2022

DESIGN AND VERIFICATION™

DVCON ®

VVVVVVV
FEBRUARY 28 - MARCH 3, 2022

Ilperas

Introduction to the 5 levels of
RISC-V processor verification

(Tutorial DVCon 2022)

Simon Davidmann and Lee Moore, Imperas Software
simond@imperas.com, moore@imperas.com

© Imperas Software

Focus of this tutorial Innperas

RISC-V is changing the options that SoC designers have in their tool kits

RISC-V means many teams are designing new processors, or modifying source of
processors

For RISC-V anybody can be ‘an architecture licensee’
And every CPU needs verifying... in detail... (its not like buying in pre-verified IP)

Many people are new to CPU DV for the first time
Traditionally done behind closed doors in commercial/proprietary companies

This presentation aims to introduce the main approaches of RISC-V CPU DV

And discusses pros and cons of the different approaches
Also it introduces the main components needed in any RISC-V processor DV environment

NNNNNNNNNNNNNNNNNNNNN

Page 2 © Imperas Software Ltd. Q1 2022

RISC-V processor verification tutorial
Items to be covered, main takeaways |[ﬁ]ﬂ|P)eras

Introduction to RISC-V

Overview of the issues when verifying the design of a RISC-V CPU
Different approaches to verifying a RISC-V CPU

Main components of a verification testbench

Introduction to simulators for RISC-V CPUs

Use of various virtual platform components in verification
Discussion of different reference model requirements
Introduction to instruction stream generators

Status of RISC-V compliance and its relationship to verification
Pointers to some useful architectural validation test suites
Understanding a complete SystemVerilog testbench via a detailed walk through demonstration

NNNNNNNNNNNNNNNNNNNNN

Page 3 © Imperas Software Ltd. Q1 2022

Introduction to Imperas

Involvement with RISC-V |[ﬁ]D|P)e ras

Imperas develops simulators, tools, debuggers, modeling technology, and models to help embedded systems developers
get their software running...

...and hardware developers get their designs correct

14+ years, self funded, profitable, UK based, team with much EDA (simulators, verification), processors, and embedded
experience

Staff worked in Arm, MIPS, Tensilica, Cadence, Synopsys

and in verification in EDA on development of Verilog, VCS, SystemVerilog, Verisity and their methodologies
Started work with customers on RISC-V in 2017

Contributed to RISC-V compliance since 2018, RISC-V DV since 2019

Our RISC-V focus is CPU verification

We provide configurable reference models, the fastest highest quality simulators, advanced development tools and the
absolute best solution for RISC-V hardware design verification

20+ of the leading RISC-V CPU developers use and rely on Imperas solutions

2022 wWww.imperas.com www.OVPworld.org

DESIGN AND VERIFICATION ™

DVCOIN

NNNNNNNNNNNNNNNNNNNNN

Page 4 © Imperas Software Ltd. Q1 2022

http://www.imperas.com/
http://www.ovpworld.org/

Agenda Innperas

Brief Introduction to RISC-V
RISC-V CPU HW DV approaches
Components of RISC-V CPU DV environment

NNNNNNNNNNNNNNNNNNNNN

Page 5 © Imperas Software Ltd. Q1 2022

zzzzzzzzzzzzzzzzzzzz

Agenda Innperas

Brief Introduction to RISC-V
RISC-V CPU HW DV approaches
Components of RISC-V CPU DV environment

For each topic and item we will try to introduce, explain, even demo
technologies and products that are available — to give you a feeling of

current state-of-the-art
We will also introduce and walk through some open source solutions

NNNNNNNNNNNNNNNNNNNNN

Page 6 © Imperas Software Ltd. Q1 2022

_
Imperas

Agenda

* Brief Introduction to RISC-V
* RISC-V CPU HW DV approaches
* Components of RISC-V CPU DV environment

IIIIIIIIIIIIIIIIIIIIII
NNNNNNNNNNNNNNNNNNNNN

Page 7 © Imperas Software Ltd. Q1 2022

nnnnnnn

¥ RISC-V Histo ry nperas

WIKIPEDIA

The Free Encyclopedia

RISC-V (pronounced "risk-five") is an open standard instruction set architecture
(ISA) that began in 2010 and is based on established reduced instruction set

computer (RISC) principles
Unlike most other ISA designs, RISC-V is provided under open source licenses
that do not require fees to use

The project began in 2010 at the University of California, Berkeley, but now
many current contributors are volunteers not affiliated with the university

Unlike other academic designs which are typically optimized only for simplicity
of exposition, the designers intended that the RISC-V instruction set be usable

for practical computers

NNNNNNNNNNNNNNNNNNNNN

RISC-V == Freedom... Innperas

Freedoms enabled by RISC-V are a huge opportunity

NNNNNNNNNNNNNNNNNNNNN

Page 14 © Imperas Software Ltd. Q1 2022

zzzzzzzzzzzzzzzzzzzz

RISC-V == Freedom... Innperas

Freedoms enabled by RISC-V are a huge opportunity

Freedoms enabled by RISC-V are a huge challenge
for verification

the largest change in the industry since? ...

NNNNNNNNNNNNNNNNNNNNN

Page 15 © Imperas Software Ltd. Q1 2022

Challenges in RISC-V CPU DV lMNPeras

Feature selection and choices require serious consideration due to implications of
every choice

Experienced architecture teams know the costs associated with every feature
Every addition dramatically increases (doubles ?) verification & compounds verification complexity
Costs of simple added feature can be huge —and unknown to inexperienced teams
Adds schedule, resources, quality costs == big risks...

As of 2021, No off-the-shelf toolkit/products available for DV of processors

No EDA vendor has ‘RISC-V CPU DV kit” product
There are in-house proprietary solutions in CPU developers... Intel, AMD, Arm, ...
Building your own adds schedule, resources, quality costs —and risks

Current SoC cost is 50% for HW DV (with CPUs bought in as proven IP)

Developing own CPU adds huge DV incremental schedule, resources, quality challenges

NNNNNNNNNNNNNNNNNNNNN

Page 16 © Imperas Software Ltd. Q1 2022

Agenda Innperas

Brief Introduction to RISC-V
Processor DV project timeline
RISC-V CPU HW DV approaches

Components of RISC-V CPU DV environment

NNNNNNNNNNNNNNNNNNNNN

Page 17 © Imperas Software Ltd. Q1 2022

A CPU HW DV project timeline |m@eras

Source/build/hire/allocate the expert team to do the work...

Focus on what needs to be verified — develop measurement metrics
Develop Verification Plan (and measurement metrics)

Determine EDA tools and models and methods to be used

Simulation choices: open source, commercial, bespoke, SystemVerilog, UVM, FPGA,
Emulation, ...

Formal...

Get tools, verification IP (VIP), testbenches, models in place

Obtain tests, create tests

Generate huge number of (constrained random) tests

Verify, triage and fix issues, continue...

... continue while measuring until functional and code coverage metrics reached

Benchmark, soak and integration testing
2022

NNNNNNNNNNNNNNNNNNNNN

Page 18 © Imperas Software Ltd. Q1 2022

_
Imperas

Agenda

* Brief Introduction to RISC-V
* RISC-V CPU HW DV approaches
* Components of RISC-V CPU DV environment

IIIIIIIIIIIIIIIIIIIIII
NNNNNNNNNNNNNNNNNNNNN

Page 19 © Imperas Software Ltd. Q1 2022

nnnnnnn

Agenda Innperas

Brief Introduction to RISC-V
RISC-V CPU HW DV approaches
Components of RISC-V CPU DV environment

During this section, several components will be mentioned... like ISS, and
ISG — these may be introduced as we go, or may be discussed in more
detail in later sections of this tutorial

NNNNNNNNNNNNNNNNNNNNN

Page 20 © Imperas Software Ltd. Q1 2022

Agenda Innperas

Brief Introduction to RISC-V

RISC-V CPU HW DV approaches
#0 “hello world” test
#1 self checking tests (e.g. Berkeley torture tests pre2018)
#2 Post simulation trace log file compare (e.g. Google riscv-dv 2019)
#3 sync-lock-step-compare (e.g. CV32E40P in OpenHW 1H 2020)
#4 async-lock-step-compare (e.g. CV32E40P in OpenHW 2H H2020)
#5 test bench use of standards (RVVI) (e.g. CV32E40X/S in OpenHW 2021)

Components of RISC-V CPU DV environment

NNNNNNNNNNNNNNNNNNNNN

Page 21 © Imperas Software Ltd. Q1 2022

Agenda Innperas

Brief Introduction to RISC-V

RISC-V CPU HW DV approaches
#0 “hello world” test
#1 self checking tests (e.g. Berkeley torture tests pre2018)
#2 Post simulation trace log file compare (e.g. Google riscv-dv 2019)
#3 sync-lock-step-compare (e.g. CV32E40P in OpenHW 1H 2020)
#4 async-lock-step-compare (e.g. CV32E40P in OpenHW 2H H2020)
#5 test bench use of standards (RVVI) (e.g. CV32E40X/S in OpenHW 2021)

Components of RISC-V CPU DV environment

Note that not all projects have the same requirements, schedule or verification
needs — so each project’s DV needs may / will differ

NNNNNNNNNNNNNNNNNNNNN

Page 22 © Imperas Software Ltd. Q1 2022

Agenda Innperas

Brief Introduction to RISC-V

RISC-V CPU HW DV approaches
#0 “hello world” test
#1 self checking tests (e.g. Berkeley torture tests pre2018)
#2 Post simulation trace log file compare (e.g. Google riscv-dv 2019)
#3 sync-lock-step-compare (e.g. CV32E40P in OpenHW 1H 2020)
#4 async-lock-step-compare (e.g. CV32E40P in OpenHW 2H H2020)
#5 test bench use of standards (RVVI) (e.g. CV32E40X/S in OpenHW 2021)

Components of RISC-V CPU DV environment

NNNNNNNNNNNNNNNNNNNNN

Page 23 © Imperas Software Ltd. Q1 2022

#0: ‘Hello World’ DV Innperas
- —>—> “hello”

“if | can get a program to run —then my DV is done... right?”
“my DV challenge is sorted if | can get Linux to boot on my design...”

Basically this level of DV is where developer feels if they can get their current
compilation of their current program to run (through one path) - then their silicon

design job is done

This may be fine for test chips, research, academic, hobbyists, but NOT for products
This approach is often due to lack of knowledge or interest in quality, ...

Q1 2022

NNNNNNNNNNNNNNNNNNNNN

Page 24 © Imperas Software Ltd.

VIRTUAL
zzzzzzzzzzzzzzzzzzzzzz

‘Hello World’ DV Innperas

This requires either an HDL simulator, or an FPGA, or some silicon, and a test
harness of some form to allow it to run programs...

This is not DV!

NNNNNNNNNNNNNNNNNNNNN

Page 25 © Imperas Software Ltd. Q1 2022

zzzzzzzzzzzzzzzzzzzz

Agenda Innperas

Brief Introduction to RISC-V

RISC-V CPU HW DV approaches
#0 “hello world” test
#1 self checking tests (e.g. Berkeley torture tests pre2018)
#2 Post simulation trace log file compare (e.g. Google riscv-dv 2019)
#3 sync-lock-step-compare (e.g. CV32E40P in OpenHW 1H 2020)
#4 async-lock-step-compare (e.g. CV32E40P in OpenHW 2H H2020)
#5 test bench use of standards (RVVI) (e.g. CV32E40X/S in OpenHW 2021)

Components of RISC-V CPU DV environment

NNNNNNNNNNNNNNNNNNNNN

Page 26 © Imperas Software Ltd. Q1 2022

#1: Simple (results) check (1a) Innperas

Run RTL DUT in testbench
P “stpner } (no real testbench)
Just loads & runs the test program

Each test program checks its results
go/no go test

Prints message to log

or writes bit to memory

NNNNNNNNNNNNNNNNNNNNN

Page 27 © Imperas Software Ltd. Q1 2022

#1: Simple (results) check (1b) |[ﬁ]ﬂ|1))eras

(use e.g. riscvOVPsim ISS from GitHub)

Run RTL DUT in testbench
| e | e }

(no real testbench)
Just loads & runs the test program

OVD PLRISC-V imperas - Either
e Each test program checks its results =
B >, Bo/no go test
- \ Prints message to log
“rieio” - or writes bit to memory
Imperas riscvOVPsim Compliance Simulator . "\ . . .
file compare Or, then run ISS, write log or signature file
vt seecionand Compare/diff file results (afterwards)
M 4 This is the approach taken by RISCV
p(Tz || e, International for their architectural validation
2022 - (“compliance tests”)

NNNNNNNNNNNNNNNNNNNNN

Page 28 © Imperas Software Ltd. Q1 2022

#1: Simple check Innperas

(use e.g. riscvOVPsim ISS from GitHub)

Summary

Very simple, needs basic ISS, and tool chains

Free ISS: https://github.com/riscv-ovpsim
Free compiler: https://github.com/Imperas/riscv-toolchains

Basic bring up
Good for simple test runs

Basic functionality testing
Still need accurate, configurable, version selectable, complete, reference model

Not a robust DV solution

NNNNNNNNNNNNNNNNNNNNN

Page 29 © Imperas Software Ltd. Q1 2022

zzzzzzzzzzzzzzzzzzzz

https://github.com/riscv-ovpsim
https://github.com/Imperas/riscv-toolchains

Agenda Innperas

Brief Introduction to RISC-V

RISC-V CPU HW DV approaches
#0 “hello world” test
#1 self checking tests (e.g. Berkeley torture tests pre2018)
#2 Post simulation trace log file compare (e.g. Google riscv-dv 2019)
#3 sync-lock-step-compare (e.g. CV32E40P in OpenHW 1H 2020)
#4 async-lock-step-compare (e.g. CV32E40P in OpenHW 2H H2020)
#5 test bench use of standards (RVVI) (e.g. CV32E40X/S in OpenHW 2021)

Components of RISC-V CPU DV environment

NNNNNNNNNNNNNNNNNNNNN

Page 30 © Imperas Software Ltd. Q1 2022

#2: Entry Level DV: post-sim trace-compare

(use e.g. riscvOVPsimPlus ISS from QVPworld)

Design Verification using Co-Sim with reference model

£ Google Cloud RTL Simulation

RISC-V RTL
& Memory

RISCV.elf Imperas.log

imperas
O Google Cloud Open source Stressful Transaction & Instruction Generator (STIG):
SystemVerilog design + UVM simulator for RTL

ilm[peras Model and simulation golden reference of RISC-V CPU
B e

Ew_rASNEE @'W"'SC 1= opentitan

* Process

—
Imperas

* use random generator (ISG) to create tests
* during simulation of ISS write trace log file
* during simulation of RTL write trace log file

 at the end of both runs, run logs through
compare program to see differences / failures

2022

DESIGN AND VERIFICATION

DVCOIN

EEEEEEEEEEEEEEEEEEEEE

nnnnnnn

CPU model
variant selectionand
configuration

V

’Application
<cross>.elf

H
A4

Semihosted
Filel/O

Imperas riscvOVPsimPlus Reference Simulator

Page 31

* |ISS: riscvOVPsimPlus includes Trace and
GDB interface

* Free ISS: https://www.ovpworld.org/riscvOVPsimPlus

* ISG: riscv-dv from Google Cloud / Chips

Alliance

* Free ISG: https://github.com/google/riscv-dv

© Imperas Software Ltd.

