(2025

DESIGN AND VERIEICATION ™

DVLCOIN

CONFERENCE AND EXHIBITION

MUNICH, GERMANY
OCTOBER 14-15, 2025

Introduction to the Apheleia Verification Library

Andy Bond
Project Apheleia

Tutorial Structure

e Overview of AVL's key concepts
* Setup and Prerequisites
* Fully worked examples

e Question and Answers

DESIGN AND \Qﬁ?mﬂm

DVCON

CONFERENCE AND EXHIBITION

10 YEAR ANNIVERSARY

Overview

SYSTEMS INITIATIVE

Overview — What is AVL

* The Apheleia Verification Library (AVL) is an open-source python
library

* AVL is not a UVM implementation in python
e AVL is not a minimal test-bench language

* AVL takes combines the re-use best practices of UVM and efficiency
of python

* AVL is an engineer driven test-bench library enabling scalable
verification environments with a focus on productivity — not
methodology

Overview — Who is AVL Aimed At?

* Novices and students
* Industry experts

* Hobbyists

* Professionals

* Anyone who wants to spend more time doing verification and less
time developing code

U V M SystemVerilog‘pmgramming

o ——

Pros

 Successful at bringing
standardization to the
verification industry

e Strong methodology
* Wide range of available VIP

* Well understood terminology

Language

Cons

 Limited to major EDA vendors
with implementation specific
version

* |[nconsistent views on best
practices

* Code intensive development

on

Pros Cons
* 100% Open-Source * No common methodology
e Universal simulator support Limited available VIP
* Active User Community » Software centric
* Near Zero compile time Different
* Widely used an understood

language

* Rich and diverse range of useful
libraries

AVL Features

 HDL centric variables * Functional Coverage

e Constrained Random * Run-time defined

* Familiar methodology * Statistical Coverage
 Sequences * Visualization
* Drivers Multi-purpose logging
* Agents e Human Readable

* Familiar re-use * Machine Readable
* Factory * Searchable Trace
* Phases

* TLM style ports

DESIGN AND VERIEICATION ™

NNNNNNNNNNNNNNNNNNNNNNN

AVL Variables

shortint int avl.Int16

int / integer int avl.Int32

longint int avl.Inte4

byte int avl.Byte / avl.Int8

logic / bit bool / int avl.Logic / avl.Bool / avl.Uint<N>

time int avl.Int64

real float avl.Double / avl.Fp64
float avl.Half / avl.Fp16

shortreal float avl.Float / avl.Fp32

string str str

enum Enum avl.Enum

(2025

DESIGN AND VERIEICATION ™

DVCCON

CONFERENCE AND EXHIBITION

avl.Uint (250, width=8)

AVL Variables < Y

, width=8)

* Once defined all AVL variables behave
like python variables o

, width=8)

* Arithmetic operations
* Comparison

== 196
t(a, width=8)

* Wrapping and sign are handled
naturally

== 25
Jint(a, width=8)

* Each variable can have a defined string
format for easier debug

(2025

DESIGN AND VERIEICATION ™

AVL Variables

* Native floating-point values
based on NumPy

* Helper functions to interact with
hardware

(2025

DESIGN AND VERIEICATION ™

https://numpy.org/

AVL Variables

e Structures
e Verilator and some other simulators flattens structs
* Helper class provided to be simulator agnostic

! 3
— = - -
)aCKe

single bit : avl.
multi bit
state_enum

(2025

DESIGN AND VERIEICATION ™

DVCCON

CONFERENCE AND EXHIBITION

Constrained Random

 UVM benefits from the constrained random features of SystemVerilog

* Python random supports randomization, but lacks constraints

* There are many theorem solvers available in Python

* Each has benefits and limitations
e Can be confusing to decide on best approach

https://docs.python.org/3/library/random.html
https://docs.python.org/3/library/random.html

Constrained Random

e AVL utilizes Z3 —an open-source theorem prover from Microsoft
e Supports bool, int, uint, enum and float numbers and wide variables
e Supports hard and soft constraints

e Well documented and well maintained

a = avl.Logic(0, width=8, fmt=hex)
b = avl.Logic(0®, width=8, fmt=hex)

add_constraint(“c 0", X: Or(x == 0, X == 160), self.a)
add constraint(“c 1", X: And(x >= 5, x <= 100), self.b)
add_constraint(“c 2", X, y: Implies(x == 0, y == 10), self.a, self.b)

