
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

Is your Hardware Dependable?
Practical Applications for Managing Security and Safety from Software to Silicon

Presented by:

DARPA, AMD, Arm Research, and Synopsys

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

Tutorial Speakers
• Practical Strategies for Managing Security in Silicon

• Serge Leef: DARPA

• SoC Functional Safety Overview and Use Cases, Standards, and
Dependability Lifecycle
• Bala Chavali: AMD

• Reliability Analysis method for Safety-critical CPU designs : PACE
• Reiley Jeyapaul and Balaji Venu: arm Research

• Automated Solutions for Safety and Security
• Meirav Nitzan: Synopsys

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

Practical Strategies for Managing
Security in Silicon

Serge Leef, DARPA

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

Goal

Automate inclusion of scalable defense mechanisms into
chip designs to enable security vs. economics

optimization

4

Cost and Complexity of Attack Resistance Mechanisms

Source: shutterstock.comDISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

Novel Design Automation Flow with Embedded
Security?

5

Security

Incorporation of security into next
generation of system chips, using
platform-based design techniques &
advances in high level synthesis

Automation

Need for automatic injection of
scalable security creates an
opportunity for tools & IP that enable
semi automated and automatic
approaches to assembly and
integration that can substantially
improve design productivity

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

System on Chip (SoC) Design Process

6

Limitations

• $30M+ cost for low complexity SoC

• 9-12 month design cycles

• Many human introduced errors

• Unpredictable power and no security

Source: Broadcom 5G SoC block diagram

Simplified View of SoC Design Process (source: Mentor)

High Medium Low

Huge

Big

Medium

Small

Tiny

S
iz

e

PerformanceTheoretical
Best

Human expert
With unlimited time

1990s

2000s

Present

Machine
generated

solutions

Current Practice

• Manual system integration

• Lengthy and complex simulation runs

• Block level synthesis & optimization

(source: Broadcom)

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

Long Term EDA Dream: System Synthesis

7

System synthesis & optimization

1. S(a*Performance, b*Size)

2. S(a*Performance, b*Size, c*Power)

3. S(a*Performance, b*Size, c*Power, d*Security)

4. S(a*Performance, b*Size, c*Power, {d*SideChannel, e*SupplyChain,
f*RevEngineering, g*MalHardware})

Key challenges:

• Quantification of security

• Rapid estimation of attack resistance

• Multi-dimensional optimizationHigh Medium Low

Huge

Big

Medium

Small

Tiny

S
iz

e

Performance

Power

Security = f(SideChannel, SupplyChain, RevEngineering, MalHardware)

(source: Broadcom)DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

Moving Target (I20)

AISS Focus Areas

In Progress (SSITH)

Attack Surface Based Reference Model

8

• Substantial efforts are on-going in the software community

H
ar

d
w

ar
e

So
ft

w
ar

e
H

ar
d

w
ar

e
So

ft
w

ar
e

In
te

rf
ac

e

• Side Channel – extraction of secrets through physical communication channels other than intended
(assumption: attackers are able to “listen” to emissions)

• Reverse Engineering – extraction of algorithms from an illegally obtained design representation
(assumption: attackers have access to design files)

• Supply Chain – Cloning, counterfeit, recycled or re-marked chips represented as genuine
(assumption: attackers can manufacture perfect clones)

• Malicious Hardware – insertion of secretly triggered hidden disruptive functionality
(assumption: attackers successfully inserted malicious function(s) into the design)

• Alteration of system behavior based on software-accessible points of illicit entry that
exist due to hardware design weaknesses or architectural flaws

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

Security Strategies by Company type

9

Reduce
Effort

Reduce
Cost

A
I
S

S
T
A
R
G

E
T
 A

R
E
A

Huge merchant semiconductor companies (Intel, Broadcom, Qualcomm…)

• See the critical need and have large expert teams to create custom solutions

Mid-size semiconductor and system companies (NXP, Cisco, Nokia…)

