
Pervasive and Sustainable AI with 

Adaptive Computing Architectures



AMD Research and Advanced Development (RAD)

• Integrated Comms and AI Lab 
• ~20 researchers plus university program

• 5 different locations

• Established as Xilinx Research Labs 18 years ago

• Focus: AI and Communications
• Building systems, architectural exploration, algorithmic 

optimizations, benchmarking

• In collaboration with partners, customers, and 
universities
• ETH Zuerich, Paderborn University, Imperial College, KIT, NTNU, 

Politecnico di Milano, NUS, University of Sydney
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Active Internship Program

• On average 10 interns at any given time

• From top universities all over the world

• Overall

• 100+ interns since 2007

• Many collaborations have come from this

• Many found employment

Page 3>> 3



CONTEXT
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DNNs and Their Potential

https://youtu.be/XiQkeWOFwmk?t=6

Tesla AI bot

Solves previously unsolved problems
• Code, text and image generation, and GPT-4 even passed 

the bar exam in the 90th percentile
• Protein folding

Increasing adoption in many different applications

Huge potential
• Requires little domain expertise
• NNs are a “universal approximation function”
• If you make it big enough and train it long enough

• Can outperform humans and existing algorithms on 
specific tasks
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Pervasive AI

Adapted from TED Talk: Andrew Ng “How AI could empower any business”

ChatGPT
Web Search

Recommenders

Communications, medical, aerospace, IoT, sensor intelligence

6

Broad spectrum of applications



Pervasive AI Comes with Diverse Requirements

Performance
(throughput, latency, jitter)

Power

Cost
Real estate

AccuracyIO
Requirements

Temperature
Ranges

Functional 
Safety …
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Examples of Diverse Requirements

• IoT/Embedded

• Small resource footprint, low power (<10W), low latency (msec) and zero jitter 

• High-Frequency Trading

• High-frequency trading (HFT) is an arms race of acquiring data and executing trading decisions fastest 

• Multimillion-dollar advantages through nanosecond differences

• Extreme low latency requirements (nsec) as DNNs are being adopted for better trading decisions

• High-Energy Particle Physics

• CERN CMS Experiment needs nsec latency for setting recording trigger

• Incoming data needs to be processed at 7 Tbps

• Extreme latency requirements (nsec)
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Examples of Diverse Requirements - Communications

• Extreme throughput (100s Minferences/sec)

• Line-rate processing for n*100G Ethernet

• Low latency (<msec)

• Real-time communications (5G and 6G)

• Reduce buffering demands

• No execution run-time with batching but streaming integration

• Fusing with signal processing on lower protocol layers*

• DNNs are increasingly penetrating both wireless and wired telecommunications
• monitoring, prediction, optimizing, learned physical interfaces

• Extreme throughput and low latency requirements

9
*Korpi, Dani, et al. "DeepRx MIMO: Convolutional MIMO detection with learned multiplicative transformations." ICC 2021



Dynamic Workloads
AI is a highly active research area

Discover neural connectivity

*https://syncedreview.com/2022/12/08/geoffrey-hintons-forward-forward-algorithm-charts-a-new-path-for-
neural-networks/

**Audibert, Rafael & Lemos, Henrique & Avelar, Pedro & Tavares, Anderson & Lamb, Luís. (2022). On the 
Evolution of A.I. and Machine Learning: Towards Measuring and Understanding Impact, Influence, and Leadership 
at Premier A.I. Conferences. 10.48550/arXiv.2205.13131. 

• Algorithms are still changing, science is not mature yet

• Next data type? FP32 -> INT8 -> BF16  -> FP8 => Logarithmic?

• Next operator that changes the compute paradigm? Transformers have arrived in 2017 and are now everywhere->?