(2025

DESIGN AND VERIEICATION ™

https://github.com/Z3Prover/z3

AVL Methodology

e AVL follows the UVM methodology
e Familiar and consistent

* Terminology and behaviour
maintained where appropriate

* No need for parameterization

* Direct access
* No requirement for virtual interfaces

> bUT

Z:X

(2025

DESIGN AND VERIEICATION ™

Factory

 UVM factory was a fudge due to language limitation
e AVL factory built in natively
» User extendable specificity function to decide override precidence

actory.set_override by _instance(env.s’, sul "’ avl factory.set variable('env.a’, 100)

avl factory.set override by instance(’env.o’, object B)

e = example env('env’, |)

(2025

DESIGN AND VERIEICATION ™

Phases

« Phases are useful, but the need for them varies based
on the type of testbench

« AVL supports adding, inserting and removing phase,
but by default only provides 2 — Run & Report

Setup and Prerequisites

Setup and Prerequisites

Item Value
Version 10.0.26100 Build 26100
Other OS Description Not Available

™Y AV L i S d e S i g n e d to b e fu I Iy ;)ysstl\:r:n:f:::rer Microsoft Corporation
System Manufacturer P

O p e n —S O u rc e System Model HP Pavilion Plus Laptop 14-ehOxoo

System Type
System SKU

([AV L Ca n be ru n O n a ny m id - Processor 12th Gen Intel(R) Core(TM) i5-1240P, 1700 Mhz, 12 Core(s), 16 Logical Processor(s)

BIOS Version/Date Insyde F.10, 16/08/2023

| | SMBIOS Version 33

eve P C Embedded Controller Version 31.36

BIOS Mode UEFI
BaseBoard Manufacturer HP
BaseBoard Product 8A36
BaseBoard Version 31.36
Platform Role Mobile
Secure Boot State On
PCR7 Configuration Elevation Required to View
Windows Directory CAWINDOWS
System Directory CA\WINDOWS\system32
Boot Device \Dewvice\HarddiskVolume1
Locale United Kingdom
Hardware Abstraction Layer Version = "10.0.26100.1"
Username
Time Zone GMT Summer Time

Installed Physical Memory (RAM) 8.00 GB

(2025

DESIGN AND VERIEICATION ™

DVCCON

CONFERENCE AND EXHIBITION

Setup

* This tutorial has been developed ¢ The demos are run under
on Ubuntu running on a VSCode
windows laptop under WSL

) Visual Studio Code Docs Updates Blog APl Extensions FAQ GitHub Copilot MCP D O search Docs
Powershell = Your code editor.
wsl --install Redef | Ed W'th AI.
Download for Windows Trjjagent mode

(2025

DESIGN AND VERIEICATION ™

https://learn.microsoft.com/en-us/windows/wsl/install
https://code.visualstudio.com/

Setup

e Using VSCode with WSL
* https://code.visualstudio.com/docs/remote/wsl|

» For a better editor experience
Python, SystemVerilog and Browser
extensions are added to VSCode

https://code.visualstudio.com/docs/remote/wsl
https://code.visualstudio.com/docs/remote/wsl

Setup

* All examples are run using Verilator

Installation

This section discusses how to install Venlator.

Package Manager Quick Install

Using a distribution’s package manager is the easiest way to get started. (Note packages are
unlikely to have the most recent version, so Git Quick Install might be a better alternative.) To
install as a package:

agpt-get install verilator # On Ubuntu

(2025

DESIGN AND VERIEICATION ™

DVCCON

CONFERENCE AND EXHIBITION

https://www.veripool.org/verilator/

Setup

GTKWave

GTKWave is a fully featured GTK+ based wave viewer for Unix and Win32 which reads FST, and GHW files as well
as standard Verilog VCD/EVCD files and allows their viewing.