• Recognize problems but lack expertise and sufficient economic motivation

Defense contractors (Honeywell, NG, Lockheed…)

• Possess deep, but limited, expertise (craft) unevenly applied to specific chips

System integrators (Ring, Fitbit, August…)

• No interest due to time-to-market focus and lack of in-house competency

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

AISS Approach to On-Chip Security

10

Outer Perimeter

IP
 P

ro
ven

an
ce &

W

aterm
arkin

g

O
ff

-c
h

ip
 K

ey
 M

an
ag

em
en

t

Off-chip Tracking

Supply Chain

Side Channel

R
ev

er
se

 E
n

gi
n

ee
ri

n
g

M
alicio

u
s H

ard
w

are

Inner Perimeter

Secret
Extraction

Knowledge
Extraction

Cloning
Recycling

HWR
Trojans

Emission Reduction

Authentication, Provisioning,
Metering

Lo
gi

c
En

cr
yp

ti
o

n
 &

O

b
fu

sc
at

io
n

R
u

n
-tim

e M
o

n
ito

rin
g &

D

etectio
n

Security
Engine • AISS focus is only

on securing inner
perimeter with
on-chip structures

Image source: Intel

• There are many
effective outer
perimeter attack
strategies

• Some level of off-
chip support is
also needed

• We are assuming
outer perimeter is
penetrated or
compromised

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

AISS: Composition

11

• Phase I - Assisted Composition – Components are specified

• Processor & security related components are user selected & automatically integrated

• Phase II - Automated Composition – Configuration is specified

• User selects a platform and provides configuration to a tool that automatically generates an integrated system

Arm
M0

512MB
DDR

PCIX USB

LIN

PUF

10
KEYS

AES
CRYPTO

CUSTOM

Arm
M0

512MB
DRAM

UART PCIX

USB
AES

CRYPTO
CUSTOM

KEY
STORE

PUF

Assisted
Composition

Design: “Power Doors/Windows ECU”
Platform (Automotive Control)
• CPUs (A57, M3, M0)
• Memory (512MB, 256MB, 128MB)
• Networking (LIN, CAN, FlexRay)
• Interfaces (PCIx, USB, DBG)
Security Module (Suply Chain)
• PUF (small, medium, large)
• Keystore (small, medium, large)
• Storage (OTP, NVRAM, EEPROM)
• Connection (JTAG, IJTG, Custom)

PLATFORM
(M0, 128MB, LIN, PCIx)

CUSTOM
SECURITY MODULE

(PUF, Keystore, OTP, JTAG)

Automated
Composition

Selected

Arm M0
128MB

LIN
PCIx

Small
Small
OTP
JTAG

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

Combinatorial Optimization explores HUGE solution spaces (billions), but requires rapid estimation of “goodness”

Performance and Size estimators are well understood and incorporated in modern tools

AISS will drive discovery of rapid estimation of power and security

AISS: Optimized Composition

12

• Phase III - Optimized Composition – Objectives are specified
• User selects a platform and supplies a cost function with size, performance, power and security goals to guide

combinatorial optimization to find best architectures which are presented to the user for assessment and selection

Design: “Power Doors/Windows ECU”

Platform (Automotive Control)

• Performance = 2
• Size = 9
• Power = 3
• Security = 3

• Supply Chain = 7
• Side Channel = 2
• Reverse Engineering = 5
• Malicious Hardware = 1

Optimized Composition

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

Source: The 80s
Point: Technology for 2-dimensional
optimization has been around for ~40
years

AISS: Optimization Cost Functions

13

f(a,b,c,d) = S(a*Performance, b*Size, c*Power, d*Security)

Application Perf. Size Power Security

Lawn Sprinkler 2 7 9 1

Engine Control 6 5 1 3

Guided Projectile 5 1 9 7

Network Router 9 5 1 8

Mobile Phone 7 9 9 7

Smart Watch 3 6 9 3

Cost Function Examples

Application
Side

Channel
Reverse
Eng’g

Supply
Chain

Malicious
Hardware

Lawn Sprinkler 1 1 9 1

Engine Control 1 7 5 2

Guided Projectile 3 9 5 9

Network Router 9 7 8 9

Mobile Phone 8 9 9 6

Smart Watch 6 8 9 1

Security Cost
Function Expansion

estimate estimate
))

