
Introduction to the Apheleia Verification Library
Andy Bond

Project Apheleia

Tutorial Structure

• Overview of AVL’s key concepts

• Setup and Prerequisites

• Fully worked examples

• Question and Answers

Overview

Overview – What is AVL

• The Apheleia Verification Library (AVL) is an open-source python
library

• AVL is not a UVM implementation in python

• AVL is not a minimal test-bench language

• AVL takes combines the re-use best practices of UVM and efficiency
of python

• AVL is an engineer driven test-bench library enabling scalable
verification environments with a focus on productivity – not
methodology

Overview – Who is AVL Aimed At?

• Novices and students

• Industry experts

• Hobbyists

• Professionals

• Anyone who wants to spend more time doing verification and less
time developing code

Pros

• Successful at bringing
standardization to the
verification industry

• Strong methodology

• Wide range of available VIP

• Well understood terminology

Cons

• Limited to major EDA vendors
with implementation specific
version

• Inconsistent views on best
practices

• Code intensive development

Pros
• 100% Open-Source

• Universal simulator support

• Active User Community

• Near Zero compile time

• Widely used an understood
language

• Rich and diverse range of useful
libraries

Cons
• No common methodology

• Limited available VIP

• Software centric

• Different

AVL Features

• HDL centric variables

• Constrained Random

• Familiar methodology
• Sequences
• Drivers
• Agents

• Familiar re-use
• Factory
• Phases
• TLM style ports

• Functional Coverage
• Run-time defined

• Statistical Coverage

• Visualization

• Multi-purpose logging
• Human Readable
• Machine Readable

• Searchable Trace

AVL Variables
System Verilog Python AVL

shortint int avl.Int16

int / integer int avl.Int32

longint int avl.Int64

byte int avl.Byte / avl.Int8

logic / bit bool / int avl.Logic / avl.Bool / avl.Uint<N>

time int avl.Int64

real float avl.Double / avl.Fp64

float avl.Half / avl.Fp16

shortreal float avl.Float / avl.Fp32

string str str

enum Enum avl.Enum

AVL Variables
• Once defined all AVL variables behave

like python variables
• Arithmetic operations

• Comparison

• Wrapping and sign are handled
naturally

• Each variable can have a defined string
format for easier debug

AVL Variables

• Native floating-point values
based on NumPy

• Helper functions to interact with
hardware

https://numpy.org/

AVL Variables

• Structures
• Verilator and some other simulators flattens structs

• Helper class provided to be simulator agnostic

Constrained Random

• UVM benefits from the constrained random features of SystemVerilog

• Python random supports randomization, but lacks constraints

• There are many theorem solvers available in Python
• Each has benefits and limitations

• Can be confusing to decide on best approach

https://docs.python.org/3/library/random.html
https://docs.python.org/3/library/random.html

Constrained Random

• AVL utilizes Z3 – an open-source theorem prover from Microsoft

• Supports bool, int, uint, enum and float numbers and wide variables

• Supports hard and soft constraints

• Well documented and well maintained

https://github.com/Z3Prover/z3

AVL Methodology

• AVL follows the UVM methodology

• Familiar and consistent

• Terminology and behaviour
maintained where appropriate

• No need for parameterization

• Direct access
• No requirement for virtual interfaces

Factory

• UVM factory was a fudge due to language limitation

• AVL factory built in natively

• User extendable specificity function to decide override precidence

Phases

• Phases are useful, but the need for them varies based
on the type of testbench

• AVL supports adding, inserting and removing phase,
but by default only provides 2 – Run & Report

Setup and Prerequisites

Setup and Prerequisites

• AVL is designed to be fully
Open-Source

• AVL can be run on any mid-
level PC

Setup

• This tutorial has been developed
on Ubuntu running on a
windows laptop under WSL

• The demos are run under
VSCode

https://learn.microsoft.com/en-us/windows/wsl/install
https://code.visualstudio.com/

Setup

• Using VSCode with WSL
• https://code.visualstudio.com/docs/remote/wsl

• For a better editor experience
Python, SystemVerilog and Browser
extensions are added to VSCode

https://code.visualstudio.com/docs/remote/wsl
https://code.visualstudio.com/docs/remote/wsl

Setup

• All examples are run using Verilator

https://www.veripool.org/verilator/

Setup

• Waveforms can be viewed using GTKWave

https://gtkwave.sourceforge.net/

Setup

• Surfer is a preferred Waveform viewer with VSCode integration

https://surfer-project.org/
https://surfer-project.org/

Setup

• All material for this tutorial is on GitHub
• https://github.com/projectapheleia/dvcon_europe25

• To create a virtual environment and install avl-core
• source avl.sh

• Full AVL documentation is available on ReadTheDocs
• https://avl-core.readthedocs.io/en/latest/index.html

https://github.com/projectapheleia/dvcon_europe25
https://github.com/projectapheleia/dvcon_europe25
https://github.com/projectapheleia/dvcon_europe25
https://avl-core.readthedocs.io/en/latest/index.html
https://avl-core.readthedocs.io/en/latest/index.html
https://avl-core.readthedocs.io/en/latest/index.html
https://avl-core.readthedocs.io/en/latest/index.html