* Waveforms can be viewed using GTKWave

Building GTKWave from source

Installing dependencies

Debian, Ubuntu:

apt install build-essential meson gperf flex desktop-file-utils libgtk-3-dew \ 18]
libbz2-dev 1ibjudy-dev libgirepositoryl.@-dev

Fedora:

dnf install meson gperf flex glib2-devel gcc gcc-c++ gtk3-devel \ =]
gobject-introspection-devel desktop-file-utils tcl
macOSs:
brew install desktop-file-utils shared-mime-info \ 18]
gobject-introspection gtk-mac-integration \
meson ninja pkg-config gtk+3 gtka
Building GTKWave
git clone “https://github.com/gtkwave/gtkwave.git" (_[..:]

cd gthkwave
meson setup build && cd build && meson install

(2025

DESIGN AND VERIEICATION ™

DVCCON

CONFERENCE AND EXHIBITION

https://gtkwave.sourceforge.net/

Setup

 Surfer is a preferred Waveform viewer with VSCode integration

surfer

) A

- surfer-project

(2025

DESIGN AND VERIEICATION ™

https://surfer-project.org/
https://surfer-project.org/

Setup

e All material for this tutorial is on GitHub
* https://github.com/projectapheleia/dvcon europe25

* To create a virtual environment and install avl-core
e source avl.sh

e Full AVL documentation is available on ReadTheDocs
* https://avl-core.readthedocs.io/en/latest/index.html

https://github.com/projectapheleia/dvcon_europe25
https://github.com/projectapheleia/dvcon_europe25
https://github.com/projectapheleia/dvcon_europe25
https://avl-core.readthedocs.io/en/latest/index.html
https://avl-core.readthedocs.io/en/latest/index.html
https://avl-core.readthedocs.io/en/latest/index.html
https://avl-core.readthedocs.io/en/latest/index.html

DESIGN AND \Qﬁ?mﬂm

DVCON

CONFERENCE AND EXHIBITION

10 YEAR ANNIVERSARY

Tutorial 1

Simple FIFO

SYSTEMS INITIATIVE

Design Under Test

* The DUT is a simple FIFO
* 100MHz Clock

* Async — active low reset |

e Width : 8 bits P ;

* Depth : 8 entries [J H
* Full / Empty indicators 5 Sl

(2025

DESIGN AND VERIEICATION ™

Phase O

1. Extend the environment to drive the
clock and reset signals
ple fifo env(avl.Env):
__init_ (self, name, parent):

Add a timeout (1ms) | i bl
self.info("Creating simple fifo env:..."
Confirm FIFO is empty after reset

test():

(2025

DESIGN AND VERIEICATION ™

https://avl-core.readthedocs.io/en/latest/methodology/env.html
https://avl-core.readthedocs.io/en/latest/methodology/env.html
https://avl-core.readthedocs.io/en/latest/methodology/env.html

cocotb

from cocotb.triggers import Timer, RisingEdge
Phase 0

__init__ (self, name, parent):
super().__init__ (name, parent)
self.info("Creating simple fif

N Register handle to DUT self.hdl = avl.Factory.get_variable(f"{self.get_full name

@cocotb.test

Lasttdut)™
avl.Factory.set variable("*.hdl", dut)

= simple fifo env("env"”

await env.start()

(2025

DESIGN AND VERIEICATION ™

DVGCOIN

CONFERENCE AND EXHIBITION

*t Timer, RisingEdge

simple fifo env(avl.Env):
P h a S e O __init__ (self, name, parent):
super().__init__ (name, parent)

self.info("Creating simple_fif

self.hdl = avl.Factory.get_variable(f"{self.get full_name

* Register handle to DUT
e Create a run_phase

run_phase(self):
self.raise_objection()

cocotb.start_soon(self.clock(self.hdl.i_clk, freq mHz=100))

* Create a clock

(2025

DESIGN AND VERIEICATION ™

DVCON

CONFERENCE AND EXHIBITION

Phase O

Register handle to DUT
Create a run_phase
Create a clock

Create a reset

Create a timeout

m cocotb.triggers import Timer, RisingEdge

imple fifo env(avl.Env):

__init__ (self, name, parent):
super().__init__ (name, parent)
self.info("Creating simple fifo env:

self.hdl = avl.Factory.get_variable(f"{self.get_full name

run_phase(self):
self.raise_objection()