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

Summary: Enabling Security in the Supply Chain

14

Source: Mentor Graphics, 2017

• Design: Create secure-reconfigurable SoCs with a unique ID based on an inborn Root of Trust

• Enroll: Extract chips unique ID into a secure server during first power up at wafer test

• Configure: Inject keys to encrypt, sign, or decrypt content for devices or end-applications

• Provision: Program SKUs downstream to reduce inventory risk and exploit volume ramp

• Personalize: Enables secure device identity during PCB assembly based on the chip’s Root of Trust

• Authorize: Allow authorized parties to securely sign devices based on the SoC Root of Trust

• Update: Securely update firmware and provision SOC hardware features in the field

• Monitor: Track field use and evolve Big Data analytics on field failures, intrusions, counterfeits

SoC Functional Safety Overview and Use
Cases, Standards, and Dependability Lifecycle

Bala Chavali

[Public]

Outline

• Define dependable system

• Product hierarchy

• Lifecycle phases

• Functional safety

• SoC Challenges

• Dependability lifecycle challenges

• Addressing the challenges

[Public]

Dependable System

• Trustworthiness of the system

• Attributes are defined to quantify
this behavior
• Reliability, Safety, Security, Availability,

Maintainability

• Challenges are present to achieve
this within the product lifecycle

• Standards and multiple industry
WGs working towards achieving
these goals

Dependability

Reliability

Safety

SecurityAvailability

Maintainability

[Public]

Product Hierarchy - Automotive Application

• Automotive applications require addressing many of these attributes
• Safety, Security, Reliability, Availability, Maintainability

• Vehicle requirements fan from Item down to IP/Part/Element
• Functional safety targets to reduce risks in critical applications

• Reliability addresses error avoidance or detection due to wear and tear, aging,
and defects

• Security to address threat levels and attacks during product operation

Vehicle System/Module Component IP

[Public]

System on Chip Lifecycle Phases

• Widely used V-model

• Dependability attributes lifecycle is integrated as part of product
lifecycle

• Product need to define the targets for each attribute across the
lifecycle

• Product specifies the qualitative and quantitative targets to be MET

Product Definition Architecture
Design and

Implementation

Testing

(V & V)

Production &
Operation

Decommission

[Public]

Automotive Functional Safety
• Safety standards provide

guidelines on management
and risk mitigation of a
product through the
lifecycle

• Addresses this via two
methods
• Random faults

• Systematics faults

Random Faults

Quantitative

Perform safety analysis

Safety Measures

Systematic
Faults

Qualitative

Traceability of
Requirements

Design Methods

Test Methods

[Public]

SoC Definition and Design Phase
• SoC could implement a combination of internal IPs and third-party IPs

• Internal IP Blocks
• Product Requirements are captured and published

• Requirements are converted to architecture and design is implemented

• All requirements are reviewed and signed off

• Traceability is established to confirm user features are matched with results

• Third-party IP Blocks
• Documentation of product, architecture are provided

• Reports provided to establish coverage

[Public]

Definition and Integration Phase Challenges
• Data exchange format of requirements from IP vendor to another

vendor

• Integration challenges due to non-standard design or custom
methodologies

• Lack of common terminology or language between databases and
users

• Results in higher effort, product delay, and additional cost to debug or
fix bugs

[Public]

Challenges within Dependability Lifecycle
• Challenges multiply when a product must address multiple lifecycles

within one product lifecycle

• Need to comply to multiple standards and produce multiple work
products

• Use similar dataset to perform multiple quantitative and qualitative
analysis – traceability, risk analysis, threat analysis, safety analysis

• Results in COMPLEXITIY, EFFORT, and COST

[Public]

Addressing the Challenges
Experts started working groups to address these challenges