Ql 2022

https://www.ovpworld.org/riscvOVPsimPlus
https://github.com/google/riscv-dv

@

Note: This is
not co-sim...

Ilperas

* use random generator (ISG) to create tests
* during simulation of ISS write trace log file
* during simulation of RTL write trace log file

 at the end of both runs, run logs through
compare program to see differences / failures

Design Verification using Co-Sim with reference model

&) Google Cloud

RTL Simulation

RISCV.elf Imperas.log

imperas

O Google Cloud Open source Stressful Transaction & Instruction Generator (STIG):

SystemVerilog design + UVM simulator for RTL
imperas Model and simulation golden reference of RISC-V CPU

:t'EHIPS
+* ALLIANCE

umps . .
B lince P rowrisc g opentitan * ISS: riscvOVPsimPlus Includes Trace and
GDB interface
NP ol OO * Free ISS: https://www.ovpworld.org/riscvOVPsimPlus

configuration

_ * ISG: riscv-dv from Google Cloud / Chips
CErore it AI I | ance
re . * Free ISG: https://github.com/google/riscv-dv
2022 Imperas riscvOVPsimPlus Reference Simulator

DESIGN AND VERIFICATION ™

DVCOIN

EEEEEEEEEEEEEEEEEEEEE

Page 32 © Imperas Software Ltd. Q1 2022

nnnnnnn

https://www.ovpworld.org/riscvOVPsimPlus
https://github.com/google/riscv-dv

#2:. Entry Level DV: post-sim trace-compare
(use e.g. riscvOVPsimPlus ISS from OQVPworld) I[ﬁ]ﬂ@e I'aS
Summary
Compares files created after test runs
Can be signature, logging, or instruction trace

Can use random ISG as no need to know expected results...

Usually the easiest method to implement (dependent on tracing formats)
Capture of program flow (monitor the PC)
Capture of program data (monitor the Registers)

Potentially very large data files

Potential for wasteful execution (if early failure)

Will not work for on async events, control flow, or hardware real time effects, MP, 00O, multi-issue, ...
Not a robust DV solution for commercial cores

ggR ebn age with Imperas for licenses of reference models and optional development to add customer own instructions,
, behaviors

DESIGN AND VERIFICATION ™

NNNNNNNNNNNNNNNNNNNNN

Page 33 © Imperas Software Ltd. Q1 2022

VIRTUAL
zzzzzzzzzzzzzzzzzzzzzz

Agenda Innperas

Brief Introduction to RISC-V

RISC-V CPU HW DV approaches
#0 “hello world” test
#1 self checking tests (e.g. Berkeley torture tests pre2018)
#2 Post simulation trace log file compare (e.g. Google riscv-dv 2019)
#3 sync-lock-step-compare (e.g. CV32E40P in OpenHW 1H 2020)
#4 async-lock-step-compare (e.g. CV32E40P in OpenHW 2H H2020)
#5 test bench use of standards (RVVI) (e.g. CV32E40X/S in OpenHW 2021)

Components of RISC-V CPU DV environment

NNNNNNNNNNNNNNNNNNNNN

Page 34 © Imperas Software Ltd. Q1 2022

#3: Industrial Quality Sync DV
(sync-lock-step-compare)

Imperas

GROUP

" OPENHW"

PROVEN PROCESSOCR IR

Example flow:

Coverage Driven Verification of OpenHW CORE-V

Tandem Iockste||o run — both reference and DUT
0 Processors with Imperas RISC-V Golden Reference Model

run together in lock step
Not very complex to obtain, set up

Compare PC, CSRs, GPRs, other internal state —
instruction by instruction

SystemVerilog SystemVerilog TestBench

S W e P
. uUuvM [

DUT
=N memory

Control

No requirement on data saving

‘ CORE-V"

No requirement on known good results in test

Will not work for async events and control flow,

... —itis all about the data flow

RISCV-DV
Random
Instruction
Generator

RISCV.elf

> Ref
memory

Q DUT: CV32/64 RISC-V RTL

% []
Imperas
. UVMRISC-V Reference Model

Functional Coverage

Step

Compare

& i

results.log

_— Image source:
® Imperas Software Ltd

» SystemVerilog UVM Step and Compare flow using Imperas Reference Model
* Imperas OVP model is encapsulated into SystemVerilog testbench module
* Control block - steps both CPUs, extracting data and comparing results

15t Generation OpenHW flow (1H2020)

[OpenHW evolved into using async — see later
slides]

DESIGN AND VERIFICATION ™

CONFERENCE AND EXHIBITION

VVVVVVV Page 35 © Imperas Software Ltd. Q1 2022

#3: Industrial Quality Sync DV Imperas
(sync-lock-step-compare)

Summary

Instruction by instruction lockstep comparison (excludes async events)
Comparison of execution flow
Comparison of program data
Comparison of programmers and internal state

Immediate comparison
Allows for debug introspection at point of failure — very powerful
Does not waste execution cycles after failure

Will not work for async events, control flow, or hardware real time effects, ...
Not too hard to develop & set up (depends on RTL DUT tracer features)

Lock-Step / Compare is by far the best and most efficient approach
But does not address async events (see level #4)

Need to engage with vendors such as Imperas for licenses of reference models and optional development to add
customer own instructions, CSR, behaviors

2022

DESIGN AND VERIFICATION ™

DVCOIN

NNNNNNNNNNNNNNNNNNNNN

Page 36 © Imperas Software Ltd. Q1 2022

Agenda Innperas

Brief Introduction to RISC-V

RISC-V CPU HW DV approaches
#0 “hello world” test
#1 self checking tests (e.g. Berkeley torture tests pre2018)
#2 Post simulation trace log file compare (e.g. Google riscv-dv 2019)
#3 sync-lock-step-compare (e.g. CV32E40P in OpenHW 1H 2020)
#4 async-lock-step-compare (e.g. CV32E40P in OpenHW 2H H2020)
#5 test bench use of standards (RVVI) (e.g. CV32E40X/S in OpenHW 2021)

Components of RISC-V CPU DV environment

NNNNNNNNNNNNNNNNNNNNN

Page 37 © Imperas Software Ltd. Q1 2022

#4. Industrial Highest Quality Async DV

(async-lock-step-compare) lmpe ras

Builds on & extends Industrial Quality
sync-lock-step-compare DV Example flow:

GROUP

" OPENHW"

PROVEN PROCESSOCR IR

Adds focus on async capabilities

" Toolchain invoked |
by Makefile

: * —~Re-use Assertions

‘ from

. CORE-\V" l __ Design team
CV32E40P RTL Compare all CSRs,|
?

5 >~ GPRsand PC
' Functional | Debug \[Interrupt‘
| Coverage | Agent | Agent |

Depending on design this can include: 000, MP,
debug mode, interrupts, multi-issue, ...

Example SystemVerilog Components

tracer: Reports instructions for checking and register
writebacks

step_and_compare: Manages the reference model and checks
functionality

interrupt_assert: Properties for interrupt coverage/checking
debug_assert: Properties for debug coverage/checking

= elf2hex | |

) L\ Same test-program ——
Most test-runs use ‘ on core and ISS |
“corev-dv”, extended ;
from riscv-dv

imperas

Reference Model

(Verification Plan is the sbec |
'for functional coverage model)

\'K\syh\c Debug %
land Interrupts

© OpenHW Group

Typically hard, complex, and expensive to get
working

Challenge is extracting async info from micro-
architecture RTL pipeline

See latest developments with RVVI and ImperasDV

2" generation CV32E40P OpenHW flow (2H2020)
(Imperas model encapsulated in SystemVerilog)

DESIGN AND VERIFICATION ™

CONFERENCE AND EXHIBITION

Page 38 © Imperas Software Ltd. Q1 2022

vvvvv

#4. Industrial Highest Quality Async DV
(async-lock-step-compare) I m IJ_T))e ras

Summary

Instruction by instruction lockstep comparison (includes async events)
Comparison of execution flow, of program data, of programmers and internal state

Immediate comparison
Allows for debug introspection at point of failure — very powerful
Does not waste execution cycles after failure

Includes focus on async events, control flow, and hardware real time effects

Can be hard to develop & set up (depends on RTL DUT tracer features and pipeline understanding)

See latest development for RVVI and ImperasDV

Can be expensive in terms of time, resources, licenses and costs a lot per bug found

But the bugs are even more expensive if not found early enough...

Lockstep / Compare is by far the best and most efficient approach (industry ‘gold standard’)

2022

DESIGN AND VERIFICATION ™

DVCOIN

NNNNNNNNNNNNNNNNNNNNN

Page 39 © Imperas Software Ltd. Q1 2022

Agenda Innperas

Brief Introduction to RISC-V

RISC-V CPU HW DV approaches
#0 “hello world” test
#1 self checking tests (e.g. Berkeley torture tests pre2018)
#2 Post simulation trace log file compare (e.g. Google riscv-dv 2019)
#3 sync-lock-step-compare (e.g. CV32E40P in OpenHW 1H 2020)
#4 async-lock-step-compare (e.g. CV32E40P in OpenHW 2H H2020)
#5 test bench use of standards (RVVI) (e.g. CV32E40X/S in OpenHW 2021)

Components of RISC-V CPU DV environment

NNNNNNNNNNNNNNNNNNNNN

Page 40 © Imperas Software Ltd. Q1 2022

Agenda Innperas

Brief Introduction to RISC-V

RISC-V CPU HW DV approaches
#0 “hello world” test
#1 self checking tests (e.g. Berkeley torture tests pre2018)
#2 Post simulation trace log file compare (e.g. Google riscv-dv 2019)
#3 sync-lock-step-compare (e.g. CV32E40P in OpenHW 1H 2020)
#4 async-lock-step-compare (e.g. CV32E40P in OpenHW 2H H2020)
#5 test bench use of standards (RVVI) (e.g. CV32E40X/S in OpenHW 2021)

Digression into why we need standards...

Components of RISC-V CPU DV environment

NNNNNNNNNNNNNNNNNNNNN

Page 41 © Imperas Software Ltd. Q1 2022

. I
Challenges moving forward — the need for .
standards lm[@eras

* There are many different components needed:

* DUT & its encapsulation
* ‘tracer’ information
* Control
Reference model & its encapsulation
* Configuration
* Comparisons
* Synchronization
* Asynchronous operations

1 1
Functional |[Debug [I nterruth
Coverage || Agent || Agent

Toolchain invoked
by Makefile

elf2hex

Re-use Assertions)
from
Design team

)

CORE-V" l
CV32E40P RTL

Compare all CSRs,
GPRs and PC

ame test-program

* Control S
Functional coverage measurement & assertions Most test—ruﬁﬂ [on core and 1SS
“corev-dv”, extended
Test bench from riscv-dv
* Configuration Verification Plan is the spec
* Qverall control for functional coverage model
. Async Debug
* Scoreboarding o Openti Croup and Interrupts
* Reporting / Logging
Tests (directed or generated)
* Program linker scripts and binary file reader

imperas

Reference Model

2 generation CV32E40P OpenHW flow (2H2020)

* And each component has different interfaces and
requirements on the interfaces

DESIGN AND VERIFICATION ™

CONFEREN CE AND EXHIBITI ION

Page 42 © Imperas Software Ltd. Q1 2022

nnnnnnn

—
Imperas

Challenges moving forward — the need for
standards

* There are many different components needed:

* DUT & its encapsulation
* ‘tracer’ information
* Control

Reference model & its encapsulation
* Configuration

Re-use Assertions)

Toolchain invoked
by Makefile

* Comparisons from
* Synchronization elf2hex CORE-V" l Design team
* Asynchronous operations CV32E40P RTL Compare all CSRs,

GPRs and PC

. t t
.Control . i Same test-program [Functional ![Debug J[Interrupt}
° Functlonal coverage measu rement & assertions Most test-runs use [on core and 1SS Coverage | Agent | Agent
“corev-dv”, extended e
* Test bench . from riscv-dv immg@eras \\\
° Conflgu ratlon Verification Plan is the spec Reference Model h
* Qverall control for functional coverage model
. Async Debug
* Scoreboarding o Openti Croup ‘and Interrupts
* Reporting / Logging

* Program linker scripts and binary file reader

* And each component has different interfaces and
requirements on the interfaces It would be a disaster for RISC-V if

every design team had to re-invent
everything...