05\

cocotb.start_soon(self, clockiseltrhdi—i—ciks = reg miz=166>

cocotb.start_soon(self.async_reset(self.hdl.i_rst_n, duration=100, units="ns",

cocotb.start_soon(self.timeout(duration=1, units="ms"))

active_high=

(2025

DESIGN AND VERIEICATION ™

DVCON

CONFERENCE AND EXHIBITION

Phase O

Register handle to DUT
Create a run_phase
Create a clock

Create a reset

Create a timeout

Add the reset check

ort cocotb

m cocotb.triggers import Timer, RisingEdge

imple_fifo_env(avl.Env):

__init__ (self, name, parent):
super().__init__ (name, parent)
self.info("Creating simple fifo _env:

self.hdl = avl.Factory.get_variable(f"{self.get_full name
run_phase(self):

self.raise_objection()

ocotb.start_soon(self.clock(self.hdl.i clk, freq _mHz=100))

cocotb.start_soon(self.async_reset(self.hdl.i_rst_n, duration=100, units="ns",

otb.start_soon(self.timeout(duration=1, units="ms"

it RisingEdge(self.hdl.i_clk)
if self.hdl.i_rst_n.value == 1:

ert self.hdl.o full.value == @, "FIFO s
ert self.hdl.o_empty.value == 1,
it Timer(2, unit="us")

self.drop_objection(n

active_high=

(2025

DESIGN AND VERIEICATION ™

DVGCOIN

CONFERENCE AND EXHIBITION

» TEST_H ple_: o B_Ti
sim build/Vtop --trace --trace-structs

COCOTB_TES

.--ns INFO gpi
.--ns INFO gpi
.08ns INFO cocotb
0.88ns INFO cocotb
.0ens INFO cocotb
.0ans INFO cocotb.regression
.0ens INFO cocotb
0.88ns INFO cocotb.regression

. 0.00ns INFO cocotb
u n e e S 100.88ns WARNING cocotb.Test test.test

* make sim

ADDR_WIDTH = $clog2
[ADDR_WIDTH-1:0]
[WIDTH-1:0
[ADDR_WIDTH-1:0]

100.88ns WARNING cocotb.regression
100.08ns INFO cocotb.regression

DEPTH) ;
ptr_t;

data_t;
yount_t;

Using Python 3.12.4 interpreter at /home/abond/projects/TEMP/dvcon_europe25/venv/bin/python3
VPI registered

mbed/gpi_embed.cp in _embed init_python
../gpi/GpiCommon. cp| in gpi_print_registered_impl
Running on Verilator version 5.840 2025-88-30
Seeding Python random module with 1759574287
Initial cocotb v2.0.0 from /home/abond/projects/TEMP/dvcon_europe25/venv/1ib/python3.12/site-packages/cocotb
pytest not found, install it to enable better AssertionError messages
Running tests
simple_fifo_tb.test (1/1)
Creating simple fifo env:...
FIFO should be empty after reset
Traceback (most recent call last):
File "/home/abond/projects/TEMP/dvcon_europe25/tutorials/tl_simple fifo/phase@ solution/cocotb/simple fifo tb.py™, line 49, in test
await env.start()
File "/home/abond/projects/TEMP/dvcon_europe25/venv/lib/python3.12/site-packages/avl/_core/component.py”, line 131, in start
await self. hierarchical func_(fn_name)
File "/home/abond/projects/TEMP/dvcon_europe25/venv/1ib/python3.12/site-packages/avl/_core/component.py”, line 81, in _hierarchical func_
await fn(*args, **kwargs)
File "/home/abond/projects/TEMP/dvcon_europe25/tutorials/t1_simple fifo/phase@ solution/cocotb/simple fifo tb.py™, line 35, in run_phase
T - &e=shauld be empty after reset”

AssertionError: FIFO should be empty after reset
mple_fifo_tb.test

REE xEREkErisds EREERER xERE

IEST STATUS _SIM LIMG=(mS]~ REAL TIME (s) RATIO (ns/s) **

AEREERKERKRRERRERERTTT P R R AR R AR R AR R R AR R AR R AR AR KRR R AR

** simple_fifo_tb.test 100.00

ADDR_WIDTH = $clog2(DEPTH);
[ADDR_WIDTH-1:0] ptr_t;
[WIDIN.2.0] data_t;
[ADDR_WIDTH:©] gount_t;

DESIGN AND VERIEICATION ™

DVGCOIN

CONFERENCE AND EXHIBITION

Phase 1

* Create
* Agent
* Driver
* Sequencer

* Create a random sequence

e Create a monitor with built in
checks

(2025

DESIGN AND VERIEICATION ™

simple_fifo_driver(avl.Driver):
__init__ (self, name, parent):
super()._ init_ (name, parent)