• Next generative paradigm? VAE – >  GAN –> Denoising Diffusion

• Fundamentally disruptive ideas

• Hinton’s NeurIPS 2022 keynote speech on Forward-Forward learning – backpropagation not be needed in the future?*

• Customer workloads are changing during the development cycle

• Models are in flux (optimization)

• First 3GPP 6G specification expected in 2028
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Sustainability & Energy Consumption

• Energy footprint on par with whole industrial nations

• Current DNN algorithms represent a sledgehammer approach

• Extremely inefficient

20WattsScope for Improvement: 
Estimated 10^5

100s kilo Watts
matrix multiply

*TWh = Tera Watt hours

The carbon footprint of ChatGPT. An estimate of the carbon emissions… | by Chris Pointon | Dec, 2022 | Medium
https://www.semianalysis.com/p/meta-discusses-ai-hardware-and-co
Germany - Energy consumption in Germany (worlddata.info)
Ireland - Energy consumption in Ireland (worlddata.info)
**Yu Wang, Tsinghua University, Feb 2016 https://www.numenta.com/blog/2022/05/24/ai-is-harming-our-planet/11

ChatGPT
4.3 GWh*

Meta AI cluster
53-561 TWh*

Ireland
26 TWh*

Germany
537 TWh*=



Paradigm Will Shift towards Energy Efficient AI

2012 2022

• Energy will become the limiting factor to scaling NNs
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Specialization Is #1 Industry Approach to Energy Efficiency

We’re doing it too:
AIEs, reduced precision data types, 

4:2 sparsity,  …

Specialized  

Domain-Specific

Architectures
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Google

Alibaba

Huawei

AWS

Groq

Graphcore

Cerebras

Tesla



Solution Specialization
Classical Hardware Accelerator Design Process (Waterfall)

*Source: Chip Design and Manufacturing Cost under Different Process Nodes: Data... | 
Download Scientific Diagram (researchgate.net)14

https://www.researchgate.net/figure/Chip-Design-and-Manufacturing-Cost-under-Different-Process-Nodes-Data-Source-from-IBS_fig1_340843129
https://www.researchgate.net/figure/Chip-Design-and-Manufacturing-Cost-under-Different-Process-Nodes-Data-Source-from-IBS_fig1_340843129


Dynamic and Diverse Workloads vs. Solution Specialization

ResNet50,
INT8

Vision Transformers, 
FP8
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Challenges in a Nutshell
Dynamic, Diverse & Highly Customized

Customization
Hardware specialization 

with 
long development cycles

Dynamic & diverse
Agility and

Fast turn-around times
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Agility in Customization is King



Enabling Rapid Specialization with Adaptive Compute Fabrics and 
Agile AI Stacks 
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Enabling Rapid Specialization with Adaptive Compute Fabrics and AI Stacks 
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Brevitas



What are adaptive compute fabrics?
FPGAs and AIEs
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• FPGAs are the chameleon amongst the semiconductors: flexible, adaptive mostly homogeneous 
hardware architectures that enable post-production customization at the architectural level

• Customize

• IO interfaces

• Functionality post-silicon (compression, encryption, NN accelerator, key value store,…)

• Compute architectures & memory subsystems to meet specific use case’s performance or energy targets

Primer: Adaptive Computing – FPGAs

Sea of programmable Lookup Tables (LUTs) ~millions

Programmable Interconnect

DSPs: n-bit MAC

Embedded SRAM ~high bandwidth

Programmable IO

1
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FPGAs are flexible and provide the ability to specialize 
hardware architecture post-production.
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Memory Interface

Stream Interface

• AI Engines (AIEs): new form of higher performant, adaptive compute fabric

• Higher performance through hardened vector processing in VLIW cores, just word-based (instead of bit-based) with native 
support for ML-optimized data types (e.g., INT8, block float,…)

• Great flexibility because of interconnectivity and separate control flow 

=> adapt the execution architecture to different workloads

Primer: Adaptive Computing – AIEs

1
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Matrix of VLIW/SIMD vector processors (10s...100x)

Tightly coupled, embedded memory (1..10s MB)

AIE are software compiled and don't require synthesis

Flexible interconnect



FPGAs available in a broad spectrum of parts to cater to 
the diverse requirements in pervasive AI

FPGAs Are Diverse and Widely Deployed

• ~100 Product Families
•

•

• 500+ Base Parts
•

•

• Three basic temperature grades & three speed grades

• Other variants
•
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Extreme Specialization of the Hardware Architecture
(post-silicon)
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Key Concepts

Customized for
specific topologies

Customized in 
data types

Sparse neural 
circuits

SparsityQuantization
Custom 

Dataflow
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Dataflow - Specializing for Individual Topologies