DESIGN AND VERIFICATION ™

CONFEREN CE AND EXHIBITI ION

Page 43 © Imperas Software Ltd. Q1 2022

nnnnnnn

Why need standard interfaces? 1MN[PE@ras

There are many blocks required in DV solutions
They all have different interfaces and these interfaces need defining

They may come from different developers / suppliers
They may be used in different projects and processor configurations / generations

If standards exist, then verification IP can be created and licensed

Goals when developing standard interfaces:
block re-use
common ways to do things
quick start-up
efficiency

NNNNNNNNNNNNNNNNNNNNN

Page 44 © Imperas Software Ltd. Q1 2022

Why adopt a standard? I[ﬁ]ﬂ@)eras

You have to use some interfaces

No need to re-invent on your own — they do not need to be proprietary
RVVI is an open standard available on GitHub

RVVI (and its predecessor) have already been flushed out and are in use
There is no downside to adoption

Upside to adoption: potentially make use of other tools / code

What tools / technologies can potentially be (re)used
Encapsulation of reference models

Test benches & test bench components (including onward connection to reference models)
Functional coverage & assertions

Log file writer

Signature file writer (for RISC-V compliance testing)

NNNNNNNNNNNNNNNNNNNNN

Page 45 © Imperas Software Ltd. Q1 2022

RVVI: RISC-V Verification Interface I[ﬁfﬂ@eras
History

This RVVI work has evolved from over 2 years experience
Imperas, EM Micro, and SilLabs, ..., working with several RISC-V verification projects

Collaboration with OpenHW Group (https://github.com/openhwgroup/core-v-verif)
Re-usable test bench for Core-V range of open-source RISC-V cores

Also... there was previously the RISC-V Formal Interface (RVFI) — targeting formal tools

https://github.com/SymbioticEDA/riscv-formal
Interface for providing observation into a running core by streaming what is executing on the core (i.e. the basic trace data / functionality)

For quality RISC-V processor DV more is needed (than RVFI)

And each user needs to extend it with proprietary extensions (which is not the right approach...)
The RVVI-VLG interface has some parts very similar to the RVFI

RVVI-VLG can be thought of as an updated superset of RVFI

2022

DESIGN AND VERIFICATION ™

DVCOIN

NNNNNNNNNNNNNNNNNNNNN

Page 46 © Imperas Software Ltd. Q1 2022

vvvvv

https://github.com/openhwgroup/core-v-verif

Agenda Innperas

Brief Introduction to RISC-V

RISC-V CPU HW DV approaches
#0 “hello world” test
#1 self checking tests (e.g. Berkeley torture tests pre2018)
#2 Post simulation trace log file compare (e.g. Google riscv-dv 2019)
#3 sync-lock-step-compare (e.g. CV32E40P in OpenHW 1H 2020)
#4 async-lock-step-compare (e.g. CV32E40P in OpenHW 2H H2020)
#5 test bench use of standards (RVVI) (e.g. CV32E40X/S in OpenHW 2021)

Components of RISC-V CPU DV environment

NNNNNNNNNNNNNNNNNNNNN

Page 47 © Imperas Software Ltd. Q1 2022

#5 Evolving to use developing

standards (RVVI) Innperas

Use bespoke tracer+control, (RVVI or proprietary) for

\ Interface to DUT RTL Use RVVI for

/ interface to reference Model

“Tracer” N N
RISC-V (RWVI) Testbench, control, e
Core sequencing, comparing,
.I:
(DUT) scoreboard Rvivi rel\;(;(ejre\i:e
Control (SystemVerilog)
RWI) | -

Focus is on developing standard interfaces between components
Allows reuse
Allows development of independent VIP

Two main components to consider
DUT

5020 Reference model

DESIGN AND VERIFICATION ™

DVCOIN

NNNNNNNNNNNNNNNNNNNNN

Page 48 © Imperas Software Ltd. Q1 2022

_
Imperas

Tacer * https://github.com/riscv-verification/RVVI (Public Open Standard)
RISC-V '\

Core RWIVLG * RVVI-VLG

RTL * Verilog DUT interfaces

(DUT) async * RVVI-VLG state — streaming ‘tracer’ data
<_

RWI-VLG * RVVI-VLG nets —implementation dependent (Interrupts, Debug)
* Handles multi-hart, multi-issue, Out-of-Order

RVVI: RISC-V Verification Interface
(driven by RISC-V DV usage)

* RVVI-API

* Controls DV subsystem and reference model
RVVI-API Reference - /et
Model * SystemVerilog

* RVVI-VPI (work-in-progress (Feb. 2022))

Test be.nch virtual * Virtual Peripheral Interfaces
peripherals * timers, interrupts, debug, random, printer/uart, ...
* Verilog and C macros & examples

RVVI-VPI

Page 49 © Imperas Software Ltd. Q1 2022

nnnnnnn

https://github.com/riscv-verification/RVVI

SystemVerilog test bench using
RVVI and components

* RVVI-VLG (Verilog header)
used by functional coverage, rvvi-api

* SystemVerilog Interface
RVVI_state (PC, GPR, CSR,...)

Functional coverage
HINCH verag RVVI_net (Interrupts, Debug)

measurement
Instruction

NEE]

Generator
Directed
Tracer Tests
RISC-V in :
e.g. RWI-VLG Tracer->TB v
Core (or proprietary) —> — 5| DPI RVVI-API
RTL Test bench / harness
(DUT) DUT<->TB ~, | control, sequencing, |«
CONTROL < Compare \
: SystemVerilo
bus/mem i/f y 8

RVVI-VPI
Test bench virtual peripherals

DUT control (init, step, shutdown)

_
Imperas

RISC-V

reference
Model

* RVVI-API (C/C++ Header)
rwvi (for set up))
rvviRef (to control ref, to compare)
rvviDut (to mirror dut)

I
SystemVerilog

DESIGN AND VERIFICATION ™
CONFEREN CE AND EXHIBITI ION

Page 50 © Imperas Software Ltd.

nnnnnnn

Y
Binary object

Ql 2022

_
mperas

5 main CPU DV components

Functional Coverage & assertions)
8 Tests: Directed &

Instruction Stream Generator

Ins¥guction
Stream

\/Tracerl/
ISC- in /
e.g. RVWI-VLG

Core (or proprietary)

DUT ‘with tracer’ < RTL
" (DUT)

| reference

compare
» SystemVerilog

Reference Model DV subsystem

Test bench

DESIGN AND VERIFICATION ™
NNNNNNNNNNNNNNNNNNNNN

Page 51 © Imperas Software Ltd. Q1 2022

nnnnnnn

RTL DUT with

RISC-V
Core
RTL

(DUT)

Tracer
RWVI-VLG

async
RVVI-VLG

bus/mem i/f

Mem

2022

DESIGN AND VERIFICATION ™

DVCOIN

EEEEEEEEEEEEEEEEEEEEE

nnnnnnn

Page 52

—
Imperas

tracer’ interface

The key component —the DUT being tested
* Includes memory model and bus interfaces

Requires a ‘tracer’ to provide appropriate data to the test bench

Requires control interface so test bench can step through events
Quality of the ‘tracer’ determines the potential capabilities of the DV

Can be RVVI, bespoke, or bespoke + extensions + control

© Imperas Software Ltd. Q1 2022

Tests: Directed & i[ﬁm[p)eras

Instruction Stream Generator

* Generates test programs

(random) * Usually using constrained random approach

Instruction * Most often obtain one:
Stream Test * Commercial such as Valtrix STING
Generator * Open source e.g. Google riscv-dv (written in SystemVerilog)

* Acquire suites of tests

Imperas make some available

Directed
Tests

* May require toolchains like GCC, LLVM for assemblers, linkers

2022

DESIGN AND VERIFICATION ™

DVCOIN

NNNNNNNNNNNNNNNNNNNNN

Page 53 © Imperas Software Ltd. Q1 2022

nnnnnnn

Imperas Test Suites

Imperas

When verifying a CPU design - you can never have enough tests...

Imperas have developed a directed RISC-V test generator, instruction coverage
measuring VIP, and a test qualifying mutating fault simulator to provide high

quality test suites

The generated tests suites are targeting architectural compatibility as defined
in the RVIA architectural test working group coverage requirements

There are currently over 50 free test suites, including
,M,C,F,D,B,K,V,P

The provided vector test suite is one specific vector engine configuration

The test suites are provided under an OVP open source license and are

available free from: https://github.com/riscv-ovpsim/imperas-riscv-tests
L2022

NNNNNNNNNNNNNNNNNNNNN

Page 54 © Imperas Software Ltd. Q1 2022

https://github.com/riscv-ovpsim/imperas-riscv-tests

Functional Coverage & imperas
assertions

* Normally written in SystemVerilog using covergroups, coverpoints, and

assertions
Functional * Targets specific measurements as required in verification plan
coverage Connects to RVVI-VLG from ‘tracer’

measurement

* Typically includes
* Standard ISA instruction extension measurement
* Sequential instruction monitoring for e.g. hazards, etc.
* Privilege model items such as interrupts, exceptions, debug mode
* User specifics related to pipeline and micro-architecture

* Requires SystemVerilog simulator

DESIGN AND VERIFICATION ™

EEEEEEEEEEEEEEEEEEEEE

Page 55 © Imperas Software Ltd. Q1 2022

nnnnnnn

Test bench / harness
control, sequencing,
compare
(SystemVerilog, C or C++)

2022

DESIGN AND VERIFICATION ™

DVCOIN

NNNNNNNNNNNNNNNNNNNNN

VIRTUAL

Test Bench / Harness I[ﬁIﬂLTg)el"aS

Test bench / harness
control, sequencing,
compare
SystemVerilog

RVVI-VPI
Test bench virtual peripherals

Page 56

Instances and connects all the subsystems
Controls the stepping of events and instructions

Connects the data & signals between the DUT and reference subsystem
synchronizers and comparators

Can have virtual peripherals such as uart for logging, or timers for
asynchronous event / interrupt generation

Can be in SystemVerilog for DUT in RTL

Can be in C/C++ for DUT in C based compiled simulator

Imperas provides templates in C/C++ and SystemVerilog

© Imperas Software Ltd. Q1 2022

_
Imperas

Reference model DV
Subsystem

* Three main components
* RISC-V reference model
* DV infrastructure to control model, etc.
* RVVI interface into test bench / harness

RVVI RISCV * Responsible for
reference .]
model * Configuration of model
* Comparisons between DUT and reference state
* Synchronization due to pipeline affects
Asynchronous operations

Control of model

IIIIIIIIIIIIIIIIIIIIII
NNNNNNNNNNNNNNNNNNNNN

Page 57 © Imperas Software Ltd. Q1 2022

nnnnnnn

_
Imperas

Reference model DV
Subsystem

* Three main components

RISC-V reference model
* DV infrastructure to control model, etc.
* RVVI interface into test bench / harness

RVVI RISCV * Responsible for
reference .]
model * Configuration of model
* Comparisons between DUT and reference state
* Synchronization due to pipeline affects
Asynchronous operations

Control of model

IIIIIIIIIIIIIIIIIIIIII
NNNNNNNNNNNNNNNNNNNNN

Page 58 © Imperas Software Ltd. Q1 2022

nnnnnnn

Key component is Reference Model |[ﬁ]ﬂ|P)e|'as

RISC-V is highly
configurable &
extendable

200... Questions ?

So it can get a little
.... complicated

DVCOn
Page 59 © Imperas Software Ltd. Q1 2022

Example reference model: Imperas |m|@eras

Imperas provides full RISC-V Specification envelope model

Im eras Industrial quality model /simulator of RISC-V processors for use in compliance, verification
and test development

Complete, fully functional, configurable model / simulator
All 32bit and 64bit features of ratified User and Privilege RISC-V specs

Unprivileged versions 2.2, 20191213

RISC'V Privilege versions 1.10, 1.11, 1.12
Reference Vector extension, versions 0.7.1, 0.8, 0.9, 1.0
Bit Manipulation extension, versions 0.91, 0.92. 0.93, 1.0.0
Hypervisor version 0.6.1, 1.0.0

Model &

Simulator K-Crypto Scalar version 0.7.1, 1.0.0

Debug versions 0.13.2, 0.14, 1.0.0

P DSP/SIMD versions 0.5.2, 0.9.6

Zicbom, Zicbop, Zicboz, Zmmul, Zfh, Zfinx, Zce
Svnapot, Svpbmt, Svinval, Smstaten, Smepmp, ...

http://www.imperas.com/riscv

Model source included under Apache 2.0 open source license

Used as reference by :

Mellanox/Nvidia, Seagate, NSITEXE/Denso, Google Cloud, Chips Alliance, lowRISC, OpenHW Group,
Andes, Valtrix, SiFive, Codasip, MIPS, Nagra/Kudelski, Silicon Labs, RISC-V Compliance Working Group,

2022 Imperas is used as RISC-V Golden Reference Model

DESIGN AND VERIFICATION ™

CONFERENCE AND EXHIBITION

Page 60 © Imperas Software Ltd. Q1 2022

zzzzzzzzzzzzzzzzzzzz

http://www.imperas.com/riscv

Imperas Model extensibility |m|@eras

IME@e ras Imperas develops and maintains base model
/ Base model implements RISC-V specification in full
Fully configurable to select which ISA extensions

Fully configurable to select which version of each ISA extension

Updated very regularly as ISA extension specification versions change

A Fully configurable for all RISC-V specification options
u igu -
Base Model y 8 P P

e.g. implemented optional CSRs, read only or read/write bits etc...

Imperas provides methodology to easily extend base model
Separate sourcg files and no duplication to Templates to add new instructions
ensure easy maintenance

Code fragments for adding functionality
Imperas or user can develop the extension
100+ page user guide/reference manual with many examples

User extension source can be proprietary Includes example extended processor model

Imperas model is architected for
oo 2022, easy extension & maintenance
DVCON

NNNNNNNNNNNNNNNNNNNNN

Page 61 © Imperas Software Ltd. Q1 2022

zzzzzzzzzzzzzzzzzzzz

User feedback of Imperas as a reference
; Imperas

“Andes is pleased to certify the Imperas model and simulator as a reference for the new Vector processor NX27V, and is already actively
used by our mutual customers.”
Charlie Hong-Men Su, CTO / EVP at Andes Technology Corp

"We have selected Imperas simulation tools and RISC-V models for our design verification flow because of the quality of the models and
the ease of use of the Imperas environment. Imperas reference model of the complete RISC-V specification, the ability to add our custom
instructions to the model and their experience with processor RTL DV flows were also important to our decision.”

Shlomit Weiss, Senior Vice President of Silicon Engineering at Mellanox / Nvidia

"The OpenHW Group charter is to deliver high quality processor IP cores for our leading commercial members and open source community
adoption. Central to this goal, the OpenHW Verification Task Group developed and published a DV test plan and implemented an open
engineering-in-progress approach as we complete the verification tasks using the Imperas golden RISC-V reference model.”

Rick O’Connor, Founder and CEO at OpenHW Group

“Imperas are the pioneers in simulation technology and processor verification for RISC-V. Codasip is very proud of our rigorous approach to
verification — using Imperas as an important part of our quality process furthers extend our differentiation. The Imperas independence,
reputation and technical strength provides our customers with further reassurance in our ‘best in class’ RISC-V processors.”

Philippe Luc, Verification Director Codasip

“With this Imperas collaboration, our mutual customers will benefit from the availability of SiFive qualified models that are compatible with
the mainstream EDA tool flows.”