P h 1 self.hdl = avl.Factory.get_variable(f"{self.get_full_name
a S e reset(self):

self.hdl.i_wr_en.value =
self.hdl.i wr_data.value
self.hdl.i_rd_en.value =

pop(self):

* Create agent and driver Emamcemn

push(self, item):
e fifo 1t(avl.Agent): self.hdl.i_wr_en.value =
__init_ (self, name, parent): self.hdl.i_wr_data.value = item.value.value
super().__init_ (name, parent) le:
self.hdl = avl.Factory.get_variable(f"{self.get_ full_name .hd1" if bool(self.hdl.o_full.value):

item.set_event("done")
driver = simple _driver(“"driver”, self) await RisingEdge(self.hdl.i_clk)
self.hdl.i_wr_en.value = @
self.hdl.i wr _data.value = @
monitor = simple_fifo_monitor("monitor"”, self)
run_phase(self):

it self.reset()
sequencer = avl. ncer("sequencer”, self)

cocotb.start_soon(self.pop())
sequence = S > > ce("sequence"”, self)

item = await self.seq_item_port.blocking_get()
sequencer.seq_item_export.connect(self.driver.seq_item_port) while .
await RisingEdge(self.hdl.i_clk)
bool(self.hdl.i_rst_n.value):
sequence.set_sequencer(self.sequencer) await self.reset()

run_phase(self):) eak

self.sequence.start() cocotb.start_soon(self.push(item))

(2025

DESIGN AND VERIEICATION ™

DVGCOIN

CONFERENCE AND EXHIBITION

Phase 1

__(self, name, parent):
super().__init_ (name, parent)
self.value = avl.Logic(@, width=8, fmt=hex)

* Create
simple fifo sequence(avl.Sequence):
¢ /\g;EEf]t . name, parent):

. super().__init__ (name, parent)
¢ [)TT\IEEF' self.n_items = avl.Factory.get variable(f"{self.get full name

* Sequencer body(self):

sqr = self.get _sequencer()
* Create a random sequence .
sqr.raise_objection()
' in range(self.n_items):
item = simple fifo item("item", self)
it self.start _item(item)
item.randomize()
it self.finish item(item)
sqr.drop_objection()

(2025

DESIGN AND VERIEICATION ™

DVCON

CONFERENCE AND EXHIBITION

Phase 1

* Create
* Agent
* Driver
* Sequencer

* Create a random sequence

e Create a monitor with built in

checks

itor(avl.Monitor):
__init__ (self, name, parent):
uper().__init__ (name, parent)
self.hdl = avl.Factory.get_variable(f"{self.get_full name

self.fifo = avl.Fifo(8)
run_phase(self):
ngEdge(self.hdl.i_clk)
bool(self.hdl.i_rst_n.value):
self.fifo.clear()
*t self.hdl.o_full.value == (len(self.fifo) == 8), "FIFO f
*t self.hdl.o_empty.value == (len(self.fifo) == @), "FIFO empt

if bool(self.hdl.i_rd_en.value)
ert self.fifo.pop(@) == self.hdl.o_rd_data.value

if bool(self.hdl.i_wr_en.value) bool(self.hdl.o_full.value):
self.fifo.append(self.hdl.i_wr_data.value)

bool(self.hdl.o_empty.value):

(2025

DESIGN AND VERIEICATION ™

DVCON

CONFERENCE AND EXHIBITION

Phase 1

* make sim

File WView Settings Help
— Qe € < > P> P
Time

Scopes

» simple_fifo

DESIGN AND VERIEICATION ™

DVCON

CONFERENCE AND EXHIBITION

Phase 2

e Add rate limiters to driver
* Increase number of items

(2025

DESIGN AND VERIEICATION ™

Phase 2 Sy

per().__init__ (name, parent)
self.hd]l s aulfecteoryrget variabie(l {56l .pec Tull Tame
self.wr_rate \ tory.get_variable(f"{self.get_full_name
self.rd_rate = a y.get_variable(f"{self.get_full_name

reset(self):
1 1 1 1f.hdl. i .value =
* Add rate limiters to driver e ool St
self.hdl.i_rd_en.value =

pop(self).