• Hardware instantiates the topology as a dataflow 
architecture

• Customize everything to the specifics of the given DNN, its 
operations and connectivity

• Benefits: energy efficiency, latency and throughput scalability

DOG  CAT  CAT DOG

FPGA/AIE

DNN

allocated resource ~ 

compute requirement

per layer
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Dataflow - Energy Efficiency

• Architecture only computes and stores what’s 
needed in the specific use case

• Customized memory and compute subsystem

• Minimizes movement & storing of data 
• Activations are not buffered externally; they are in SRAM and 

registers moved directly from one layer to next

• High efficiency through concurrent 
communication and compute

• Each layer starts computing as soon as first inputs are available

• Shortens execution time => energy saving (𝐸 = 𝑃 ∗ 𝑡𝑖𝑚𝑒)
Jouppi, Norman P., et al. "Ten lessons from three 
generations shaped Google’s TPUv4i: ISCA’2021.
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Dataflow - Adapt and Scale to Diverse Workloads

1M inf/sec
@ 10k LUT

100M  inf/sec
@ 1M LUT

100k inf/sec
@ 1k LUT

Function
D

Function
C

Function
B

Function
A

allocated resource ~ 

compute requirement

per function

inf/sec*Dataflow can scale performance & resources to meet diverse 
requirements

Without batching!
27 *Inf/sec: inferences/second



Dataflow - Parameterizable Kernel Library

• Kernels representing the individual layers, which can be parameterized
•

•

•

• Composable through streaming I/O

• Programmed in synthesizable C++ (Vitis HLS)

28

https://github.com/Xilinx/finn28



Key Concepts

Customized for
specific Topologies

Customized in 
data types

Sparse neural 
circuits

SparsityQuantization
Custom 

Dataflow
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Customizing Arithmetic to Minimum Precision



Quantization

• Reducing precision shrinks hardware cost/scales performance

• For integer datatypes, LUT cost proportional to bitwidths in weight 
and activations (e.g., INT1 : INT8: 70x)

• Instantiate n-times more compute within the same fabric, thereby 
scale performance n-times or shrinks hardware cost

• Energy

• Faster execution => less energy (𝐸 = 𝑃 ∗ 𝑡𝑖𝑚𝑒)

• Using reduced precision operators saves energy

• Reduces memory footprint 
• ResNet50 @ 32b: 102.5 MB, ResNet50 @ 2: 6.4 MB

• NN model can stay on-chip => no external memory access => saves energy

Jouppi, Norman P., et al. "Ten lessons from 
three generations shaped google’s tpuv4i: ISCA’2021.

30
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1b

8b

32b



Key Concepts

Customized for
specific Topologies

Customized in 
data types

Sparse neural 
circuits

SparsityQuantization
Custom 

Dataflow
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• DNNs are naturally sparse

• Massive scope to improve ML efficiency through 
sparsity

• The human brain is highly sparse (98%) & operates on the 
power of a light bulb (~20W)*

• Sparse topologies result in irregular compute patterns 
which are difficult to accelerate on vector- or matrix-
based execution units

• Poor efficiency

• With streaming dataflow architectures, where every 
neuron and synapse is represented in the hardware, 
we can maximize efficiency

FPGA Optimized 

Dataflow 

on FPGA

32

Sparsity – Energy Efficiency



Sparsity – Extreme Codesign with LogicNets

• Idea

• A LUT in an FPGA can represent a neuron

• Design a highly sparse circuit in an FPGA

• Represent this as a DNN to the training framework 

• Learn the LUT contents

*https://www.numenta.com/blog/2022/05/24/ai-is-harming-our-planet/
Umuroglu, Yaman, et al. "LogicNets: co-designed neural networks and circuits for extreme-throughput applications." FPL’2020.

