%

2) VCS Elaboration dependency: To keep package generation time as minimal as possible, a --dryrun feature

was implemented to smartly build the necessary dependencies while skipping actual VCS compiles when

not applicable. Parallelizing various independent QA checks also helped in substantially reducing

packaging TAT. Table III summarizes the TAT improvements observed by eliminating unnecessary

compile dependencies whereas Table IV gives overall percentage improvements resulted by consolidating

the beforementioned enhancements. It is noteworthy that runtime improvements were limited in GPU IP

since elaboration dependency remains for VCS QA to have an updated header file. Decoupling the

dependency of the checklist for Orion was also a challenge and this restricted the QC tool to be completely

parallelized.

TABLE III
IP PACKAGING TAT IMPROVEMENT WITH --DRYRUN USAGE

IP Previous Program Latest Program % Improvement

Display 86 min 29 min 66%

Media 104 min 60 min 42%

3) Lack of clean RTL and VAL separation: Another major challenge faced, was the lack of a clear separation

between RTL and VAL collateral at IPs. This prevented us from enabling full spectrum of QA checks (such

as Spyglass Designread) in the beginning of the deployment.

TABLE IV
IP PACKAGING TAT IMPROVEMENT WITH CONSOLIDATED EXPORT_IP ENHANCEMENTS

IP Previous Program Latest Program % Improvement

Display 137 min 53 min 61%

Media 268 min 104 min 61%

GPU 490 min 407 min 17%

4) Streamlining features across IPs: Having an extensible and configurable architecture gives IPs the

flexibility they need, but it doesn’t come without cost. One of the resulting challenges is ensuring key

features are deployed across all IPs, which becomes difficult if each IP maintains their own custom

logic/hooks. Changes made in one IP’s hooks won’t automatically propagate to other IPs, and these gaps

are often times only noticed during manual reviews. In an effort to alleviate this overhead, we identified all

the active features which are common across IPs and consolidated them into a central area where IPs

simply can import them. By default, all IPs get all features, but knobs were added around each key

feature in case it needs to be disabled in any particular IP. In the end, common features would get

streamlined and IPs should be left maintaining only the features which are truly custom/unique to their IP.

IV. RESULTS

Due to its robust and configurable architecture, Export_IP was seamlessly adopted by all Intel Graphics

IPs, regardless of what compilation strategy the IP was using and what TFM their SoCs were on. Export_IP has been

largely perceived within Graphics as a “one size fits all” IP packaging solution. The entire solution took our team 3.5

man-months to develop, test & deploy - 1.5 months to develop the Export_IP framework, 1 month to develop Orion

QC, and 1 month of exhaustive testing and integrating the solution into the Display IP.

For the Display IP, we saw 80% faster TPT, 50% headcount reduction from integration team, and 90%

fewer SoC integration bugs just from the first three SoC drops post-enablement. For reference, two projects prior,

Display delivered more than 30 drops (including hot fixes). In the most recent project with Export_IP enabled, this

reduced to only 6 milestone drops understating the high quality and ease of integration to SoC. In

addition to the higher quality drops, Display was able to use the same infrastructure to deliver to different SoCs with

varying requirements. In prior programs, SoC integrations of the Display IP would typically take 2-3 weeks. With

Export_IP and Orion QC, this was reduced to just 3 days - 1 day to build + deliver the package, and 2 days to

successfully integrate at SoC. This also allowed the Graphics IP to auto-integrate into their SoC Die through a

Continuous Integration framework. Tables V and VI provide a comparison in IP Packaging TAT and Front-End SoC

Integration TAT between previous program and Export-IP implementation for GPU, Media and Display IPs.

With Orion, QC was completed in ~3 hours as opposed to 1 week in prior programs. The number

of unnecessary revisions due to poor quality drops was reduced to nearly zero, and the integration bugs filed by SoC

was under 5 throughout the entire program. This extensible framework was seamlessly adopted by additional IPs for

the next generation programs.

TABLE V

IP PACKAGING TAT PRIOR TO SOC HAND-OFF

IP Previous Program Latest

Program (with Export_IP)

Display 3-4 Days 1-2 hours

Media 1 week 1-2 hours

GPU 1 week 2-3 hours

TABLE VI

FRONT-END SOC INTEGRATION TAT

IP Previous Program Latest

Program (with Export_IP)

Display 2-3 weeks 1-2 Days

Media 3-4 weeks 1-2 Days

GPU 3-4 weeks 2 Days

Furthermore, adaptation of Export_IP QA framework by other teams outside Intel Graphics helped in improving the

quality of their IP drops by eliminating any issues such as incorrect filelists.

V. SUMMARY

Export_IP and Orion QC have both delivered results immediately upon deployment. From an IP delivery

perspective, both Front-end Integration TAT as well as integration bugs significantly decreased. This results in a

major left-shift as it lessens the burden on IP/SoC integration and allows IPs to own the responsibility for delivering

quality milestone drops. This approach resolved past issues on TFM dependencies, environment, and

configurability, The QA approach has even been utilized across other IPs outside Graphics. For future projects, we

have a road map identified to enhance the features to continuously surpass established industry standards. This

includes a reference test bench delivery for boot sequences, addition of a Mock SoC to ensure the transformed IP

package is comprehensive and meets PLC standards. For Orion QC, support for an online reporting dashboard and

indicators are being implemented. Advanced configurability is also being added to allow scaling across IPs. As we

work through the challenges of the IPs complexity, improving the performance to reduce TAT and identifying areas

for convergence across IPs continue to have a strong hold on our roadmap.

ACKNOWLEDGMENT

To Nikhil Krishna Gopalakrishna, for driving an Intel-wide initiative to streamline IP to SoC handoff requirements

and methodologies, and for providing valuable feedback as we architected the “Export_IP” solution.

To Siva Reddybathula, who wrote the first implementation of “Export_IP”, the first TFM-agnostic IP to SoC

handoff tool in the Graphics RTL environment.

To several members of the Graphics Front-End TFM team, in particular Aditi Nigam, Narasimhan Iyengar, Akshat

Saxena and Angela Hantelmann, who helped define and implement many of the underlying SIP compliance and QA

checks.

REFERENCES
[1] IEEE Standard for SystemVerilog--Unified Hardware Design, Specification, and Verification Language," in IEEE Std 1800-2017 (Revision

of IEEE Std 1800-2012), 22 Feb. 2018