self.hdl.i_rd_en.value = @
hile r randint(@, 100) > self.rd_rate:
aw i se(self.hdl.i_clk)
self.hdl.1_Fa_ em-varoe =t

se(self.hdl.i_clk)

push(self, item):
random.randint(0, 100) > self.wr_rate:
ingEdge(self.hdl.i_clk)

hdl.i_wr_en.value = 1
hdl.i_wr_data.value = item.value.value

1(self.hdl.o_full.value):
it Risi e(self.hdl.i_clk)

set_event("done")

&l sEdge(self.hdl.i_clk)
hdl.i_wr_en.value = ©
hdl.i_wr_data.value =

(2025

DESIGN AND VERIEICATION ™

DVCON

CONFERENCE AND EXHIBITION

Phase 2

gs Help
QO E M« WM

(2025

DESIGN AND VERIEICATION ™

DVCCON

CONFERENCE AND EXHIBITION

DESIGN AND \Qﬁ?mﬂm

DVCON

CONFERENCE AND EXHIBITION

10 YEAR ANNIVERSARY

Tutorial 2

ALU

SYSTEMS INITIATIVE

Design Under Test

e Combinatorial ALU unit

i_a[31:0] i_b[31:0]
"

3’b000 NOP
3’'b001 ADD
3[bo 10 SU B i_OpCOdE[ZO]———b — o_carry
3'h011 AND l
3’b100 OR
0_c[31:0]
3'b101 XOR
3'b110 COMP
3’b111 ILLEGAL

(2025

DESIGN AND VERIEICATION ™

Phase O

e Using a template create
testbench with

e Sequence / Sequence Item
* Sequencer

* Driver

* Model

e Scoreboard

* Visualize
* Tree
* Diagram

(2025

DESIGN AND VERIEICATION ™

NNNNNNNNNNNNNNNNNNNNNNN

Phase O

e Using a template create
testbench with

e Sequence / Sequence Item

__init_ (self, name, parent_sequence):
super().__init__ (name, parent_sequence)
self.set field attributes("name"”, compare=

self.opcode = avl.Enum("NOP", {"NOP" : @, "ADD"
self.a vl.Uint32(0, fmt=hex)

self.b avl.Uint32(9, fmt=hex)

self.c avl.uint32(e, fmt=hexﬂ
self.carry avl.Bool()

(2025

DESIGN AND VERIEICATION ™

Phase O

* Using a template create

testbench with
* Driver

clear(self):
self.hdl.i_a.value = ©
self.hdl.i b.value = ©

self.hdl.i_opcode.value

reset(self):
3it self.clear()

it Fall ge(self.rst)
t self.clear()

run_phase(self):
cocotb.start_soon(self.reset())

self.seq_item_port.blocking get()

ingEdge(self.clk)
l(self.rst.value):

self.hdl.i opcode.value = int(item.opcode)
self.hdl.i_a.value = int(item.a)
self.hdl.i b.value = int(item.b)
item.set_event(“done™)

report_phase(self):
self.raise_objection()
- Ir rAa -,(16).
wait R ge(self.clk)
await self.clear()
self.drop_objection()

(2025

DESIGN AND VERIEICATION ™

DVCON

CONFERENCE AND EXHIBITION

run_phase(self):

Phase O R

orig = ¢ self.item_port.blocking get()

item.opcode.value = orig.opcode.value

item = ¢

item.a.value = orig.a.value
item.b.value = orig.b.value

* Using a template create

if item.opcode == item.opcode.NOP:
teStbenCh With ,_c = avl.Logic(e, fmt=hex, auto_random= width=33)
elif item.opcode == item.opcode.ADD:
avl.Logic((item.a.value + item.b.value), fmt=hex, auto_random= width=33)
[] MOdeI .opcode == item.opcode.SUB:
avl.Logic((item.a.value - item.b.value), fmt=hex, auto_random= width=33)
elif item.opcode == item.opcode.AND:
¢ Scoreboa rd = .-,a‘.'LL.)Logic(_item.a.\p/alue & item.b.value), fmt=hex, auto_random= width=33)

f item.opcode == item.opcode.OR:
c = avl.Logic((item.a.value | item.b.value), fmt=hex, auto_random= width=33)
elif item.opcode == item.opcode.XOR:
avl.Logic((item.a.value ~ item.b.value fmt=hex, auto_random= width=33)
f item.opcode == item.opcode.COMP:
= avl.lLogic((item.a.value == item.b.value), fmt=hex, auto_random= » width=33

item.c 1.Uint32(c)
item.carry = avl.Bool((c >> 32))
self.item_export.write(item)