• Define a generic dependability development lifecycle

• Identify the wholistic data set to address all applications

• Create a common data exchange language, data models and
databases
• Automotive, Industrial, Avionics, Medical

• Vehicle, System/Module, Component, IP

• Promote interoperability between automation tools

[Public]

Industry WG Efforts
• Accellera Functional Safety WG

• Define a standardize functional safety data exchange

• Define a language/format to exchange functional safety data across all layers

• Released a white paper highlighting all these challenges, ongoing work, and
data model work

• IEEE P2851 Functional Safety WG
• Published a white paper

• Ongoing work on data exchange format and dependability lifecycle

[Public]

DISCLAIMER AND ATTRIBUTIONS
DISCLAIMER

The information contained herein is for informational purposes only, and is subject to change without notice.
While every precaution has been taken in the preparation of this document, it may contain technical
inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise
correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to
the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including
the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to
the operation or use of AMD hardware, software or other products described herein. No license, including
implied or arising by estoppel, to any intellectual property rights is granted by this document. Terms and
limitations applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between
the parties or in AMD's Standard Terms and Conditions of Sale. GD-18

©2022 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, [insert all other AMD
trademarks used in the material here per AMD’s Checklist for Trademark Attribution] and combinations thereof
are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for
identification purposes only and may be trademarks of their respective companies.

Reliability Analysis method for
Safety-critical CPU designs : PACE

Reiley Jeyapaul and Balaji Venu

Agenda

• The need for a scalable reliability analysis method

• PACE methodology

• Discussion of Results

• Use-case in the Arm ecosystem

© 2022 Arm

Markets and Applications

Automotive
Autonomous driving

Industrial
Factory automation

Healthcare
Robotic surgery

Transportation
Train control systems

Avionics
Flight systems

Consumer
Domestic robots

©
 2

0
2

2
A

rm
 L

im
it

ed

Functional Safety Opportunity

Lower emissions

Powertrain

ADAS

Self driving

IVI

Autonomous drive Information

Vehicle electrification Connected car

Scalable, fast, and accurate reliability estimation enables robust SoC designs !

Designing Error Resilient Systems
An implementation of fault tolerance,

➢ involves a mechanism to introduce or enhance the intrinsic masking effects of the design

Accurate vulnerability analysis and failure quantification
✓ establishes an understanding of the system’s intrinsic resilience
✓ enabling efficient and resilient designs

• Data-driven study of RAS features/implementations
• Trade-off analysis – reliability vs performance vs power
• Co-design opportunities and analysis

• System specifications
• Design Parameters
• RAS Implementations

Feedback to DesignerFrom the Designer

Resilient System
Design

Accurate
failure estimation

Reliability-Aware Design Loop

© 2022 Arm

Big Picture – What is PACE trying to solve?
Architecture Vulnerability Factor (AVF) plays an important role in resilient system design

1. Eliminating the fraction of safe faults from failure rate calculation
𝐹𝐼𝑇𝐶𝑃𝑈 = 𝐹𝐼𝑇𝐶𝑃𝑈_𝑅𝐴𝑊 ∗ 1 − 𝐷𝑖𝑎𝑔𝑛𝑜𝑠𝑡𝑖𝑐_𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 ∗ 𝐴𝑉𝐹 [1]

• Higher diagnostic coverage incurs high power, performance and area (PPA) overhead

• De-rate FIT rate using AVF.

2. Enable hardware software co-design with reliability awareness

• Which bits of hardware is highly vulnerable and should be protected?

• What type of safety mechanisms should I use based on AVF data?