Phil Dworsky, Director, Strategic Alliances, SiFive

DESIGN AND VERIFICATION ™

CONFERENCE AND EXHIBITION

Page 62 © Imperas Software Ltd. Q1 2022

FEBRUARY 28 - MARCH 3, 2022

Agenda Innperas

Brief Introduction to RISC-V

RISC-V CPU HW DV approaches
#0 “hello world” test
#1 self checking tests (e.g. Berkeley torture tests pre2018)
#2 Post simulation trace log file compare (e.g. Google riscv-dv 2019)
#3 sync-lock-step-compare (e.g. CV32E40P in OpenHW 1H 2020)
#4 async-lock-step-compare (e.g. CV32E40P in OpenHW 2H H2020)
#5 test bench use of standards (RVVI) (e.g. CV32E40X/S in OpenHW 2021)

#6 using standards based DV products and VIP
Drill down into an available commercial RISC-V HW DV verification solution
Demonstration of ImperasDV in action on open source RISC-V cores

Components of RISC-V CPU DV environment

D VE% 9C2TI20 N™

NNNNNNNNNNNNNNNNNNNNN

Page 63 © Imperas Software Ltd. Q1 2022

—
Imperas

A dedicated RISC-V CPU DV solution:
ImperasDV from Imperas

The leader in simulation solutions fo RISCV e

s “ e R %
.*‘ T “'12., e ay

i I[mp@msDV

Quality Verification
for the design
freedom of
RISC-V
¢ 2022 .
DVCON

EEEEEEEEEEEEEEEEEEEEE

Page 64 © Imperas Software Ltd. Q1 2022

nnnnnnn

.
CPU DV test bench components im@eras

Instruction
NEE]
Generator

Functional coverage

measurement

Directed
Tests

x
Tracer
RISC-V o RwvivLG | Tracer>TB Test bench / harness RISC.V
Core | (or proprietary) — | control, sequencing, | »>| PP | R)
reference
RIE compare A
(DUT) DUT<->TB — SystemVerilog o
CONTROL <

bus/mem i/f
irecal
em Test bench virtual peripherals

DESIGN AND VERIFICATION ™
NNNNNNNNNNNNNNNNNNNNN

Page 65 © Imperas Software Ltd. Q1 2022

nnnnnnn

I
CPU DV test bench components imperas

Tracer
RISC-V in N Test bench / harness
e.g. RWI-VLG . RISC-V
Core (or proprietary) — control, sequencing, |- »
DPI RVVI-API refe rence

RTL compare

(DUT) DUT<->TB —» SystemVerilog -« Model
CONTROL <+

* Focus on:
* DUT + ‘tracer’
* Test bench
505 * DV subsystem

IIIIIIIIIIIIIIIIIIIIII
NNNNNNNNNNNNNNNNNNNNN

Page 66 © Imperas Software Ltd. Q1 2022

nnnnnnn

—
Imperas

o ImperasDV

reference

* Is configurable and traceable

* Can be used in C/C++ or SystemVerilog test bench / harness
* Uses RVVI-API

> Very simple to use — the ‘smarts’ are built-in

Model ImperasDV
%
N DUT PC
— * Encapsulates the reference model
— DUT INST.
—> | * Select model, use variant, configure,
%
DUT CSRS
* Includes DUT reference state storage
DUT GPR o o
* Includes synchronization technology
_ I * Can run sync, async, interrupts, debug, multi-hart
— .
— * Includes comparison technology
%
> Comparator * Includes Imperas instruction coverage
%

Vb

|

DESIGN AND VERIFICATION ™
EEEEEEEEEEEEEEEEEEEEE

Page 67 © Imperas Software Ltd. Q1 2022

nnnnnnn

~i=, Test Bench / Harness Ilnperas

Test Bench

Instances and connects all the subsystems

Init

[TTTT]

Controls the stepping of events and instructions

Connects the data & signals between the DUT and reference subsystem
synchronizers and comparators

i
9

Main Loop

VIV

)
i

Can be in SystemVerilog for DUT in RTL

Can be in C/C++ for DUT in C based compiled simulators

GL
7\ O |

Imperas provides templates in C/C++ and SystemVerilog

Compare .
Expect users to extend and customize

S I
LT

Terminal State (Pass)
- [/ Mismatch (Fail) —

DESIGN AND VERIFICATION ™

NNNNNNNNNNNNNNNNNNNNN

Page 68 © Imperas Software Ltd. Q1 2022

zzzzzzzzzzzzzzzzzzzz

ImperasDV setup

Verilog Device Under Test

Verilog Test Bench ImperasDV
rvviVersionCheck()
rvviRefInit() DUT PC
rvviRefCsrSetVolatile()

e rvviRefPcSet() DUT INST.
rvviRefMemoryWrite BINARY
rvviRefNetIndexGet ()

dutInit() DUT CSRs
_\F\P DUT GPR
dutEventStep()
dutBusWrite() rvviDutBusWrite() U
dutCsrSet() rvviDutCsrSet()
refNetSet() Main Loop rvviRefNetSet()
dutGprSet() rvviDutGprSet()
dutRetire() / rvviDutRetire() / °
dutException() rvviDutException() 3 Comparator
rvviRefEventStep() S
rvviRefGprGet()
rvviRefPcGet()
rvviRefInsBinGet()
rvviRefMemoryRead() Lienony
Compare
rvviRefgmM(_)ﬁ Instruction
rvviRefGprsCompareWritten() S Coverage
rvviRefPcCompare()
rvviRefInsBinCompare() S
T'_ Reference
Model
dutShutdown() fetminalSati(fas) rvviRefShutdown()

DESIGN AND VERIFICATION ™

NNNNNNNNNNNNNNNNNNNNN

nnnnnnn

Page 69

/ Mismatch (Fail)

© Imperas Software Ltd.

_
mperas

Reference model setup

Configuration of register and memory
initialization

Selection of what to compare (depends on DUT
‘tracer’ capabilities) :
* PC, GPR, CSR, FPR, VR, decode, net, hart...

Select capabilities:
* sync-lock-step-compare or async-lock-step-compare

Trace and logging set up

Selection of built-in Imperas instruction
coverage

Choice of DV control options

Ql 2022

Agenda Innperas

Brief Introduction to RISC-V
RISC-V CPU HW DV approaches
Drill down into an available commercial RISC-V HW DV verification solution

Demonstration of ImperasDV in action on open source RISC-V cores
SystemVerilog test bench

Components of RISC-V CPU DV environment

NNNNNNNNNNNNNNNNNNNNN

Page 70 © Imperas Software Ltd. Q1 2022

Demo: ImperasDV

Core: lowRISC Ibex |ﬁ]ﬂ@eras

Simulator: SystemVerilog
DV mode: sync-lock-step-compare

Overview block diagram from RVVI github
Walk through C/C++ rvvi.h and in doxygen — introduce APIs: RVVI-VLG
Walk through tracer code where it converts RVVI-VLG nets to -> RVVI-API

Walk through SystemVerilog harness
Show init, config, main step loop

Run example - passes

Run example - fails, show trace, show in eGuiMPD and waveforms
Show arch test suites

Show instruction coverage

NNNNNNNNNNNNNNNNNNNNN

Page 71 © Imperas Software Ltd. Q1 2022

VIRTUAL
zzzzzzzzzzzzzzzzzzzzzz

—
Imperas

Demonstration / Walkthrough of ImperasDV
Commercial RISC-V CPU DV solution

Lee Moore
mperasDV
Quality Verification
for the design
freedom of
RISC-V
¢ 2022 .
DVCON

EEEEEEEEEEEEEEEEEEEEE

Page 72 © Imperas Software Ltd. Q1 2022

nnnnnnn

Agenda Innperas

Brief Introduction to RISC-V
RISC-V CPU HW DV approaches
Drill down into an available commercial RISC-V HW DV verification solution

Demonstration of ImperasDV in action on open source RISC-V cores
SystemVerilog test bench

Components of RISC-V CPU DV environment

IIIIIIIIIIIIIIIIIIIIII

NNNNNNNNNNNNNNNNNNNNNNN

© Imperas Software Ltd. Ql 2022

€) RVVI/RVVI-API at main - r X ’ RVVI (RISC-V Verification Int: X +

RVVI/RVVI-API at main - riscv-verification/RVVI - GitHub — Mozilla Firefox

o S i

« > cC

[O 8 https://github.com/riscv-verification/RVVI/tree/main/RVVI-API

110% 13]

k ‘= README.md

Verilog Device Under Test

dutInit()

Verilog Test Bench

dutEventStep()

dutBusWrite()

dutCsrSet()

refNetSet()

v

dutGprSet()

dutRetire() /

rvviVersionCheck()

C Reference Module

rvviRefInit()

rvviRefCsrSetVolatile()

DUT PC

rvviRefPcSet()

Init

rvviRefMemoryWrite
rvviRefNetIndexGet()

S

-

rvviDutBusWrite()

rvviDutCsrSet()

rvviRefNetSet()

Main Loop

rvviDutGprSet()

Vy V

rvviDutRetire() /

dutException()

dutShutdown()

rvviDutException()

rvviRefEventStep()

rvviRefGprGet()

rvviRefPcGet()

rvviRefInsBinGet()

rvviRefMemoryRead()

Compare

rvviRefGprsCompare()

rvviRefGprsCompareWritten()

rvviRefPcCompare()

rvviRefInsBinCompare()

_\I,_il

Terminal State (Pass)

rvviRefShutdown()

/ Mismatch (Fail)

© Imperas Software Ltd.

140

DUT INST.
BINARY

DUT CSRS

DUT GPR

DUT ...

Comparator

https://github.com/riscv-verification/RVVI/blob/main/RVVI-APl/images/overview.jpg]own in the center is in charge of coordinating the sequence of events during testing. The DUT shown on the left will

RVVI/RVVI-API at main - riscv-verification/RVVI - GitHub — Mozilla Firefox

) RVVI/RVVI-API at main - 1 X ’ RVVI (RISC-V Verification Int X

]

—

« > C [O a8 https://github.con’Kriscv-veriﬁcation/RWl/tree/main/RVVI—APl

110% ¥]

‘= README.md

Verilog Device Under Test

dutInit()

Verilog Test Bench

rvviVersionCheck()

C Reference Module

rvviRefInit()

rvviRefCsrSetVolatile()

Init

rvviRefPcSet()

Vv

| rvviRefMemoryWrite()

rvviRefNetIndexGet()

dutEventStep()

I

dutBusWrite()

dutCsrSet()

rvviDutBusWrite()

refNetSet()

rvviDutCsrSet()

dutGprSet()

rvviRefNetSet()

Main Loop

vV VvV

rvviDutGprSet()

dutRetire() /

dutException()

dutShutdown()

rvviDutRetire() /

Yy WV V V \

rvviDutException()

rvviRefEventStep()

4

rvviRefGprGet()

rvviRefPcGet()

rvviRefInsBinGet()

rvviRefMemoryRead()

Compare

rvviRefGprsCompare()

S

rvviRefGprsCompareWritten

rvviRefPcCompare()

>

rvviRefInsBinCompare() S

_\I,_l:

Terminal State (Pass)

rvviRefShutdown()

Imperas Soft

/ Mi h (Fail)

140

Comparator

The test harness shown in@R'ie center IS in charge o céé(zﬁnr;%gll&gs'equence of events during testing. The DUT shown on the left will

¥ Applications workspace erasDV 2 RWVI (RISC-V Verificatio... [*-] Te 1é EDE@ 15:18 Ty Lee Moore

- RVVI (RISC-V Verification Interface): "lclude/host/rvvllrvvl-apl.h File Reference — Mozilla Firefox { AT X

€) RVVI/RVVI-API at main - I X | RVVI (RISC-V Verification Int X = +

« = C ‘D file:///fhome/moore/Imperas/doc/api/rvvi/html/rvvi-api_8h.html B &% @

Open Virtual Platforms

impfas Local boaumentation | O\/D RVVI (RISC-V Verification Interface)

mperas Software Ltd. Open Virtual Platforms API Reference documentation.

Main Page | Files ~ l Q- Searct
RVVI (RISC-V Verification Interface) bool_t rvviRefinsBinCompare (uint32_t hartld)
Files Compare retired instruction bytes between reference and DUT. More...
GlleList bool_t rvviRefPcCompare (uint32_t hartld)
Include Compare program counter for the retired instructions between DUT and the the reference model. More...
host

e bool_t rvviRefCsrCompare (uint32_t hartld, uint32_t csrindex)

Compare a CSR value between DUT and the the reference model. More...

Globals bool_t rvviRefCsrsCompare (uint32_t hartid)
Compare all CSR values between DUT and the the reference model. More...

bool_t rvviRefVrsCompare (uint32_t hartid)
Compare all RVV vector register values between reference and DUT. More...

bool_t rvviRefFprsCompare (uint32_t hartld)
Compare all floating point register values between reference and DUT. More...

uint64_t rvviRefGprGet (uint32_t hartld, uint32_t index)
Read a GPR value from a hart in the reference model. More...

uint32_t rvviRefGprsWrittenGet (uint32_t hartid)
Read a GPR written mask from the last rvviRefEventStep. More...

uint64_t rvviRefPcGet (uint32_t hartid)
Return the program counter of a hart in the reference model. More...

uint64_t rvviRefCsrGet (uint32_t hartld, uint32_t index)
Read a CSR value from a hart in the reference model. More...

uint64_t rvviRefinsBinGet (uint32_t hartid)
Return the binary representation of the previously retired instruction. More...

uint64_t rvviRefFprGet (uint32_t hartld, uint32_t index)
Read a floating point register value from a hart in the reference model. More...

void rvviRefVrGet (uint32_t hartld, uint32_t index, void *data, uint32_t size)
Read a RVV vector register value from a hart in the reference model. More...

void rvviDutBusWrite (uint32_t hartld, uint64_t address, uint64_t value, uint32_t byteEnableMask)
Notify RVVI that the DUT has been written to memory. More...

void rvviRefMemoryWrite (uint32_t hartld, uint64_t address, uint64_t data, uint32_t size)

N e e el o i e il et i e e e B e e e e e o i e e A I

a2 workspace - ImperasDV/Ibex/designTop/systemverilog/ibex_testbench.sv - Imperas eGui
File Edit Source Refactor Navigate Search Project Run Window Help
- SR v % kv @R EvEY v O Ry ™5 v @ E T
5 Project Explorer 53 - @ E}\Cfo Y 8 = O ||[8 rvi-api.h rwi-api.svh | 2 rwi-vigsv | 2 vig2api.sv
ImperasDV g 129 if (fatal) begin
o $display(” due to fatal error(s) and %0d non-fatal errors and %0d warnings.\n\n", err_cnt, warn cnt);
v = Ibex end
A f else begin
» = designTop $display(" with %0d errors and %0d warnings.\n\n", err_cnt, warn cnt);
» E&rtl and : Al
135 $finish; // this should be the only call to $finish in the testbench
7 - eriloa 136 endfunction
137

» = verilator
v g=Imperas
v (= ImpProprietary
v (= source
v (= host
v & rwi
=l vig2api.sv
=l vig2log.sv
v = ImpPublic
v @=include
v @ host
v @i
» gl rvvi-api.h
|# rvvi-api.svh
v (= source
v (=host
v E=rvi
rvvi-pkg.sv

[

= rvvi-vig.sv

v (= Setup_and_Checks

» (= Control_Files
|Z| checkEnvironment.sh
= defines.QUESTA.Makefile.include
= defines.TARGETS.include
= defines.XCELIUM.Makefile.include
[linstall.pkg
=l Makefile.common.include
| README.txt

tests

|=/ README.txt

v

141
142
143
144
145
146
147
148
149
150

155

LHTTEETEET R EE TR LR AT E R R TR e
// Testbench control:
/ This task implements the step-and-compare loop
task TbCntrlLoop;
int i;
i=0
// Initialize REF (do this before initializing the DUT)
if (!rvviVersionCheck(RWI API VERSION)) begin
$display(“sm @ t=%0t: Expecting RWI API version %0d.", $time, 'RVVI_API VERSION);
fatal out();
end

if (!rvviRefInit(test program elf, "lowrisc.ovpworld.org", “Ibex RV32IC")) begin
$display(“"%sm @ t=%0t: rvviRefInit failed", $time);
fatal out();

end

void' (rvviRefCsrSetVolatile(tb hart_id, 32'h00@0 0CE0)); // cycle
void' (rvviRefCsrSetVolatile(tb hart id, 32'h0G@@0 0C02)); // insret

