
LLM-based Functional Coverage 
Generation and Auto-Evaluation 

Framework
Ján Labuda, Marcela Zachariášová, Zdeněk Matěj

1



Daily interaction with LLMs

● Access to almost any solution from the Internet within seconds.
● How often have you argued with an LLM?

2



Raise of Agentic Systems

3



Deconstruction of Agentic Systems

4



Deconstruction of Agentic Systems

5



AI driven Chip Design

● Used in random stimuli generation, floor planning, and debug.
● Lacking a large quantity of good quality data to train LLMs.
● Application of agentic systems is still under the research.

6



AI driven Chip Design

DvCon USA 2025: Configurable 
Graph-Based Task Solving with the Marco 
Multi-AI Agent Framework for Chip Design

7



AI driven Chip Design

NVIDIA: Configurable 
Graph-Based Task Solving with 
the Marco Multi-AI Agent 
Framework for Chip Design

DvCon USA 2025: Configurable 
Graph-Based Task Solving with the Marco 
Multi-AI Agent Framework for Chip Design

8



AI driven Chip Design

NVIDIA: Configurable 
Graph-Based Task Solving with 
the Marco Multi-AI Agent 
Framework for Chip Design

DvCon USA 2025: Configurable 
Graph-Based Task Solving with the Marco 
Multi-AI Agent Framework for Chip Design

DeepMind: AlphaEvolve: 
A Gemini-powered coding
agent for designing advanced 
algorithms

9



LLMs and Functional Verification

● Topic still in the research.
● EDA vendors proposing new agentic systems.
● Initial experiments shown that LLMs struggle with UVM testbenches.

10



LLMs and Functional Verification

● Topic still in the research.
● EDA vendors proposing new agentic systems.
● Initial experiments shown that LLMs struggle with UVM testbenches.

11



LLMs and Functional Verification

● Topic still in the research.
● EDA vendors proposing new agentic systems.
● Initial experiments shown that LLMs struggle with UVM testbenches.

12



LLMs and Functional Verification

● Topic still in the research.
● EDA vendors proposing new agentic systems.
● Initial experiments shown that LLMs struggle with UVM testbenches.

13



LLMs and Functional Verification

● Topic still in the research.
● EDA vendors proposing new agentic systems.
● Initial experiments shown that LLMs struggle with UVM testbenches.

14



LLMs and Functional Verification

● Topic still in the research.
● EDA vendors proposing new agentic systems.
● Initial experiments shown that LLMs struggle with UVM testbenches.

15



Decomposition of Functional Verification

16



Decomposition of Functional Verification

17



Decomposition of Functional Verification

18



Why Functional Coverage?

● Engineers are a bit sceptical towards LLMs.
● Coverage is a non-critical part of the testbench.

19



Functional Coverage illustration

20



Functional Coverage illustration

21



Functional Coverage illustration

22



Functional Coverage illustration

23



Functional Coverage illustration

24



Functional Coverage and LLMs

● Initial attempts generated code in SystemVerilog.
● Smaller LLMs struggled to generate syntactically correct code.
● How then evaluate LLMs knowledge about functional coverage?

25



Our Functional Coverage implementation

● Python is better understood by LLMs than SystemVerilog.
● Problem: no native support in CoCoTB.
● Available 3rd party package mimicking SystemVerilog.

26



Functional Coverage API

27



Functional Coverage API

28



Functional Coverage API

29



Functional Coverage API

30



Functional Coverage API

31



Functional Coverage API

32



What was tested?

● Top 3 most popular open weight models from Ollama:
○ Deepseek-r1
○ Gemma 3
○ Qwen3

● Various model sizes up to 14 billion parameters.

33



How it was tested?

● Initial experiments used natural language specification as an input.
(Not successful)

● Shift to natural language verification requirements. (way to go)

34



How it was tested?

● Initial experiments used natural language specification as an input.
(Not successful)

● Shift to natural language verification requirements. (way to go)

● A verification expert provided:
○ 16 verification requirements based on original specification (ALU).
○ Desired functional coverage code.

● Each model with distinct size had 5 attempts that were aggregated.

35



Generation of Functional Coverage

36



Generation of Functional Coverage

37



Generation of Functional Coverage

38



Generation of Functional Coverage

39



Generation of Functional Coverage

40



Comparison of Functional Coverage

41



Results

42



Results

43



Results

2.5GB VRAM

44



Results

45



Results

46



Results

47



Results

48



Results

Generated too 
many bins

49



Results

Cross coverage
was too large

50



What now?

● Future plans:
○ Enhance our open source dataset with more samples.
○ Evaluate generation of the SystemVerilog functional coverage.
○ Pre-train and finetune LLMs on synthetic data.

● Looking for a PhD research stay - let’s discuss!
● Try the code from github.com/Northeus/coge
● Contact: jan.labuda@mail.muni.cz

51

http://github.com/Northeus/coge
https://is.muni.cz/auth/mail/mail_posli?to=jan.labuda%40mail.muni.cz