[1] ISO 26262-5 2018, Part 5, Annex C
[1] FIT rate: Number of failures in 1 billion hours of operation (114,000 years)

ASIL B ASIL C ASIL D

PMHF 100 FIT 100 FIT 10 FIT

PACE methodology enables fine-grained safeness analysis using formal methods

© 2022 Arm

Reliability Estimation Methods: landscape

1. Exhaustive Fault Injection (EFI) methodology

o Number of faults actually manifesting as an error in
the final output

o Accuracy is high. Takes long time to estimate

2. PACE (Proof driven ACE analysis)

o Probability of a (soft) fault manifesting as an error
visible to the user

o Pessimistic analysis, trading off accuracy for speed

[1] “Merlin: Exploiting dynamic instruction behavior for fast and accurate microarchitecture level reliability assessment”, Proceedings of the 44th Annual International Symposium on Computer Architecture,

Accuracy

Ideal
method

E
x
e
c
u

ti
o

n
 S

p
e
e
d

PACE

RTL Injection

Microarchitecture level

injection

Slow

Low High

Fast

Probabilistic

models

ACE analysis

Goal is to compute AVF (Fraction of the design that is vulnerable to soft errors)

© 2022 Arm

PACE extends ACE analysis to the RTL
• ACE : A common technique used to estimate AVF

It involves manual pre-analysis of array structures in CPU designs and marks a sequential
bit (Flip Flop, latch, etc) as
o ACE (Architecturally Correct Execution) for the portion of time it is vulnerable to transient faults

o un-ACE for the remaining portion of time.

Largely carried out on performance models of CPU

• In PACE
We have automated carrying out ACE analysis directly on key design blocks of Arm Cortex-R52 CPU RTL
design using formal methods

• We compare our results against Exhaustive Fault Injection (EFI)
Ground truth numbers

o Injected faults in every flip flop during every clock cycle of the benchmark and calculated AVF numbers (125
million independent RTL simulations and tera bytes of data ☺).

© 2022 Arm

What is possible with PACE
• AVF estimation using PACE is 276x faster than EFI on key design blocks accounting for

25% of the Arm Cortex-R52 CPU

• AVF estimated using PACE is pessimistic (on average 4.7x higher than EFI)

• What did formal buy us?
Two guarantees, as PACE uses formal methods to prove ACE/un-ACE behavior

1. 100% confidence in estimated AVF numbers. All sequential bits reported as vulnerable by EFI is
also captured as vulnerable by PACE.
o PACE does not impact fault coverage of the design.

2. Fault space pruning – All sequential bits reported by PACE as not vulnerable is also captured as not
vulnerable by EFI.
o PACE can be used as a complementary technique with others known in literature (Statistical fault

injection, probabilistic analysis)

© 2022 Arm

The PACE Methodology

© 2022 Arm

Main idea (Guess and Check)

1) Classify Flip Flops using formal properties
Come up with hypothesis around vulnerability

2) Prove Classification using
Sequential Equivalence Check (SEC) formal tool

3) Generate PACE models using Classification
AVF calculated for CPU (𝐹𝑠𝑎𝑓𝑒 = 1 − 𝐴𝑉𝐹)

Methodology Cross validated with Fault Injection experiments (not a must to be carried out)

Arm Cortex-R52

Always
vulnerable

Conditionally
vulnerable

Never
vulnerable

4 key design blocks

Can SEC prove
classification?

Conditionally
vulnerable

Never
vulnerable

Ye
s

Ye
s

Always
vulnerable

N
o

© 2022 Arm

Step1: Identify Conditional Vulnerable Flops
Inspired producer-consumer handshake protocol that is implemented in pipeline
stages, storage structures and bus protocols on modern CPUs:

1. Purpose of “FLAG”
Notify consumers payload is ready to be consumed

2. Many such “FLAG - PAYLOAD” pairs
should exist in the micro-architecture

Vulnerability hypothesis:
If (FLAG == 1’b1)

PAYLOAD is vulnerable to transient faults
else

PAYLOAD is not vulnerable

STU

llpp_aw_valid (FLAG)

llpp_aw_addr (PAYLOAD)

Further implementation details available in the publication – PACE: AVF estimation using formal methods

© 2022 Arm

https://www.researchgate.net/profile/Emre-Oezer/publication/355407521_PACE_AVF_estimation_using_formal_methods/links/616ed8a1b148a924b8f86000/PACE-AVF-estimation-using-formal-methods.pdf