// Initialize DUT
dutInit;

// Start step-and-compare loop
forever begin: Loop

dutStep; // returns on instruction retirement
i=i+1;
if (i>100) tb irg external = 1;

inst = rvviRefInsBinGet(0);
if (inst == ECALL) begin
sdisplay(“\n!!! %m @ t=%0t: ECALL!", $time);
if (FINISH ON ECALL) begin
break;
end
end
end // Loop

dutShutdown() ;
void' (rvviRefShutdown());
terminate_sim();

endtask // TbCntrllLoop

LHLELEEEEEEE LT E R R LR TR LT
// Watchdog timer
always @(posedge tb_clk) begin: wdt

++tb cycles;

if (tb_cycles >= TIMEOUT CYCLES) begin
$display("\n\n!!!\n!!! %m @ t=%0t: FATAL: timeout!\n!!!", $time);
fatal out();

end

if (err_cnt >= MAX ERRS) begin
$display(“\n\n!!!\n!!! %m @ t=%0t: FATAL: too many errors!\n!!!", $time);
fatal out();

end

end // wdt

bex_testbench.sv & | = ibex_alu.sv

]

|;-‘o<£ t‘tﬁué.[]m

)

Writable

Insert

143:11:4721

= Imperas

j Info

Info 186: 'refRoot/cpu’, ©x0PPEEEPEEEEEE3dE(begin_testcode+28c): Machine 3428293 addi x5, x5, -972

Info

| Info

Info 188:

Info

| Info 189:

x5 00001234 -> ©PEO23CC
| RET, ©, 186, 000003d0, "c3428293 addi x5, x5, -972 ", x5=00002000, , , ,

x5 000023cc -> 00002000

RET, ©, 187, 000003d4, 00020337 lui X6, ©x20 ", x6=00020009, , , ,

| Info 187: 'refRoot/cpu', ©x000000EEEEE0O3d4(begin_testcode+290): Machine 0020337 lui X6, 0x20
x6 FEFFFFff -> 0PO20000

| RET, 0, 188, 000003d8, "00430313 addi X6, X6,4 ", x6=00020004, , , ,

‘refRoot/cpu’, ©x0PEEEOEOROROR3dE(begin_testcode+294): Machine ©0430313 addi X6, %6,4

X6 BBO20000 -> 0OO20084
|RET, ©, 189, 000003dc, "00532023 SW X5,0(X6) Nt

'refRoot/cpu’,

0x0000PEREPRRRR3dC (begin_testcode+298): Machine 00532023 sw x5,08(x6)

| RET, ©, 100, 00000360, "0PRO2297 auipc x5, 0x2 ", x5=000023€8, , , ,

| Info 190: 'refRoot/cpu’, ©x0PEEPEEEEEPRE3e0(begin_testcode+29c): Machine 00002297 auipc X5, 0x2
x5 00002000 -> ©0PO23e0

RET, 0,191, 000003e4, "cb28293 addi X5, x5, -848 ", x5=00002099, , , ,

| Info

Info 191:

| Info

| Info 192: 'refRoot/cpu’,

| Info

Info 193:

| Info

| Info

| Info

| Info 198: 'refRoot/cpu’,

‘refRoot/cpu’,

0x0PPPPEEEEPRRR3e4 (begin_testcode+2a®): Machine ch828293 addi X5, X5, -848

X5 0BOE23e0 -> 0OOO2090
RET, 0, 192, 60000308, "00020337 lui X6, %20 ", X6=00020000, , , ,

(begin_test 2a4): Machine 00020337 lui X6, 6X20

X6 00020004 -> ©DO20000
|RET, 8,193, 000003ec, "00830313 addi X6, X6,8 ", X6=00020008, , , ,

‘refRoot/cpu’,

0x00PPPPPPPRRRR3ec(begin_testcode+2aB): Machine 00830313 addi x6,X6,8

X6 00020000 -> 0020008

| RET, ©, 194, 00000310, "00532023 sw X5,0(x6)

| Info 194: 'refRoot/cpu’, oxoeomsfe(begin_testcodﬁzac) Machine 00532023 sw x5,0(x6)
RET, ©, 105, 0000034, "00100293 addi x5,x0,1 ", x5=00000001, ,

| Info 195: 'refRoot/cpu’, oxﬂmmsfd(begin_testhbo) Hachine 00100293 addi x5,%0,1
x5 00002090 -> ©0PEEPO1

| RET, ©, 196, 0000038, "00020337 lui X6, ©x20 ", x6=00020009, , , ,

| Info 196: 'refRoot/cpu’', ©x0PEEEEEEREREE3E(begin_testcode+2ba): Machine ©0020337 lui X6, 0x20
x6 00020008 -> ©0O20000

| RET, ©, 197, 000003fC, "00532023 SW x5,0(x6)

Info 197: 'refRoot/cpu’, oxmmsfc(begimtestcmzba) Machine 00532023 sw X5,0(x6)
RET, 0, 198, 00000400, "offepeef fence

Bx000000EE0PRRR40D (begin_testcodec-zbc) Machine effeeeef fence

| RET, ©, 199, 00008404, 09100193 addi x3,%0,1 ", x3=00000001, , , ,

| Info 199: 'refRoot/cpu’,

| Info

(begin_testcode+2c@): Machine 00100193 addi

x3 ffffedcc -> 000EEOOL

|EXC, ©, 200, DOORB4OE, "POREBRT3 ecall

| Info 200: 'refRoot/cpu', oxoeoeosommasa(begimtestcodmzm) Machine 00000073 ecall
mstatus ©0PO1880 -> ©OOO1800

mepc 00000144 -> OOEEEIOE

mcause ©PEEOPRE -> OEEEEOBh

! ibex_testbench.TbCntrlLoop.Loop @ t=2636ns: ECALL!

Instruction retires

Exceptions
Mismatches
Sets / Compares
PC
Instruction
GPR
CSR
FPR
VR

Total compares

| Test PASSED with © errors and © warnings.

|simulation complete via $finish(1) at time 2630 NS + ©

| ../designTop/systemverilog/ibex_testbench.sv:135

xcelium> exit

| ToOL :

xrun(64)

20.03-s010: Exiting on Feb 84, 2022 at 15:51:16 GMT (total: ©0:00:04)

| moor e@1nx6476:~-/Demo/ ImperasDV/Ibex/systemverilog$]

$finish; // this should be the only call to $finish in the testbench

¥ Applications

B Console - SimVision

&9 mode[0:0]
9w order[0:0]
¥ order[0]
&l
& valid[0:0]
&M X_whb[0:0]

B9 X _wdata[0:0]
B+ X_wdata[0]

é

- BRI ... [[T S . [[o [B T R I 5] - [oo [B

2}
2}
2}
2}
]
2}
2}
2}
2}
]
]
2}
2}
2}
2}
2}
2}
2}
2}
2}
]

A X _wdata[0
T,
-,
Wi
- g
.
-,
-,
-0,
Wi
T
.
-,
-,
-,
.
.
.
-,
-,
-0,
T

100]
«ata[0][0][31]
4ata[0][0][30]
<ata[0][0][29]
«ata[0][0][28]
<ata[0][0][27]
«ata[0][0][26]
«ata[0][0][25]
«ata[0][0][24
«ata[0][0][23
«ata[0][0][22
«ata[0][0][21
‘ata[0][0][20
<ata[0][0][
<ata[0][0][
«ataf0][0](

[

[

[

[

[

[

0 O

«ata[0][0]
ata[0][0]
‘ata[0][0]
«ata[0][0]
‘ata[0][0]
«ata[0][0]

i
1
1
1
1
14
1
1
1

]
]
]
]
]
]
]
7]
6]
9]
]
3]
2]
1]

1»
3»
000»
000»
000»
Q00
000
Q00
000»
000»
000»
Q00
000
Q00
000»
000»
000»
Q00
Q00
Q00
000»
000»
000»
Q00

MM KON

@, Design Browser 1 - Sim... [Terminal 2] Terminal Waveform 1 - SimVision

‘mp E] | 15:57 1y Lee Moore

I Q) = o> g 5
o
Baseline = 0
TimeA = 190ns

0 |1 Ons |2Dn3 I3Dn3 40ns 50ns 60ns 70ns 30ns 90ns 100ns 110ns 120ns 130ns 140ns 150ns 160ns 170ns 180ns

[Aex Lax 2vbits]
1 x 64 bits]

>

——
S e =

Z e

x 1 x 32 bits]
x 1 x 32 x 32 bits]
[1 x 32 x 32 bits]
(00000000_00000000_00000000_00000000_00000000_00000000_00000000_00000000_00000000_00000000_00000000_00000000_00000000_00000000_00000000_
(00000000

(00000000

(00000000

(00000000

(00000000

(00000000
(00000000
(00000000

(00000000

(00000000

(00000000

(00000000
(00000000
(00000000

(00000000

(00000000

(00000000
(00000000
(00000000
(00000000
(00000000

190 200 210 220 230 240 250 268ns

¥ Applications

B Console - SimVision

e, Design Browser 1 - Sim...

‘mp workspace - Source not ... [*-]

Terminal] Terminal Waveform 1 - SimVision

) moore@lnx6476:-$ [|=

[Hlle Sydazin

N

13 Lee Moore

File Edit ‘iew Explore Format Simulation

CEERE
Search Names: | Signalv \71| ﬂ'ﬂ} ﬁ‘ﬂ}

s sieipe|

(O] Baselinevw=0
FF| Cursor-Baseline v = 268ns

&~ Cursor

i@ clk
I insn[0:0]

. mode[0:0]
im. order[0:0]
4w pc_rdatal0:0]

- valid[0:0]

{1 P) workspace - Source not found. - Imperas eGui ¢ o @
File Edit Navigate Search Project RU Window Help
& || 35 || ® | |4 Debug i Imperas Platform (mpd) - A 3 v i 2 HvyQ v~ v v - 2
Q [
% Debug X | {5 Project Explorer =" [c] reset_vector() at 0xe0 53 = O & Programmers View 3 = 0O)= Variables e Breakpoints €< Expressions =\ Modules = =
- %% 3 v No source available for "reset_vector() \n’lj‘; = r 8
— at Oxe0" : A
2 No debug context
v ip <terminated>Imperas Platform (mpd) [Imperas - Conn|| |View Disassembly...)
& <terminated, exit value: 0>mpd =R Type riscv
Configure when this editor is shown |Pre mp Variant lbex RV32IC
o nstructionCo 6
o Mode Machine
mpLast Exceptiol InstructionAddressMis:
» &% Core
» A% Machine_Con!
» &% Integration_st
@ modeswitch
@ exception
G Debugger Console 2 % i El > & B Console iiif Registers 53 |[2! Problems {2 Executables [J Memory = 0O
<terminated> Imperas Platform (mpd) [Imperas - Connect to running simulator] mpd.exe (% =4
idebug (cpu) > 0x000000d4 in reset vector () = e
idebug (cpu) > 0x000000d8 in reset vector ()
idebug (cpu) > 0x000000dc in reset vector ()
idebug (cpu) > 0x000000e0® in reset vector ()
idebug (cpu) > Info (TC_CAC) closing all connections
Inperas
EID\’; Insn. bit pm‘:tern mswmcl\ (HartId:e, PC:000000e0):
(IDV) 5> Insn. - dut:100513 ref:30520073
(IDV) GPR register value mismatch (HartId:®, PC:0PEEE0ed):
(IDV) 5> GPR x5 - dut:0PEEEEEE ref:0OOOOOB4

(IDV) PC mismatch (hartId ©):

(IDV) 7> PC - dut:000000e8 ref:00000020

(IDV) Insn. bit pattern mismatch (HartId:®, PC:000000e0):
(IDV) 8> Insn. - dut:1f51513 ref:30529073

(IDV) GPR register value mismatch (HartId:©, PC:0P0000e0):

(IDV) 8> GPR x5 - dut:00000000 ref:0EPEEE84

A

0 objects selected

T 3 14 Se
I : : 5 Info x5 00001234 -> ©00023cC
| moore@lnx6476:-$ | RET, 0, 186, 00000300, "c3428293 addi X5, X5, -972 ", x5=00002009, , , ,
B Info 186: 'refRoot/cpu’, ©x0PPEEOPPEEEEE3dE(begin_testcode+28c): Machine ¢3428293 addi X5, X5, -972
Info x5 000023cc -> ©PEO2000
RET, ©, 187, 000003d4, "00020337 lui X6, ©x20 ", x6=00020009, , , ,
[% Info 187: 'refRoot/cpu’, ©x0PEEEOPEEEEOR3d4(begin_testcode+290): Machine 00020337 lui X6, Ox20
Info x6 FFFFffff -> 0020000
RET, 0, 188, 000003d8, "00430313 addi X6,x6,4 ", x6=00020004, , , ,
Info 188: 'refRoot/cpu', ©x0POPEOREOREEO3d8(begin_testcode+294): Machine 00430313 addi X6, %6,4
Info x6 0020000 -> BEO20004
; RET, 0, 189, 000003dc, 00532023 sw x5,0(X6) Wiy
& 2yl Info 189: 'refRoot/cpu’, ©x0POEEEEEEEEEE3dC(begin_testcode+298): Machine 00532023 sw X5,0(x6)
RET, 0,190, 0000030, 00002297 auipc x5,0x2 ", x5=000023e0, , , ,
Info 190: 'refRoot/cpu’', ©x0PEEEOPEEEEOE3ed(begin_testcode+29c): Machine 00002297 auipc x5,0x2
Info x5 00EO2000 -> BEEO23e0
RET, 0,191, 090003e4, "cb28293 addi X5, x5, -848 ", x5=00002099, , , ,
Info 191: 'refRoot/cpu’', ©x0PEEEOEPEEEEE3e4(begin_testcode+2ad): Machine cbe28293 addi X5, X5, -848
Info x5 00EO23ed -> OOEO2090
RET, 0, 192, 000003e8, "00020337 lui X6, ©%20 ", x6=00020000, , , ,
Info 192: 'refRoot/cpu’', ©x0PEEEOPEEEEOR3e8(begin_testcode+2ad): Machine 00020337 lui X6, 0x20
Info x6 0020004 -> DEO20000
RET, 0,193, 000003ec, "00830313 addi X6, X6,8 ", x6=00020008, , , ,
Info 193: 'refRoot/cpu’, ©x0000000000003ec(begin_testcode+2a8): Machine ©0830313 addi %6, X6, 8
Info x6 ©0020000 -> ©0020008
RET, ©, 194, 0000030, "00532023 sw x5,0(x6))
Info 194: 'refRoot/cpu’, oxoeomsfe(begin_testcodﬁzac) Machine 00532023 sw x5, 0(x6)
RET, 0, 195, 000003f4, "00100293 addi X5,x0,1 x5=00000001, ,
Info 195: 'refRoot/cpu’, oxmmmsoeossm(begin_testcodmzbo) nachine 00100293 addi X5,%0,1
561V Info x5 00002090 -> 0001
RET, ©, 196, 0000038, "00020337 lui X6, ©x20 ", x6=00020009, , , ,
Info 196: 'refRoot/cpu’', ©x0PEEEPEEEEEEE3TE(begin_testcode+2bd): Machine ©0020337 lui X6, 0x20
Info x6 ©PO200E8 -> OEH20000
RET, 8, 197, 000003fc, "00532023 sw x5,0(x6)
Info 197: 'refRoot/cpu’', ©x000EEEEEEEEEE3fC(begin_ testcode+2b8) Machine 08532023 sw x5,0(x6)
RET, 0, 198, 00000400, "effepeef fence
Info 198: 'refRoot/cpu’, ©x0PEEEOPEEEEOB4EE(begin_ testcode-r-zbc) Machine effeeeef fence
RET, 0,199, 00000404, "00100193 addi x3,%0,1 ", x3=00000001, , ,,
Info 199: 'refRoot/cpu’, ©x0PPEEEPEEEEOB4B4(begin_testcode+2c®): Machine 00100193 addi x3,%0,1
VOITIe x3 ffffedcc -> 00OEEOOL
EXC, ©, 200, 00000408, "000PRA73 ecall
Info 200: 'refRoot/cpu’', oxoeoeoeoeoeoesus(begin_testcodwzea) Machine 00000073 ecall
mstatus ©ee01880 -> 0001800
mepc ©00PE144 -> OEEOB4E8
mcause ©0PEEEED -> OOEEEOEL