Design a circuit 

(=unrolled DNN)

Train

Deploy

Adjust the parameters of DNN 

(=LUT contents) while iterating on 

training dataset until accuracy

High-efficiency and maximum performance by 
design (classification at clock rate)
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How can we support this specialization through agile AI stacks?
(FINN with Brevitas)
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Faster Iterations with Shortened Development Cycles

• Adaptive Computing eliminates the need for physical design
• Generalizable architectures which can incrementally adapt to new requirements
• Paired with graph compiler which automates the specialization
• Agile quantization support in training library
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Example:             & Brevitas

36

Training tool
Brevitas

Hardware generator

FINN Compiler

Integrate generated IP 
into a larger design

Vivado/Vitis

 End-to-end flow – from DNN to bitstream 

 Enables generation of highly customized hardware architectures using 
quantization and dataflow and fine-granular sparsity

 Components

 Training tool: Brevitas

 Hardware generator (FINN)

 Kernel library (HLS)

 Open-source 

 Easy collaboration with customers

 Flexibility to adapt to fast-moving application space

 Third-party contributions



Others
(ZenDNN, MIGraphX…)

Brevitas - PyTorch Library 
Offering Agile Quantization Support 

• First class support for custom data types and 
operators at ML framework level

• Arbitrary precision integer, float, block-style 
quantization

• Extendible to user-defined datatypes and operators 
and support for any hardware-specific datatype at 
training

• Composable building blocks at multiple 
abstraction levels that can be arbitrarily combined 

• Integration with different compiler stacks

• Exports commonly used representation format (for 
example ONNX)

Quantization-
aware (re)training 

Export to inference toolchain 

Quantized Layers

Quantization building blocks

Calibration-based 
quantization 

Data-free 
quantization

Brevitas
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FINN Compiler

Hardware Generator

FINN Compiler

INT description of the DNN

38

• Modular graph compiler with well-defined 
abstraction levels

• Incrementally lowers ONNX graph to a hardware 
description through transformations

• Performs optimizations

• Layer fusion

• Explores the design space

• Calculates the degrees of  parallelism for each 
kernel using resource cost and performance models

• Code-generates a dataflow C++ description using 
the parameterizable kernel library

• Creates DNN hardware IP

Integrate generated IP 
into a larger design

Vivado / Vitis
hls::stream<ap_int<185>> in

hls::stream<ap_int<100>> inter0, inter1, ...

...

StreamingFCLayer<BINARY, BINARY, ..>(in, inter0, ...)

StreamingFCLayer<BINARY, BINARY, ..>(inter0, inter1, ..)

...



Some Example Results
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Energy Efficiency through Quantization and Sparsity

*QuTiBench (rcl-lab.github.io)
http://www.tara.tcd.ie/handle/2262/96391

• Benchmarking activity* across topologies, devices, and optimization schemes
• Example representing typical behavior: one MLP and one CNV, using quantization & pruning on an FPGA (FINN)

40

https://rcl-lab.github.io/QutibenchWeb/
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INT2 FINN LogicNets

Energy per Inference [uJoules] without MPE

Energy Efficiency: FINN & LogicNets
Results Demonstrate the Potential

Reducing precision & Dataflow => 
1272 improvement

LogicNets: 3.6x over FINN
3.6x

Energy calculated as inference time * power consumption ZCU104
LogicNets assumes equivalent power to DFTotal: ~4500x Energy Improvement through Post-Silicon Hardware Specialization

Much more work coming...

Details:
Network Security Application
Malware Classifier
UNSW dataset
MLP 92k Ops/inference
INT8 with VitisAI, 
INT2 with Brevitas and FINN
Board power ZCU104

LogicNets

0

100

200

300

400

500

600

INT8 DPU INT2 FINN LogicNets

Energy per Inference [uJoules]

1272x
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Cyber Security – Line-rate Classification with Nanosecond Latency

• FINN implementation of UNSW-NB15 malware classifier

• 2b weights & activations

• 91.9% accuracy

• 300M inferences/sec with 18 nsec latency

• 8k LUT

• FINN implementation of DDoS classifier trained on CIC-IDS2017 dataset

• 2b weights & activations

• 85% F1-score (binary classification using flow-based per-packet features)

• 19.2M inferences/sec, 52nsec latency

• 18.6K LUTs
42



• What’s in my RF spectrum? Rapidly label + understand RF spectrum

• What modulations are used?