Tutorial 1
Simple FIFO

Design Under Test

• The DUT is a simple FIFO

• 100MHz Clock

• Async – active low reset

• Width : 8 bits

• Depth : 8 entries

• Full / Empty indicators

Phase 0

1. Extend the environment to drive the
clock and reset signals

2. Add a timeout (1ms)

3. Confirm FIFO is empty after reset

https://avl-core.readthedocs.io/en/latest/methodology/env.html

https://avl-core.readthedocs.io/en/latest/methodology/env.html
https://avl-core.readthedocs.io/en/latest/methodology/env.html
https://avl-core.readthedocs.io/en/latest/methodology/env.html

Phase 0

• Register handle to DUT

Phase 0

• Register handle to DUT

• Create a run_phase

• Create a clock

Phase 0

• Register handle to DUT

• Create a run_phase

• Create a clock

• Create a reset

• Create a timeout

Phase 0

• Register handle to DUT

• Create a run_phase

• Create a clock

• Create a reset

• Create a timeout

• Add the reset check

Phase 0

• Run the test
• make sim

• Error on o_full due to width of variable

Phase 1

• Create
• Agent

• Driver

• Sequencer

• Create a random sequence

• Create a monitor with built in
checks

Phase 1

• Create agent and driver

Phase 1

• Create
• Agent

• Driver

• Sequencer

• Create a random sequence

Phase 1

• Create
• Agent

• Driver

• Sequencer

• Create a random sequence

• Create a monitor with built in
checks

Phase 1

• make sim

• FIFO never fills as we pop immediately

Phase 2

• Add rate limiters to driver

• Increase number of items

Phase 2

• Add rate limiters to driver

Phase 2

Tutorial 2
ALU

Design Under Test

• Combinatorial ALU unit
Opcode Description

3’b000 NOP

3’b001 ADD

3’b010 SUB

3’b011 AND

3’b100 OR

3’b101 XOR

3’b110 COMP

3’b111 ILLEGAL

Phase 0

• Using a template create
testbench with
• Sequence / Sequence Item

• Sequencer

• Driver

• Model

• Scoreboard

• Visualize
• Tree

• Diagram

Phase 0

• Using a template create
testbench with
• Sequence / Sequence Item

No need for sequence or sequencer – built into template

Phase 0

• Using a template create
testbench with
• Driver

Phase 0

• Using a template create
testbench with
• Model

• Scoreboard

No need for scoreboard– built into template

Phase 0

• make run
• $error – opcode[7] is illegal

Phase 0

Add constraint to avoid illegal instructions

Phase 0

• Visualize
• True

• Diagram

Phase 1

• Add constraints to a and b to generate more interesting values

Phase 1

• Add constraints to a and b to generate more interesting values

Phase 2

• Add functional coverage

• Generate coverage report

Phase 2

• Add functional coverage

Phase 2

• Add functional coverage

• Generate coverage report
• avl-coverage-analysis --path .

Verification Components

• Some AMBA protocol components are now available
• APB

• AXI-STREAM

• AXI

https://avl-apb.readthedocs.io/en/latest/
https://avl-apb.readthedocs.io/en/latest/
https://avl-axi-stream.readthedocs.io/en/latest/
https://avl-axi-stream.readthedocs.io/en/latest/
https://avl-axi-stream.readthedocs.io/en/latest/
https://avl-axi-stream.readthedocs.io/en/latest/
https://avl-axi.readthedocs.io/en/latest/
https://avl-axi.readthedocs.io/en/latest/

Thank You
https://github.com/projectapheleia/avl

https://avl-core.readthedocs.io/en/latest/index.html

https://github.com/projectapheleia/avl
https://avl-core.readthedocs.io/en/latest/index.html
https://avl-core.readthedocs.io/en/latest/index.html
https://avl-core.readthedocs.io/en/latest/index.html

Questions And Answers

	Slide 1: Introduction to the Apheleia Verification Library
	Slide 2: Tutorial Structure
	Slide 3: Overview
	Slide 4: Overview – What is AVL
	Slide 5: Overview – Who is AVL Aimed At?
	Slide 6
	Slide 7
	Slide 8: AVL Features
	Slide 9: AVL Variables
	Slide 10: AVL Variables
	Slide 11: AVL Variables
	Slide 12: AVL Variables
	Slide 13: Constrained Random
	Slide 14: Constrained Random
	Slide 15: AVL Methodology
	Slide 16: Factory
	Slide 17: Phases
	Slide 18: Setup and Prerequisites
	Slide 19: Setup and Prerequisites
	Slide 20: Setup
	Slide 21: Setup
	Slide 22: Setup
	Slide 23: Setup
	Slide 24: Setup
	Slide 25: Setup
	Slide 26: Tutorial 1
	Slide 27: Design Under Test
	Slide 28: Phase 0
	Slide 29: Phase 0
	Slide 30: Phase 0
	Slide 31: Phase 0
	Slide 32: Phase 0
	Slide 33: Phase 0
	Slide 34: Phase 1
	Slide 35: Phase 1
	Slide 36: Phase 1
	Slide 37: Phase 1
	Slide 38: Phase 1
	Slide 39: Phase 2
	Slide 40: Phase 2
	Slide 41: Phase 2
	Slide 42: Tutorial 2
	Slide 43: Design Under Test
	Slide 44: Phase 0
	Slide 45: Phase 0
	Slide 46: Phase 0
	Slide 47: Phase 0
	Slide 48: Phase 0
	Slide 49: Phase 0
	Slide 50: Phase 0
	Slide 51: Phase 1
	Slide 52: Phase 1
	Slide 53: Phase 2
	Slide 54: Phase 2
	Slide 55: Phase 2
	Slide 56: Verification Components
	Slide 57: Thank You
	Slide 58: Questions And Answers