Identify “FLAG-PAYLOAD” pairs in the design

Identify List of FLAGs using
naming convention and
designer inputs

System Verilog Assertions (SVA) to the rescue, we did a bit of brute-force approach

$change(PAYLOAD) |-> (FLAG == 1’b1)

Consider all other RTL signals as
PAYLOAD

Check validity of property across all
combinations of

FLAG and PAYLOAD

Combinations for which the property
holds are potential pairs

© 2022 Arm

Step2: Proving Classification
Hypothesis (conditionally vulnerable):

If (FLAG == 1’b1)
PAYLOAD is vulnerable to transient faults

else
PAYLOAD is not vulnerable

Three step process:

1) Create a copy of the CPU

2) Mutate the ”payload” behavior in the copy using
SystemVerilog assumptions (more details in the paper)
Assumptions model transients to occur for verifying ACE
behavior

3) Prove equivalence

© 2022 Arm

Results

© 2022 Arm

AVF values

1. PACE methodology
𝐴𝑉𝐹𝑃𝐴𝐶𝐸 =

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑙𝑜𝑝𝑠 𝑡ℎ𝑎𝑡 𝒑𝒐𝒕𝒆𝒏𝒕𝒊𝒂𝒍𝒍𝒚 𝑟𝑒𝑠𝑢𝑙𝑡 𝑖𝑛 𝑎𝑛 𝑒𝑟𝑟𝑜𝑟

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑙𝑜𝑝𝑠

2. Fault Injection methodology
𝐴𝑉𝐹𝐸𝐹𝐼 =

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑙𝑜𝑝𝑠 𝑡ℎ𝑎𝑡 𝑎𝑐𝑡𝑢𝑎𝑙𝑙𝑦 𝑟𝑒𝑠𝑢𝑙𝑡 𝑖𝑛 𝑎𝑛 𝑒𝑟𝑟𝑜𝑟

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑙𝑜𝑝𝑠

The guarantees:

• All bits captured as vulnerable by the green line is captured as vulnerable in the orange line

• All bits captured as not vulnerable by the orange line is also captured as not vulnerable by the green line.

© 2022 Arm

PACE Improved results

• We investigated the Decode unit that was exhibiting
low correlation with EFI results

• It implements a Circular buffer whose vulnerability
condition was not captured by our “Flag – payload”

• We came up with these conditions and proved it
using SEC and it improved our AVF results.

The guarantees:

• All bits captured as vulnerable by the green line is captured as vulnerable in the orange/blue line

• All bits captured as not vulnerable by the orange/blue line is also captured as not vulnerable by the green line.

© 2022 Arm

Use-case in the Arm ecosystem

Model Generation Phase (Arm) 𝐹𝑠𝑎𝑓𝑒 estimation phase (Partners)

CPU System IP

PACE
Vulnerability
Estimation

Models

• Automatically generate using
Formal methods

• Designer inputs

• Model estimates vulnerability
and 𝐹𝑠𝑎𝑓𝑒

• Arm licenses model to partners

• Partner integrates PACE models in their
simulation/emulation platform

• Runs application and computes 𝐹𝑠𝑎𝑓𝑒
• Uses it to de-rate FIT rate based on application

behavior

• PACE models can be compiled to Cycle models to
enable TIER1s and OEMs

$

Big cores complex

B B

$

LITTLE cores complex

s s
s s

Applications

HPC

© 2022 Arm

In summary !!!

A fast and automated methodology to estimate AVF numbers with 100% confidence !!!