• Key enabler for many applications and key component of an AI-enabled (cognitive) software-defined radio

• For example, spectrum interference monitoring, dynamic spectrum access 

• DNNs promising for modulation classification

Diversity
Modulation Classification: GHz sampling rate & usec latency

RF Digital

Frontend

Baseband

Processing

DNN-based

Modulation

Classifier

Challenge: At GHz sampling, we need Minfps inference throughput
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DNN-Based Modulation Classification (RadioML) 

Dataflow on RFSoC
Enables real-time inline 
processing with low latency

DF on a ZCU111: 1.75 GSamples/sec, 2.6 usec latency44



Diversity
LogicNets Results – Tiny (!!!) and Fast

• DNN in similar area compared to an FPGA 
32b adder

• High-energy particle physics CERN L1 trigger 
experiment
• Inference rate:    666 Minferences/sec*    

• Latency:               3 nsec

• Resources:          30 LUTs

A Complete Neural Network @ 70% Accuracy!

Jet substructure classification (JSC)
16-input, 5-output classification problem

Synthesized with Vivado 2019.2; FMax equals inference rate
*max device frequency45



Diversity
LogicNets Results

• Quotation from Petersen et al., Dec 2022 @ NeurIPS: 

• “FINN […] the fastest method for classifying MNIST at an accuracy of 98.4%,”*

Synthesized with Vivado 2019.2; FMax equals inference rate
*Petersen et al. "Deep Differentiable Logic Gate Networks." NeurIPS, 2022.

Acc. [%] LUT Latency [nsec] Inferences/sec

LogicNets-M 97.7 45k 38 517M

LogicNets-S 95.8 12k 9 458M

46

Acc. [%] LUT Latency [nsec] Inferences/sec

98.4 83k 2,440 1.6M

95.8 91k 310 12.4M

323x
37x

64x
34x

2x
8x

“World’s fastest MNIST classifier”* - now even faster



FINN: Diverse Engagements and Open-Source Adoption

https://xilinx.github.io/finn

https://github.com/Xilinx/brevitas
47

• Communications
• Medical
• Sensor Intelligence
• Automotive
• High-energy particle physics
• Aerospace & Defense
• High-frequency Trading

• Open-source Adoption
• ~2000 stars, 230k+ Brevitas

downloads, 72k+ QONNX, 
17k+ FINN compiler 
downloads

• Three best paper awards
• > 1000 citations

Available: Customer support through AMD CSE organization

https://xilinx.github.io/finn
https://github.com/Xilinx/brevitas


Summary

by customization of hardware execution 
architectures
• Dataflow, shrinking precision, fine granular sparsity

Proof points from FINN, Brevitas and LogicNets demonstrate the potential for energy savings, and addressing 
truly diverse requirements

*Petersen et al. "Deep Differentiable Logic Gate Networks." NeurIPS, 2022.

Enabling Rapid Specialization with Adaptive Compute Fabrics, Customized Execution Architectures and Agile AI 
Stacks 
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Heterogeneous Accelerated Compute Clusters (HACCs)
Focus on heterogenous and adaptive computing

• Supporting high-end compute research​

• Bare metal access to adaptive compute hardware

• HACC community​

• Growing community of over 100 institutions ​

www.amd-haccs.io

49



AMD HPC Fund 

Accelerating Science in the Public Interest

• Cloud access to AMD HPC CPU & GPU technologies

• Customized technical training 

• E-learning sessions

• Networking opportunities with peers around the 
world

Get involved!
https://www.amd.com/en/corporate/hpc-fund
https://www.amd-haccs.io/

50

https://www.amd.com/en/corporate/hpc-fund
https://www.amd-haccs.io/




Abstract

• In the context of AI, we face a plethora of challenges that extend beyond the widely discussed 
performance scalability required to meet the growing demands of compute and storage in the latest 
models. These challenges encompass sustainability, pervasiveness, agility, and diversity, all of which 
are needed to cater to a constantly evolving range of applications and algorithms from endpoint to 
edge and cloud. In this talk, we explore how AMD adaptive devices and agile compiler stacks can 
provide solutions by delivering post-production hardware specialization and co-designed algorithms. 
This results in highly optimized AI systems which not only provide the necessary performance 
scalability but also bring a reduction in carbon footprint while addressing the needs of a broad range 
of diverse applications with the necessary agility.
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