111 ibex_testbench.ThCntrlLoop.Loop @ t=2636ns: ECALL!

Exceptions
Mismatches
Sets / Compares
PC
Instruction
GPR
CSR
FPR
VR

Test PASSED with © errors and © warnings.

Simulation complete via $finish(1) at time 2630 NS + ©

../designTop/systemverilog/ibex_testbench.sv:135 $finish; // this should be the only call to $finish in the testbench
xcelium> exit

TOOL: xrun(64) 20.03-s010: Exiting on Feb 84, 2022 at 17:23:34 GMT (total: ©0:00:04)

moore@lnx6476:~/Demo/ ImperasDV/Ibex/systemverilog$ []

I 8 5 3 : | Loading snapshot worklib.ibex_testbench:sv
xmsim: *W,XCLGNOPTM: The SystemVerilog constraint solver Xceligen options 'seed_only rand and process_alternate_rng and ignore_worklib_name' are now enabled b

xmsim: *W,DSEM2009: This SystemVerilog design is simulated as per IEEE 1800-2009 SystemVerilog simulation semantics. Use -disable_sem2009 option for turning o
ff SV 2009 simulation semantics.

xcelium> source /home/nda/cadence/installs/XCELIUM2003/tools/xcelium/files/xmsimrc

xcelium> run

ibex_testbench.tb_cntrl @ t=8ns: loading test_program /home/moore/Demo/ImperasDV/Ibex/systemverilog/work/I-ADD-01.hex

Info (OR_OF) Target 'refRoot/cpu' has object file read from '/home/moore/Demo/ImperasDV/Ibex/systemverilog/work/I-ADD-01.elf’

Info (OR_PH) Program Headers:

Info (OR_PH) Type virtAddr PhysAddr FileSiz MemSiz Flags Align

Info (OR_PD) LOAD Ox00001000 Ox000PPPEE OxEPPEPPRE OxPEPEER444 OxPPEEP444 R-E 1000

Info (OR_PD) LOAD ©x00P02000 ©x0EPP1000 OxEPPP1EEE BxePPR1204 Ox0PP01264 RW- 1000
| Info (ICV_PVSN) parameter 'user_version' is '20190305'

Info (ICV_ALI) Pseudo instructions will be translated

Info (OP_NOS) Simulator finishing because 'nosimulation' was specified
Info (OP_NOS) Simulator finishing because 'nosimulation' was specified
ImperasDV Initialised:

- program: /home/moore/Demo/ImperasDV/Ibex/systemverilog/work/I-ADD-01.elf
- vendor: lowrisc.ovpworld.org

- variant: Ibex_RV32IC

Info ImperasDV VERIFICATION REPOI
1) Wl Info Instruction retires :
Info Exceptions
Info Mismatches
Info Sets / Compares
Info PC
Info Instruction
Info
Info CSR
Info FPR
VB Info VR
volume Info Total compares

Info (ICV_RD) Reading file /home/moore/Demo/ImperasDV/Ibex/systemverilog/I-ADD-01.basic.coverage.yaml
Info (ICV_RD) Reading file /home/moore/Demo/ImperasDV/Ibex/systemverilog/I-AND-01.basic.coverage.yaml
Info (ICV_RD) Reading file /home/moore/Demo/ImperasDV/Ibex/systemverilog/I-BLT-01.basic.coverage.yaml
Info (ICV_RD) Reading file /home/moore/Demo/ImperasDV/Ibex/systemverilog/I-Lw-01.basic.coverage.yaml
Info (ICV_RD) Reading file /home/moore/Demo/ImperasDV/Ibex/systemverilog/I-Sw-01.basic.coverage.yaml
Info (ICV_WCR) Writing coverage report collate.basic.coverage.txt

Threshold

Instructions counted
Unique instructions
Coverage points hit

Test PASSED with @ errors and © warnings.

Simulation complete via $finish(1) at time 2630 NS + ©
../designTop/systemverilog/ibex_testbench.sv:135 $finish; // this should be the only call to $finish in the testbench
xcelium> exit
TOOL: xrun(64) 20.83-s010: Exiting on Feb 84, 2022 at 17:27:26 GMT (total: ©0:00:02)
moore@lnx6476:—/Demo/ImperasDV/Ibex/systemverilog$ grep -n "Coverage points hit" *.txt
collate.basic.coverage.txt:3182:Info Coverage points hit : 503/2540 : 19.80%
I-ADD-©1.basic.coverage.tx 82:Info Coverage points hit : 253/2540

82:Info Coverage points hit : 253/2540

82:Info Coverage points hit : 189/2540
I-LW-01.basic.coverage.txt:3182:Info Coverage points hit : 195/2540 :
I-SW-01.basic.coverage.txt:3182:Info Coverage points hit : 154/2540 :
| moore@1nx6476:~/Demo/ ImperasDV/Ibex/systemverilog$ |]

Demo: ImperasDV

Core: lowRISC Ibex |ﬁ]ﬂ@eras

Simulator: SystemVerilog
DV mode: sync-lock-step-compare

Overview block diagram from RVVI github
Walk through C/C++ rvvi.h and in doxygen — introduce APIs: RVVI-VLG
Walk through tracer code where it converts RVVI-VLG nets to -> RVVI-API

Walk through SystemVerilog harness
Show init, config, main step loop

Run example - passes

Run example - fails, show trace, show in eGuiMPD and waveforms
Show arch test suites

Show instruction coverage

NNNNNNNNNNNNNNNNNNNNN

Page 83 © Imperas Software Ltd. Q1 2022

VIRTUAL
zzzzzzzzzzzzzzzzzzzzzz

_
Imperas

Agenda

* Brief Introduction to RISC-V
* RISC-V CPU HW DV approaches
* Components of RISC-V CPU DV environment

IIIIIIIIIIIIIIIIIIIIII
NNNNNNNNNNNNNNNNNNNNN

Page 84 © Imperas Software Ltd. Q1 2022

nnnnnnn

Agenda

Brief Introduction to RISC-V
RISC-V CPU HW DV approaches
Components of RISC-V CPU DV environment

Imperas

Compliance Tests and other Test Suites

Instruction Stream Generators
Functional Coverage
Instruction Set Simulators

NNNNNNNNNNNNNNNNNNNNN

Page 85 © Imperas Software Ltd.

zzzzzzzzzzzzzzzzzzzz

Q1 2022

») RISC-\/ RISC-V International’s mm@eras

compliance tests

RISC-V International has been working on compliance testing since 2018
Status (Feb 2022):

Test suites for basic un-priv older ratified extensions |, M, C, etc
Simple framework for running DUT and provides signatures for comparison

Working on new framework to run in a post simulation signature compare mode

Encapsulates sail model, uses yaml configuration, does not provide build in reference signatures
Process is self-certification

You run the tests on your DUT and declare it is RISC-V compliant

NNNNNNNNNNNNNNNNNNNNN

Page 86 © Imperas Software Ltd. Q1 2022

_
Imperas

RISC-V International Compliance
Special Interest Group - Charter
(aka compliance working group)

SIG Charter

The Architectural Compatibility Test SIG is an umbrella group that will

provide guidance, strategy and oversight for the development of tests

used to help find incompatibilities with the RISC-V Architecture as a step in the
Architectural Compatibility self-certification process

The group will:

* Guide Development of:

 Architectural tests for RISC-V implementations covering ratified and in-flight specifications for
* Architectural versions, standard extensions, and implementation options.

* Tools and infrastructure to help identify architectural incompatibilities in implementations
* Work with LSM and Chairs for resources to get the above work done.

* Mentor or arrange for mentoring for the resources to get the above work done

2022

DESIGN AND VERIFICATION ™

DVCOIN

NNNNNNNNNNNNNNNNNNNNN

bl bl Page 87 © Imperas Software Ltd. Q12022

_
Imperas

RISC-V International Compliance
Special Interest Group (2)
(aka compliance working group)

" ! @& o7

) 4 =\ /7
& Y 4

v | o

RISC-V attendance

Only RISC-V Members May Attend

Non-members are asked to please leave.

e Members share IP protection by virtue of their common membership agreement. Non-members
being present jeopardizes that protection

e Itis easy to become a member. Check out riscv.org/membership

e If you need work done between non-members or or other orgs and RISC-V, please use a joint working
group (JWG).

used to allow non-members in SIGs but the SIGs purpose has changed.
e Please put your name and company (in parens after your name) as your zoom name. If you are an
individual member just use the word “individual” instead of company name.
e Non-member guests may present to the group but should only stay for the presentation. Guests
should leave for any follow on discussions.

2022

DESIGN AND VERIFICATION ™

DVCOIN

NNNNNNNNNNNNNNNNNNNNN

Page 88 © Imperas Software Ltd. Q1 2022

nnnnnnn

RISC-V International Compliance
Special Interest Group (3) — Mailing List
(aka compliance working group)

Ilperas

Ly RISC

Tech: Architecture Test SIG sig-arch-test@lists.riscv.org

Architecture Test SIG

Define coverage requirements for RV32! compliance tests, release compliance test format spec, release compliance suite for RV32l

For bugs & ongoing tasks in Jira, please see the Jira project for Compliance

Group Information Group Settings

3% 138 Members @& This is a subgroup of main

) 202 Topics, Last Post: Feb 5 Al members can post to the group.

© Started on 2019-12-17 + Posts to this group do not require approval from the moderators.
Feed 4 Messages are set to reply to sender.

& Subscriptions to this group do not require approval from the moderators.
& Archive is visible to anyone

Post: sig-arch-test@lists.riscv.org © Members can edit their messages.

Subscribe: sig-arch-test+subscribe@lists.riscv.org © Members can set their subscriptions to no email

Unsubscribe: sig-arch-test+unsubscribe@lists.riscv.org

Group Owner: sig-arch-test+owner@lists.riscv.org

Help: sig-arch-test+help@lists.riscv.org

Group Email Addresses

Top Hashtags [see All]
[19]
[e notice [11
0O
inder 2 §
2]
(2]

|l

E

DESIGN AND VERIFICATION ™

CONFERENCE AND EXHIBITION

VIRTUAL
FEBRUARY 28 - MARCH 3, 2022

Page 89 © Imperas Software Ltd. Q1 2022

RISC-V International Compliance
Special Interest Group (4) - GitHub
(aka compliance working group)

Ilperas

1 sig-arch-test@lists.riscvorg |Ho X () riscv-non-isa/riscv-arch-test X o+
& C (Y & github.com/riscv-non-isa/riscv-arch-test
B dk toRead listen @ LocalSite [6) gCal M gun ™ GMAIL (F live @ gHangouts G Google @ Zoom @ TTMFa X® x F @ SDBookmarks ourSites @ RISCV @ OSKtimer @ SDSexp

Pull requests Issues Marketplace Explore

B riscv-non-isa / riscv-arch-test public

<>code @ lIssues 17 19 Pull requests 5 ® Actions [projects M wiki O Security | Insights

P master + P Sbranches © 22tags Go to file Add file ~ m About
No description, web]
. neelgala Merge pull request #224 from marcfedorow/patch-1 ... Vv 3e7¢77b on 6 Dec 2021 O 358 commits
0 Readme
B .github/workflows Updated CI to correctly create annotated tags. 7 months ago & View license
253 stars
B doc replacing old riscv-compliance links with new riscv-arch-test 10 months ago o
® 59 watching
B riscv-ovpsim riscvOVPsim is moving to its own GitHub repo. These changes remove it.. 16 months ago ——
I riscv-target fixed typo .alive --> .align in riscv-target/example_target/mode... 5 months ago
B riscv-test-env issue107 fix 10 months ago Releases 18
B riscv-test-stats remove stray file 4 months ago © 264 (D)
B8 riscv-test-suite Fix RVTEST_FP_ENABLE macro 2 months ago onecatel
+ 17 rel
B spec updated spec for RVTEST_SIGUPD_F macro 5 months ago s
O .gitignore Deduplicate makefiles 13 months ago
Packages
() CHANGELOG.md fixup! Fix RVTEST_FP_ENABLE macro 2 months ago
No packages published
() CONTRIBUTION.md typos fixed. 10 months ago
[COPYINGAPACHE updated licenses that are currently used by tests 10 months ago
Contributors 28
[COPYINGBSD Add process detail to the README. 4 years ago
D copviNGcC Add process detail to the README. 4years ago ' . * ’j
D Makefile Added Imperas K Crypto Scalar Tests 12 months ago S ? G‘ ‘
O Makefileinclude typos fixed. 10 months ago + 17 contributors
: 4 R I S([READMEmd updated links to riscof, ctg and isac due to risc-v re-org 5 months ago
‘ Environments 1
= READMEmd

%9 github-pages (]

RISC-V Architecture Test SIG

Languages

This is a repository for the work of the RISC-V Foundation Architecture Test SIG. The repository owners are:

DESIGN AND VERIFICATION ™

CONFERENCE AND EXHIBITION

Page 90 © Imperas Software Ltd. Q1 2022

VIRTUAL
FEBRUARY 28 - MARCH 3, 2022

RISC-V International Compliance
Special Interest Group (5) — GitHub — test suites
aka compliance working group)

Ilperas

¥ master ~

|
B
|
[}
D
D

README.md

marcfedorow Fix RVTEST_FP_ENABLE macro

@ Security |~ Insights

riscv-arch-test / riscv-test-suite / Go to file

Fix RVTEST_FP_ENABLE macro

rv32e_unratified Fix/Update rv32e_unratified/C/cswsp-01 test and coverage report

fix rvtest case strings for flw and fsw

fix typo in labels for fid and fsd tests

Makefile.include Deduplicate makefiles

README.md fixed broken links in readme files

RISC-V Test Suites

The tests are grouped based on the different extension subsets of the RISC-V unprivileged ISA. The tests strictly follow the Test format
specification.