No need for scoreboard- built into template
_sSaan y S EUROPE

7

Phase O

* make run
* Serror —opcode[7] is illegal

ODULE=simple alu_tb TESTCASE= TOPLEVEL= TOPLEVEL_LANG=verilog
sim build/Vtop --trace --trace-structs
.--ns INFO gpi ..mbed/gpi_embed.cpp:188 in set_program name_in_venv Using Python virtual environment interpreter at /home/abond/projects/dvcon_europe25/venv/bin/python
.--ns INFO gpi ../gpi/GpiCommon.cpp:101 in gpi print_registered_impl VPI registered

.9ens INFO cocotb Running on Verilator version 5.020 2024-01-01
.@ens INFO cocotb Running tests with cocotb v1.9.2 from /home/abond/projects/dvcon_europe25/venv/1ib/python3.12/site-packages/cocotb
.0ens INFO cocotb Seeding Python random module with 1750609803
.0ens INFO cocoth _nagne " Feund=test.simpnle alu tb.test
26015 INFO cocotb.regression test (1/1)
‘;20@99] %Error: simple alu.sv:55: Assertion failed in simple_alu: Invalid opcode: 111

rror: rtl/simple alu.sv:55: Verilog $stop
\oarting. ..

(2025

DESIGN AND VERIEICATION ™

DVCCON

CONFERENCE AND EXHIBITION

Phase O

alu item(avl.Sequenceltem):
__init__ (self, name, parent_sequence):
uper().__init_(name, parent_sequence)
.set field attributes("name"”, compare=

.opcode avl. IOP" "NOP™ : @, "ADD"

.a avl.Uint32(0, fmt=hex)
.b avl.Uint32(0@, fmt=hex)
o avl.Uint32(0@, fmt=hex)
.carry avl.Bool()

.add_constraint(“c no _illegal™

X

: X != self.opcode.ILLEGAL, self.opcode)

(2025

DESIGN AND VERIEICATION ™

DVCON

CONFERENCE AND EXHIBITION

Phase O

* Visualize
* True
* Diagram

sqr

seq_item export

drv
mon

L item export

model

L item export

sb

11ak ('
jalization.tree
ization.diagram(e)

)

env

agent(

model

mon

sqr

cfg

sb

drv

cfg

item export

item export

seq item export

(2025

DESIGN AND VERIEICATION ™

DVCCON

CONFERENCE AND EXHIBITION

Phase 1

* Add constraints to a and b to generate more interesting values

(2025

DESIGN AND VERIEICATION ™

Phase 1

* Add constraints to a and b to generate more interesting values

interesting values = [self.a.get min(), self.a.get min()+1, self.a.get _max()-1, self.a.get_max()]
interesting values.extend([1 << i for i in range(32)])
interesting values.extend([~(1 << i) for i in range(32)])
weights = [1] * len(interesting values)
self.add_constraint(“c_a", : random.choices(interesting values + [y],
weights=weights + [100])[0],
self.a, random.randint(self.a.get min(), self.a.get max()))
self.add_constraint(“c_b" . : random.choices(interesting values + [y],
weights=weights + [100])[0©], self.b,
random.randint(self.b.get_min(), self.b.get_max)

(2025

DESIGN AND VERIEICATION ™

DVCCON

CONFERENCE AND EXHIBITION

Phase 2

* Add functional coverage
e Generate coverage report

(2025

DESIGN AND VERIEICATION ™

name, paren :
r().__init__(name, parent_env)

