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Daily interaction with LLMs

● Access to almost any solution from the Internet within seconds.
● How often have you argued with an LLM?

2



Raise of Agentic Systems
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Deconstruction of Agentic Systems
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Deconstruction of Agentic Systems
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AI driven Chip Design

● Used in random stimuli generation, floor planning, and debug.
● Lacking a large quantity of good quality data to train LLMs.
● Application of agentic systems is still under the research.

6



AI driven Chip Design

DvCon USA 2025: Configurable 
Graph-Based Task Solving with the Marco 
Multi-AI Agent Framework for Chip Design
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AI driven Chip Design

NVIDIA: Configurable 
Graph-Based Task Solving with 
the Marco Multi-AI Agent 
Framework for Chip Design

DvCon USA 2025: Configurable 
Graph-Based Task Solving with the Marco 
Multi-AI Agent Framework for Chip Design

DeepMind: AlphaEvolve: 
A Gemini-powered coding
agent for designing advanced 
algorithms
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LLMs and Functional Verification

● Topic still in the research.
● EDA vendors proposing new agentic systems.
● Initial experiments shown that LLMs struggle with UVM testbenches.
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Decomposition of Functional Verification
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Decomposition of Functional Verification
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Decomposition of Functional Verification
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Why Functional Coverage?

● Engineers are a bit sceptical towards LLMs.
● Coverage is a non-critical part of the testbench.
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Functional Coverage illustration
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Functional Coverage illustration
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Functional Coverage and LLMs

● Initial attempts generated code in SystemVerilog.
● Smaller LLMs struggled to generate syntactically correct code.
● How then evaluate LLMs knowledge about functional coverage?
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Our Functional Coverage implementation

● Python is better understood by LLMs than SystemVerilog.
● Problem: no native support in CoCoTB.
● Available 3rd party package mimicking SystemVerilog.
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Functional Coverage API

27



Functional Coverage API

28



Functional Coverage API

29



Functional Coverage API

30



Functional Coverage API

31



Functional Coverage API
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What was tested?

● Top 3 most popular open weight models from Ollama:
○ Deepseek-r1
○ Gemma 3
○ Qwen3

● Various model sizes up to 14 billion parameters.
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How it was tested?

● Initial experiments used natural language specification as an input.
(Not successful)

● Shift to natural language verification requirements. (way to go)
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How it was tested?

● Initial experiments used natural language specification as an input.
(Not successful)

● Shift to natural language verification requirements. (way to go)

● A verification expert provided:
○ 16 verification requirements based on original specification (ALU).
○ Desired functional coverage code.

● Each model with distinct size had 5 attempts that were aggregated.
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Generation of Functional Coverage
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Generation of Functional Coverage
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Comparison of Functional Coverage
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Results
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Results

2.5GB VRAM
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Results

Generated too 
many bins
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Results

Cross coverage
was too large
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What now?

● Future plans:
○ Enhance our open source dataset with more samples.
○ Evaluate generation of the SystemVerilog functional coverage.
○ Pre-train and finetune LLMs on synthetic data.

● Looking for a PhD research stay - let’s discuss!
● Try the code from github.com/Northeus/coge
● Contact: jan.labuda@mail.muni.cz
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http://github.com/Northeus/coge
https://is.muni.cz/auth/mail/mail_posli?to=jan.labuda%40mail.muni.cz