Directory names postfixed with “_unratified" indicate that tests for extensions that have not yet been ratified by RVI.

The coverage report (in html format) of the tests available in this suite is generated through RISCOF and is available here: Coverage Report.

These tests have been generated using the open source Compatibility Test Generator from InCore Semiconductors available at: CTG.
The reference signatures are generated using SAIL or SPIKE.

Test directories with the "_unratified" post-fix indicate test-suites for extensions which have not been ratified (but are stable and near
ratification)

Directory structure
— env # contains the architectural test header files)
— rv32i_m # top level folder indicate rv32 tests for machine mode : R I S
—c # include tests and references for extension
| |— references # static references signatures for "C" extension
| —src # assembly tests for "C" extension
I—F # include tests and references for "rv32f" extension

DESIGN AND VERIFICATION ™

CONFERENCE AND EXHIBITION

Page 91

FEBRUARY 28 - MARCH 3, 2022

6597bec on 25 Nov 2021 ¥O) History

2 months ago
4 months ago
4 months ago
4 months age
13 months ago

5 months ago

© Imperas Software Ltd.

Ql 2022

RISC-V International Compliance
Special Interest Group (6) — GitHub — test suites
(aka compliance working group)

Ilperas

ketplace Explore

rojects 0 wiki © Security |~ Insights

¥ master v | riscv-arch-test / riscv-test-suite / rv32i_m / Go to file Add file ~
‘ neelgala fix rvtest case strings for flw and fsw 14c6718 on 22 Oct 2021 @ History
m C Compliance Task Group changed to Architecture Test SIG in all docs an... 10 months ago
mF fix rvtest case strings for fiw and fsw 4 months ago
(I fix the lower case i in the RVTEST_cASE macros used in the shift ... 4 months ago
BB K_unratified fix reference_output for aes32 tests 4 months ago
I M Compliance Task Group changed to Architecture Test SIG in all docs an... 10 months ago
B Zifencei Compliance Task Group changed to Architecture Test SIG in all docs an... 10 months ago
m privilege corrected string "EBREAK" in io string macro to "ECALL" for ecall.S t... 5 months ago
O .gitgnore rfg-tests (#1 14 months ago

O ® 2022 GitHub, Inc. Terms Security Status Docs Contact GitHub Pricing AP; Training Blog About

DESIGN AND VERIFICATION ™

CONFERENCE AND EXHIBITION

Page 92 © Imperas Software Ltd. Q1 2022

VIRTUAL
FEBRUARY 28 - MARCH 3, 2022

Imperas Test Suites

Imperas

When verifying a CPU design - you can never have enough tests...

Imperas have developed a directed RISC-V test generator, instruction coverage
measuring VIP, and a test qualifying mutating fault simulator to provide high

quality test suites

The generated tests suites are targeting architectural compatibility as defined
in the RVIA architectural test working group coverage requirements

There are currently over 50 free test suites, including
,M,C,F,D,B,K,V,P

The provided vector test suite is one specific vector engine configuration

The test suites are provided under an OVP open source license and are

available free from: https://github.com/riscv-ovpsim/imperas-riscv-tests
L2022

NNNNNNNNNNNNNNNNNNNNN

Page 93 © Imperas Software Ltd. Q1 2022

https://github.com/riscv-ovpsim/imperas-riscv-tests

@ github.com/riscv-ovpsim/imperas-riscv-tests Q B %« © @ N .

L% clk toRead listen @ LocalSite E gCal ™M gUn ™M GMAIL ﬁ live @ gHangouts & Google @ Zoom @ TTMFa 8 x = F @ SDBookmarks ourSites @ RISCV @ OSKtimer @ SDSexp @ OSKtimer m F @ MDe & i3 @ g B elecbike (> Getting Started | A.. »

Pull requests Issues Marketplace Explore

& riscv-ovpsim / imperas-riscv-tests | Public ® Unvatch 3~ @ Fork 17 T sar 50~
<> Code (@ Issues & 17 Pull requests (® Actions B Projects 00 wiki @ Security | Insights

P v20220112 ~ ¥ 7 branches © 0 tags Go to file Add file ~ m About

No description, website, or topics provided.
duncangraham-Imperas update tc v20220112 202538b 24 daysago {016 commits

riscv-ovpsim

riscv-target 120220112
riscv-test-env update to v20211019
riscv-test-suite update to v20220112

Makefile

Makefile.include

0 0 0O O

README.md update to v20211117

README.md Va

Imperas RISC-V riscvOVPsim reference simulator and
architectural validation tests > A

riscv-ovpsim

Github Account

riscvOVPsim is released by Imperas based on their 12+ years of developing commercial industrial grade, reference
simulators for advanced processor architectures. It is a free closed source simulator binary that works with no
compiling, no fiddling, and no external dependencies, it just works.

Languages
In the RISC-V world, Imperas simulators are used by most companies and organizations that are serious about
getting quality RTL working and signed off. They use it as an architectural reference and many use it as the golden

® C614% ® Assembly 256%
simulator to verify their RTL in a hardware design verification methodology. Imperas simulator technology and Shell 1.1% Other 0.9%
verification IP is the technclogy to use to obtain high quality results and to verify RTL works as expected.

The following is a list of some of the companies and organizations that rely on Imperas simulators as their RISC-V
reference:

Mellanox/Nvidia, Seagate, NSITEXE/Denso, Goagle Cloud, Chips Alliance, lowRISC, OpenHW Group, Andes, Valtrix,
Nagra/Kudelski, Silicon Labs, Incore Semi, RISC-V Compliance Working Group, Symbiotic EDA, Thales, Hensoldt Cyber,
Invia, ...

This download contains a binary of the Imperas configurable reference simulator, a test framework to run the
simulater or your device-under-test, and tests to run on several targets. Use the tests to check ISA compliance of your

Adavica

_
mperas

Bremen Univ. ‘Fuzz’ tests

1 of6 -+ 160% v

Closing the RISC-V Compliance Gap:
Looking from the Negative Testing Side*

Vladimir Herdt' Daniel GroBe'? Rolf Drechsler'?
!Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany

Abstract—Compliance testing for RISC-V is very important.
Therefore, an official hand-written compliance test-suite is being
actively developed. However, besides requiring significant manual
effort, it focuses on positive testing (the implemented instructions
work as expected) only and neglects negative testing (consider
illegal instructions to also ensure that no additional/unexpected
behavior is accidentally added). This leaves a large gap in compli-
ance testing.

In this paper we propose a fuzzing-based test-suite generation
approach to close this gap. We found new bugs in several RISC-V
simulators including riscvOVPsim from Imperas which is the official
reference simulator for compliance testing,

I. INTRODUCTION
An Instruction Set Architecture (ISA) defines the interface be-
tween the Hardware (HW) of a processor and the Software (SW).

“Institute of Computer Science, University of Brc;?cn. 28359 Bremen, Germany
{vherdt.grosse drechsle } @informatiK.uni-bremen.de

that represents the output of the test result and is dumped at the end
of the test execution. For compliance testing, these signatures are
compared against golden reference signatures (obtained by running
the test-suite on a reference simulator). A separate sub test-suite is
developed for the RISC-V base ISA as well as for each standard ISA
extension. Besides the significant manual effort for the maintenance,
the compliance test-suite focuses on positive testing only, i.e. to
show that the implemented instructions work as expected. However,
it neglects negative testing, i.e. to consider illegal instructions to also
ensure that no additional/unexpected behavior is accidentally added.
This leaves open a large gap in compliance testing.

Contribution: In this paper we propose a fuzzing-based test-suite
generation approach to close this gap. We leverage state-of-the-
art fuzzing techniques (based on LLVM /libFuzzer) to iteratively
generate test-cases which are executed on a RISC-V simulator and

DESIGN AND VERIFICATION ™

CONFERENCE AND EXHIBITION

VIRTUAL
FEBRUARY 28 - MARCH 3, 2022

Page 95 © Imperas Software Ltd.

Ql 2022

il Q imperas-riscv-tests/basic.coverage.txt at main - riscv-ovpsim/imperas-riscv-tests - GitHub - Mozilla Firefox
(

ujOGltHUb-HSCV/IISCV'[eS[S)(() riscv-compliance/riscv-t. X | €) riscv-bitmanip/compli X) imperas-riscv-tests/risc. X = () imperas-riscv-tests/bas: X = 2020DAC_ClosingtheRISC-. X | 2020DAC_ClosingtheRISC-\ X =+

Rubl

&« C o O & github.com 90% - U o v IN D @ % =
Aa 1 contributor E\r '
-
File
15535 lines (15533 sloc) 662 KB Raw Blame
ras R \Str ic rage Repor
el E RW1 nstri T
H -
neg 4 4
(100. 00
— - 10
vCs

File Eg 3/1 : 160.90
tree U7 X il

cd U7/L S
./Run_F £ 9 S
cd ../n e Ry

cd /scr
make Bl

cd /scr
make CH

cd /scr
source
make cl
make RI
vi risq

cd /scr
source
make cl
make RI
make cl
make RI
“demore

97,1 4%

B e | o | om

08:55

& imp... . Ter . Term . Term . Term

ll:! IIII II' I!!!EE!!!! ill i
8 a8
; i k| m| ae.

100% g | 06:25/08:55
= ——m

Agenda Innperas

Brief Introduction to RISC-V
RISC-V CPU HW DV approaches

Other components of RISC-V CPU DV environments
Compliance Tests and other Test Suites
Instruction Stream Generators
Functional Coverage
Instruction Set Simulators

NNNNNNNNNNNNNNNNNNNNN

Page 97 © Imperas Software Ltd. Q1 2022

zzzzzzzzzzzzzzzzzzzz

Agenda Innperas

Brief Introduction to RISC-V
RISC-V CPU HW DV approaches

Other components of RISC-V CPU DV environments
Compliance Tests and other Test Suites

Instruction Stream Generators

Google Cloud riscv-dv (SystemVerilog open source)
OpenHW Group force-riscv (C++ open source)
Valtrix STING (commercial)

Functional Coverage
Instruction Set Simulators

NNNNNNNNNNNNNNNNNNNNN

Page 98 © Imperas Software Ltd. Q1 2022

.
CPU DV test bench components im@eras

Instruction
NEE]
Generator

Functional coverage

measurement

Directed
Tests

x
Tracer
RISC-V o RwvivLG | Tracer>TB Test bench / harness RISC.V
Core | (or proprietary) — | control, sequencing, | »>| PP | R)
reference
RIE compare A
(DUT) DUT<->TB — SystemVerilog o
CONTROL <

bus/mem i/f
irecal
em Test bench virtual peripherals

DESIGN AND VERIFICATION ™
NNNNNNNNNNNNNNNNNNNNN

Page 99 © Imperas Software Ltd. Q1 2022

nnnnnnn

_
Imperas

Constrained Random Instruction
Stream Test Generators (ISG)

DUT
specification
configuration

instructions

Instruction to be ta rgeted \
Stream Open Source
Generator SystemVerilog
UvM
reference RISC-V

Instruction

mOdel Stream

Generator

configuration

test list

]] randomization
configuration

constraints

IIIIIIIIIIIIIIIIIIIIII
NNNNNNNNNNNNNNNNNNNNN

Page 100 © Imperas Software Ltd. Q1 2022

nnnnnnn

Agenda Innperas

Brief Introduction to RISC-V
RISC-V CPU HW DV approaches

Other components of RISC-V CPU DV environments
Compliance Tests and other Test Suites

Instruction Stream Generators

Google Cloud riscv-dv (SystemVerilog open source)
OpenHW Group force-riscv (C++ open source)
Valtrix STING (commercial)

Functional Coverage
Instruction Set Simulators

NNNNNNNNNNNNNNNNNNNNN

Page 101 © Imperas Software Ltd. Q1 2022

_
mperas

Y Google Cloud

Key Features

O1

Randomness

Randomize everything:
instruction, ordering,

program structure,

privileged mode setting,

exceptions..

02

Architecture Aware

The generated program
should be able to hit the
corner cases of the
processor architectural
features.

03

Performance

The instruction generator
should be scalable to
generate a large program in
a short period of time.

* From Google Cloud presentation 2019 RISC-V Summit

2022

DESIGN AND VERIFICATION ™

DVCOIN

NNNNNNNNNNNNNNNNNNNNN

vvvvvvv

Page 102

© Imperas Software Ltd.

04

Extendability

Easy to add new instruction
sequences, custom
instruction extension,
custom CSR etc.

Ql 2022

_
Randomness Innperas

& Google Cloud

Instruction level randomization
Cover all possible operands and immediate values of each instruction ‘ ‘

Example: Arithmetic overflow, divide by zero, long branch, exceptions etc.

Sequence level randomization .
Maximize the possibility of instruction orders and dependencies

Y . ¥ i Y s

SHIFT — DIV — Branch Load Fence @ Store

Program level randomization
Random privileged mode setting, page table organization, program calls

(2022

DESIGN AND VERIFICATION ™

DVCOIN

NNNNNNNNNNNNNNNNNNNNN

Page 103 © Imperas Software Ltd. Q1 2022

nnnnnnn

- I
Google RISC-V Instruction Stream .