Fine grained vulnerability data (report highly vulnerable portions of the CPU)

© 2022 Arm

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in

the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

© 2022 Arm

Automated Solutions for Safety and
Security
Meirav Nitzan

Summary of Previous Presentations
• Serge Leef, DARPA:

• Automate inclusion of scalable defense mechanisms into
chip designs to enable security vs. economics optimization

• Challenge: Automate Security SoC design development

• Bala Chavali, AMD:
• SoC Functional Safety Overview and Use Cases, Standards,

and Dependability Lifecycle
• Challenge: standardize all aspects of a dependable design

data exchange across supply chain

• Reiley Jeyapaul and Balaji Venu, arm Research
• Reliability Analysis method for

Safety-critical CPU designs : PACE
• Challenge: create an innovative solution to AVF and app

based FIT de-rate using existing EDA tools

EDA Understands and Accepts the Challenge!
• Creating new technologies and leveraging existing ones to create a holistic

solution for semiconductor & system industries
• Address Safety, Security, Reliability and Time determinism of the product
• A Software to Silicon solution, and everything in between

• Work with Government and Academy on various initiatives
• Enable an enhanced solution for design automation

• Develop innovative solutions in collaboration with our customers

• Participate in major standardization bodies to drive, understand and
implement new data exchange formats

• ISO/SAE (21448, 21434, 26262, …)
• Accellera (IPSA/SA-EDI, FuSa)
• IEEE (P2851, ...)

Key: a holistic solution for Safety and Security, from
Software to Silicon

Key Considerations for Safety and Security
• Functional Safety goal: reduce the risk of hazards due to Systematic

failures during design or Random failures during operation to an
acceptable minimum.
• Considerations:

• Integration of commercial Safety compliant IPs in the SoC architecture
• How can my design fail due to insufficient planning or testing (systematic)?
• How can my design fail due to random faults?

• Security goal: reduce or eliminate the hazard due to intentional
manipulation of the system functionality with malicious intent
• Considerations:

• Integration of commercial Security IPs in the SoC architecture
• How can my SW fail due to malicious attack?
• How can my HW fail due to malicious HW attacks?
• How can someone insert trojans to my design? How can my design secrets get stolen?

Safety design flow: Addressing Systematic Failures
Software and System Testing

Code analysis,
managed testing, &

planning
Verified

Hardware
/Software

Architectural Exploration

Function, Safety & Security
Requirements

Architectural
Exploration

RTL Design Synthesis Place and Route

Semiconductor IP
(Automotive grade, Security IP)

Digital Design

Analog Design

Verification

Package Design & Verification

Tape Out and Manufacturing

Software Semiconductor

Package & MFG

Safety Implementation: Random Faults Detection
EDA Tools Can Automate Insertion of the HW Safety Mechanisms

D UA L CO R E
LO C K ST E P (D C L S)

T R I P L E M O D E
R E D U N DA N C Y (T M R)

F R E E D O M F RO M
I N T E R F E R E N C E

M O N I TO RS

AT P G LO G I C B I ST M E M O RY B I ST

M E M O RY EC C / E D C

FF

Latch

Error

Safety Analysis: FMEDA Flow Automation

Test Bench Functional RTL/ netlist Early RTL SoftwareSpecification

Failure Mode Effects
Analysis

Fault Injection Campaigns
Calculate &

Analyze Metrics

FMEA/FMEDA

Static Design
Analysis

(Statistical
Faults

safeness, FF
to harden)

Digital Fault Simulation

Fault Reduction
Fault

Emulation

Analog Fault Simulation

FMEA
FMEDA w/
estimated

Metric

FMEDA
w/

Measured
Metric

Debug, Reporting and Fault Coverage Analysis

ISO 26262 Work
Products

SPFM
LFM
PMHF

Technology Data

Architectural FMEA

Design Information

Fault Campaign Management (Unified Definition and Database)

End-to-end automated solution for Random Fault Coverage and ISO 26262 Metric computation

Design Data
extraction &

association for
Base Failure

Rate

Security design flow: from Software to Silicon

Code analysis,
managed testing,

& planning

Risk Analysis and Threat Models
Architectural Exploration

Function & Security Requirements
(e.g., CWE/CVE)