Phase 2 o

self.cg

self.cp_opcode = self.cg.add_coverpoint(“opcode") : self.item.opcode)
k,v in self.item.opcode.values.items():
self.cp_opcode.add_bin(k, v, illegal=(k=="ILLEGAL"

e Add functional coverage

self.cp_a = self.cg.add_coverpoint(“a’ : self.item.a)
self.cp_b = self.cg.add_coverpoint("t : self.item.b)
~ v in alu_item.interesting values:
self.cp_a.add_bin(f'{v}', v)
self.cp_b.add _bin(f'{v}', v)

self.cp_carry = self.cg.add_coverpoint(“carry”, : self.item.carry)
» t in (True,):
self.cp_carry.add_bin(f’ L)

self.cc = self.cg.add_covercross(“carry X opcode”, self.cp_carry, self.cp_opcode)

rbins = []
r k,v in self.cc._bins_.items():
F k.startswith ue" (k.endswith(" % k.endswith("SuB"
rbins.append(k)
r k in rbins:
self.cc.remove_bin(k)

report_phase(self):
print(self.cg.report(full=

(2025

DESIGN AND VERIEICATION ™

DVCON

CONFERENCE AND EXHIBITION

Phase 2

* Add functional coverage
e Generate coverage report

e avl-coverage-analysis --path .

Coverage Report

Show| 10 + entries Search:
name 4 | total bins covered bins coverage
Filter name |Filter total bins |Filter covered bins |Filter coverage
coverage 146.0 420 28767123

Showing 1 to 1 of 1 entries

@ y s) py

Previous 1 MNext

DESIGN AND VERIEICATION ™

DVCCON

CONFERENCE AND EXHIBITION

Verification Components

 Some AMBA protocol components are now available
* APB
* AXI-STREAM

* AXI

https://avl-apb.readthedocs.io/en/latest/
https://avl-apb.readthedocs.io/en/latest/
https://avl-axi-stream.readthedocs.io/en/latest/
https://avl-axi-stream.readthedocs.io/en/latest/
https://avl-axi-stream.readthedocs.io/en/latest/
https://avl-axi-stream.readthedocs.io/en/latest/
https://avl-axi.readthedocs.io/en/latest/
https://avl-axi.readthedocs.io/en/latest/

DESIGN AND \Qﬁ?mﬂm

DVCON

CONFERENCE AND EXHIBITION

10 YEAR ANNIVERSARY

Thank You

SYSTEMS INITIATIVE

https://github.com/projectapheleia/avl
https://avl-core.readthedocs.io/en/latest/index.html
https://avl-core.readthedocs.io/en/latest/index.html
https://avl-core.readthedocs.io/en/latest/index.html

10 YEAR ANNIVERSARY

Questions And Answers

	Slide 1: Introduction to the Apheleia Verification Library
	Slide 2: Tutorial Structure
	Slide 3: Overview
	Slide 4: Overview – What is AVL
	Slide 5: Overview – Who is AVL Aimed At?
	Slide 6
	Slide 7
	Slide 8: AVL Features
	Slide 9: AVL Variables
	Slide 10: AVL Variables
	Slide 11: AVL Variables
	Slide 12: AVL Variables
	Slide 13: Constrained Random
	Slide 14: Constrained Random
	Slide 15: AVL Methodology
	Slide 16: Factory
	Slide 17: Phases
	Slide 18: Setup and Prerequisites
	Slide 19: Setup and Prerequisites
	Slide 20: Setup
	Slide 21: Setup
	Slide 22: Setup
	Slide 23: Setup
	Slide 24: Setup
	Slide 25: Setup
	Slide 26: Tutorial 1
	Slide 27: Design Under Test
	Slide 28: Phase 0
	Slide 29: Phase 0
	Slide 30: Phase 0
	Slide 31: Phase 0
	Slide 32: Phase 0
	Slide 33: Phase 0
	Slide 34: Phase 1
	Slide 35: Phase 1
	Slide 36: Phase 1
	Slide 37: Phase 1
	Slide 38: Phase 1
	Slide 39: Phase 2
	Slide 40: Phase 2
	Slide 41: Phase 2
	Slide 42: Tutorial 2
	Slide 43: Design Under Test
	Slide 44: Phase 0
	Slide 45: Phase 0
	Slide 46: Phase 0
	Slide 47: Phase 0
	Slide 48: Phase 0
	Slide 49: Phase 0
	Slide 50: Phase 0
	Slide 51: Phase 1
	Slide 52: Phase 1
	Slide 53: Phase 2
	Slide 54: Phase 2
	Slide 55: Phase 2
	Slide 56: Verification Components
	Slide 57: Thank You
	Slide 58: Questions And Answers