Architectural Exploration RTL Design Synthesis Place and Route

Virtual
Prototyping

Application
Security Testing

SW Composition
Analysis

Testing

Sub-system IP
Individual & Processor IP

PPA Analysis
for DPA

Security
Register

Infrastructure

Synthesis for SCA
& Beneficial Code

Insertion

Programmable
Rule Checks

Signoff

Testbench for
Simulation or

Emulation
Track Secure Data

Security Rules and
Checks

Information Flow
Digital and Analog

Fault Injection
Test Plan Validation

with Mutation Analysis

Security Tests Library

PrototypingFault Emulation &
Power Analysis

Security-Aware Silicon IPs
Critical Foundation for System Security

Security Needs
• Overall SoC protection functions (secure bootstrap, key management, secure updates, secure debug/JTAG access…)

• Secure data in motion

• Secure data-at-rest

• Encryption and authentication for model updates, secure communication and inputs from peripherals

Security Verification: Enabling Zero-trust Validation

Security-driven Verification with Verification Continuum Platform

Check for security rules,
threats, trojan

detection, cyclomatic
complexity

Static Analysis

Modeling Threats,
Counter-measures

Fault Simulation

Prevent data path
leakage

Prove data integrity
and confidentiality

Formal

Model Threats at
System Level, Test SW

Counter Measures,
Side Channel Analysis

Emulation

Security Planning, Vulnerability Database, Debug, Coverage, Management & Closure

Security Intent

Common Weakness Enumeration (CWE and others)

Early Arch exploration
& SW development

for security

Virtual Prototyping

Automating Secure Digital Design
Robust and secure design

Digital Design: Solutions for Security

Integrate registers
to communicate
with security
infrastructure

Add register and
test mode access
controls to support
SoC security policy

Security-aware
placement avoids
malicious implants,
protects against
fault injection
attacks, and
optimizes logic
redundancy

Routing of security-
critical signals to
avoid power/EM
and fault injection
attacks

Timing closure in
presence of
security features

Power analysis to
confirm
effectiveness of
security measures

Security-aware
synthesis to avoid
optimizing away
redundancy

Synthesis for
watermarking,
obfuscation, and
logic locking

Smart metal fill to
resist optical
probing and avoid
malicious implants

Security-aware
check-and-report

Early PPA analysis
to identify
vulnerabilities to
attacks such as
differential power
analysis

Architectural
Exploration

RTL Design Synthesis Place and Route

Signoff

Safety-Security Alignment Standardization
• IEEE P2851 Title: “Standard for functional safety data

format for interoperability within the dependability
lifecycle.”

• Safety-Security alignment is one of the topics covered in it

• Approach:
• Align safety and security requirements
• Analyze effect of technical requirements from each discipline on

the other one

Automated tool flow creating SoC for meeting PPA and security metrics

AISS Vision

AISS Tools Workflow

AISS-Secured
SoC Designs

Baseline SoC
Architecture

Processor IP
Commodity

IP
Accelerator

IP

Workloads
(SW &

Estimators)

Power Area SpeedSecurity

Synopsys Contributions
✓ Counter reverse-engineering, counterfeiting, and recycling in an untrusted supply chain
✓ Discover “extra” circuitry that may be a trojan and report other security vulnerabilities
✓ Monitor system bus transactions to detect potential threats
✓ Register devices with central authority and prevent unauthorized systems from booting
✓ Embed secure root-of-trust and configurable cryptographic functions
✓ Add application-specific configurable security defenses balanced against PPA constraints
✓ Enable rapid design exploration and final SoC creation

Summary
• EDA has been rising to the challenge and providing solutions for Safety &

Security

• Focus is on a holistic solution, spanning from architecture to silicon and SW
products

• Existing tools and technologies are leveraged and enhanced to address
design, verification and implementation challenges

• Participation in Standardization efforts and cross-industry initiatives helps
creating innovative, collaborative solutions which benefit all players in the
supply chain

Acknowledgement
• Synopsys would like to thank the Safety & Security experts who

contributed to this tutorial:

• Serge Leef, DARPA

• Bala Chavali, AMD

• Reiley Jeyapaul and Balaji Venu, arm Research

Thank You