Generation nnperas

* High quality SystemVerilog UVM DV infrastructure

* Open source

> Drives a RISC-V core through corner cases and
pushes it to the limit

-= metrics o
£Y Google Cloud RTLsimulation Metrcs og * Imperas worked on this with

A RISC . Google Cloud & Metrics through
(CPU RTL+memory)

Open Source
SystemVerilog
UVM
RISC-V

2019-2020

compare .
[. * Usesa post-sim trace-compare
cpu+memo

RISCV.S RISCV.elf methOdOIOgy
IMperas m-- * Uses Imperas riscvOVPsim as the
https://github.com/google/riscv-dv reference

Instruction
Stream
Generator

IIIIIIIIIIIIIIIIIIIIII

EEEEEEEEEEEEEEEEEEEEE

Page 105 © Imperas Software Ltd. Q1 2022

nnnnnnn

Agenda Innperas

Brief Introduction to RISC-V
RISC-V CPU HW DV approaches

Other components of RISC-V CPU DV environments
Compliance Tests and other Test Suites

Instruction Stream Generators
Google Cloud riscv-dv (SystemVerilog open source)

OpenHW Group force-riscv (C++ open source)

Valtrix STING (commercial)
Functional Coverage
Instruction Set Simulators

NNNNNNNNNNNNNNNNNNNNN

Page 108 © Imperas Software Ltd. Q1 2022

OpenHW Group force-riscv Ilperas

Developed initially by Futurewei
Open source C++
https://github.com/openhwgroup/force-riscv

Initial focus on RV64, recently working on RV32
Not yet key part of OpenHW flows for core-v cores

NNNNNNNNNNNNNNNNNNNNN

https://github.com/openhwgroup/force-riscv

Agenda Innperas

Brief Introduction to RISC-V
RISC-V CPU HW DV approaches

Other components of RISC-V CPU DV environments
Compliance Tests and other Test Suites

Instruction Stream Generators

Google Cloud riscv-dv (SystemVerilog open source)
OpenHW Group force-riscv (C++ open source)

Valtrix STING (commercial)

Functional Coverage
Instruction Set Simulators

NNNNNNNNNNNNNNNNNNNNN

Page 110 © Imperas Software Ltd. Q1 2022

STING - A Versatile Design Verification Platform - Mozilla Firefox [T C) "‘SW

() GitHub - openhwgroup/! X |, openhw-force-riscv.jpg | X | val STINGkA Versatile Desi X | W valtrix_STING.jpg (JPEG = X -+

B (0> ¢ o

‘ ©] & https://www.valtrix.in/sting/

Valtl’ix Systems Home Company ~ Products ~ Services Blog Contact

STING - A Versatile Design Verification Platform

STING, the flagship product of Valtrix Systems, is a bare metal software specially designed to serve as a platform for the design
verification of IP/SoC implementations. The software stack consists of test generators, checkers, device drivers and a light-weight kernel
which can be configured into a portable program as per the needs of the verification environment. The program can seamlessly boot on
simulation, FPGA prototypes, emulation or silicon and execute the constrained random, directed or coverage based tests that the user
programs or requests for.

The highly portable stimulus is controlled by a rich file based test specification scheme. High level of controllability is provided to the user
a for every test parameter so that every test condition can be mapped to a particular test configuration.

File Ed
vi risg

STING is developed with a vision to solve problems commonly seen in design verification and system validation. It embodies the best
methodologies and practices in the industry whilst providing innovative solutions for the unique challenges in specific ecosystem.
cd /scr Designed for scalability and extensibility, companies can make full use of it across the spectrum of embedded, client and server SoCs.

source
make cl
make RI
make cl

make RI Stable and deterministic kernel with a tiny memory and instruction Ext I A e S e keatton to cover a large amount of
diffe footprint ideal for simulation environments verification space in a small amount of time

cd ~/si

:a 1 {“t: Run the exactly same portable stimulus on simulation, FPGA prototype, Extensive hardware support including ARMv8, RISC-V and USB. Check the
1s - lt; emulation or silicon without any change section below for details

cd ~/si Generates extremely tight sequences of code for faster closure on Interspersed directed and random testing for better coverage under

i coverage different levels of stress

Configuration file based input to control kernel setup, test generation and Special kernel and library APIs for design verification available to test

execution developers to write stimulus generators
Clock, power, memory and interrupt management support provided by Support for standard verification algorithms is available with the library of
kernel to the test generators and device drivers test stimulus

| 2020-11-14
lications Terminal Terminal ec2-user@i... ec2-user@i...

@ =] =]

Agenda Innperas

Brief Introduction to RISC-V
RISC-V CPU HW DV approaches

Other components of RISC-V CPU DV environments
Compliance Tests and other Test Suites
Instruction Stream Generators
Functional Coverage
Instruction Set Simulators

NNNNNNNNNNNNNNNNNNNNN

Page 112 © Imperas Software Ltd. Q1 2022

zzzzzzzzzzzzzzzzzzzz

Agenda Innperas

Brief Introduction to RISC-V
RISC-V CPU HW DV approaches

Other components of RISC-V CPU DV environments
Compliance Tests and other Test Suites
Instruction Stream Generators
Functional Coverage

Imperas Built-in Instruction Coverage

SystemVerilog Covergroups, Coverpoints, Assertions
Instruction Set Simulators

NNNNNNNNNNNNNNNNNNNNN

Page 113 © Imperas Software Ltd. Q1 2022

Imperas Instruction Coverage IMN[PE@ras

Built-in as ‘extension library’ to Imperas models
Works with all Imperas simulators and RISC-V models

Focus is for measuring ‘architectural validation tests’
i.e. measurement of basic architectural operations
Not intended for measuring HW DV testing (use SystemVerilog for that)

Controlled from command line — tailor options for each run
Outputs .txt file, and .yaml file of data

After individual runs, collates data into ‘suite measured coverage
Shows what has, and has not, been covered

Selectable coverage focus
--extensions, --instructions

--mnemonic, --basic, --extended
2022

’

NNNNNNNNNNNNNNNNNNNNN

Page 114 © Imperas Software Ltd. Q1 2022

ImperasDV Instruction Coverage

Verilog Device Under Test

DESIGN AND VERIFICATION ™

NNNNNNNNNNNNNNNNNNNNN

nnnnnnn

Verilog Test Bench ImperasDV
rvviVersionCheck()
rvviRefInit() DUT PC
rvviRefCsrSetVolatile()
e rvviRefPcSet() DUT INST.
] rvviRefMemoryWrite() S BINARY
rvviRefNetIndexGet ()
dutInit() DUT CSRs
_\r& DUT GPR
dutEventStep()
dutBusWrite() rvviDutBusWrite() 2T
dutCsrSet() rvviDutCsrSet()
refNetSet() Main Loop rvviRefNetSet()
dutGprSet() rvviDutGprSet()
dutRetire() / rvviDutRetire() / °
dutException() rvviDutException() 3 Comparator
rvviRefEventStep() S
rvviRefGprGet()
rvviRefPcGet()
rvviRefInsBinGet()
rvviRefMemoryRead() Lienony
Compare
rvviRefM&(_)ﬁ Instruction
rvviRefGprsCompareWritten() S Coverage
rvviRefPcCompare()
rvviRefInsBinCompare() S
T'_ Reference
Model
dutShutdown() Te;ﬂ;:::ﬁé::)ss) rvviRefShutdown()

Page 115

© Imperas Software Ltd.

_
mperas

Reference model setup

Configuration of register and memory
initialization

Selection of what to compare (depends on DUT
‘tracer’ capabilities) :
* PC, GPR, CSR, FPR, VR, decode, net, hart...

Select capabilities:
* sync-lock-step-compare or async-lock-step-compare

Trace and logging set up

Selection of built-in Imperas instruction
coverage

Choice of DV control options

Ql 2022

ImperasDV Instruction
Coverage

Verilog Device Under Test

Verilog Test Bench

rvviVersionCheck()

rvviRefInit()

rvviRefCsrSetVolatile()

ImperasDV

DUTPC

rvviRefPcSet()

rvviRefMemoryWrite()

rvviRefNetIndexGet()

dutInit()

@dejlaju| [o4u0D

dutEventStep()

dutBusWrite()

rvviDutBusWrite()

dutCsrSet()

rvviDutCsrSet()

refNetSet()

rvviRefNetSet()

dutGprSet()

rvviDutGprSet()

dutRetire() /

Verilog Model

49084 B0|UBA |AAY

rvviDutRetire() /

dutException()

rvviDutException()

rvviRefEventStep()

rvviRefGprGet ()

rvviRefPcGet()

rvviRefInsBinGet()

rvviRefMemoryRead ()

Compare

rvviRefGprsCompare()

rvviRefGprsCompareWritten()

rvviRefPcCompare()

rvviRefInsBinCompare()

\J/ I

Terminal State (Pass)

dutShutdown()

DESIGN AND VERIFICATION ™

NNNNNNNNNNNNNNNNNNNNN

zzzzzzzzzzzzzzzzzzzz

/ Mismatch (Fail)

rvviRefShutdown()

1dd

DUT INST.
BINARY

DUT CSRS

DUT GPR

DUT ...

Comparator

Imperas

Reference model setup

Configuration of register and memory
initialization
Selection of what to compare (depends on DUT
‘tracer’ capabilities) :

PC, GPR, CSR, FPR, VR, decode, net, hart...

Select capabilities:
sync-lock-step-compare or async-lock-step-compare

Trace and logging set up

Selection of built-in Imperas instruction
coverage

Choice of DV control options

ImperasDV includes built-in Imperas Instruction Coverage

Page 116

© Imperas Software Ltd.

Q1 2022

+ =

@ github.com/riscv-ovpsim/imperas-riscv-tests Q B % U O N .

a3 clk toRead listen @ LocalSite [E] gCal ™ gun ™ GMAIL [J§ live @ gHangouts & Google @ Zoom @ TTMFa X@ x = F @ SDBookmarks ourSites @ RISCV @ OSKtimer @ SDSexp @ OSktimer G F @ MDb %) i3 @ jqg B clecbike ¢ Getting Started | A... »

Search or jump to... Pull requests Issues Marketplace Explore

B riscv-ovpsim / imperas-riscv-tests | Public ® Unvatch 3 ~ $ Fork 17 Yy Sar 50 -

<> Code () Issues 6 11 Pull reguests) Actions B Projects Wiki @ Security |~ Insights

¥ v20220112 ~

Go to file Add file ~ m About

No description, website, or topics provided.

riscv-ovpsim-plus 0112

riscv-ovpsim 0112

v20220112

riscv-target

-test-env 0211019

o

0220112

| riscv-test-suite

0 v20220112

D
D
M Makefileinclude
[README.md

i= READMEmd 7
Contributors 3

Imperas RISC-V riscvOVPsim reference simulator and SRS R
architectural validation tests m=) Mg g

riscv-ovpsim
riscvOVPsim is released by Imperas based on their 12+ years of developing commercial industrial grade, reference
simulators for advanced processor architectures, 1t is a free closed source simulator binary that works with no
compiling, no fiddling, and no external dependencies, it just works.

Languages

In the RISC-V world, Imperas simulators are used by most companies and organizations that are serious about
getting quality RTL working and signed off. They use it as an architectural reference and many use it as the golden
simulator to verify their RTL in a hardware design verification methodolegy. Imperas simulator technology and
verification IP is the technology to use to obtain high quality results and to verify RTL works as expected.

® Assembly 25.6%

Other 0.9%

The following is a list of some of the companies and organizations that rely on Imperas simulators as their RISC-V
reference:

Mellanox/Nvidia, Seagate, NSITEXE/Denso, Google Cloud, Chips Alliance, lowRISC, OpenHW Group, Andes, Valtrix,
Nagra/Kudelski, Silicon Labs, Incore Semi, RISC-V Compliance Working Group, Symbiotic EDA, Thales, Hensoldt Cyber,
Invia, ...

This download contains a binary of the Imperas configurable reference simulator, a test framework to run the
simulater or your device-under-test, and tests to run on several targets. Use the tests to check ISA compliance of your
device.

This Imperas test framework has formed the basis of the RISC-V International (riscv.org) Compliance Working Group's

Agenda Innperas

Brief Introduction to RISC-V
RISC-V CPU HW DV approaches

Other components of RISC-V CPU DV environments
Compliance Tests and other Test Suites
Instruction Stream Generators

Functional Coverage

Imperas Built-in Instruction Coverage
SystemVerilog Covergroups, Coverpoints, Assertions

Instruction Set Simulators

NNNNNNNNNNNNNNNNNNNNN

Page 118 © Imperas Software Ltd. Q1 2022

CPU DV test bench components -
Imperas

SystemVerilog Functional Coverage

Directed
Tests

Instruction
Stream
Generator

Functional coverage

measurement

*
Tracer

RISC-V og RVIVLG | Tracer>TB Test bench / harness RISC.V

Core | (or proprietary) — | control, sequencing, | »>| PP | R)
reference

RIIE compare Iy

(DUT) DUT<->TB — SystemVerilog o

CONTROL <«

bus/mem i/f

RVVI-VPI
Test bench virtual peripherals

* Recall there needs to functional coverage connected to the ‘tracer’
* To measure what the architecture and micro-architecture is doing...

IIIIIIIIIIIIIIIIIIIIII
NNNNNNNNNNNNNNNNNNNNN

Page 119 © Imperas Software Ltd. Q1 2022

nnnnnnn

CPU DV test bench components

SystemVerilog Functional Coverage (2)

NNNNNNNNNNNNNNNNNNNNN

vvvvv

Functional coverage

measurement

RISCV

Core
RTL

(DUT)

—>
Tracer
RVVI-VLG
—>
—>
Control [—

VLG2LOG

VLG2API

main loop

Test Harness
control, sequencing,
compare
(SystemVerilog,

C or C++)

Imperas

And we saw earlier in the detailed ImperasDV walkthrough the connections from the
‘tracer’ via the RVVI

From the standard RVVI-VLG there are reusable source ‘clients’ that connect the ‘tracer’ to other
components

Page 120

© Imperas Software Ltd.

Q1 2022

CPU DV test bench components

|
SystemVerilog Functional Coverage (3) I m [P)e ra s

Functional coverage

measurement

VLG2COV
RISCV Tracer —| VLG2LOG Test Harness .
RVVI-VLG [control, sequencing,
core - | VLG2API compare
Rt ! (SystemVerilog,
(bUT) Control L " main loop C or C++)

* We can connect a functional coverage subsystem in the same way

IIIIIIIIIIIIIIIIIIIIII

EEEEEEEEEEEEEEEEEEEEE

Page 121 © Imperas Software Ltd. Q1 2022

nnnnnnn

Connecting RVVI to Covergroups

mperas

99
100 covergroup ins cg with function sample(string ins_str)
101 option.per_instance = 1;
102 cp_asm : coverpoint get asm enum(ins_str)
103 endgroup
104
{ V4 . 105 function new();
connects to ‘tracer’ and iIs 6 ins cg = new();
107 endfunction
. . 108
109 function void sample(input string decode);
informed when events like an
111 int num = $sscanf (decode, "%S %S %S %S %s", ins str, op[0], op[1l], op[2], op[3]);
. 112 ins_cg.sample(ins_str)
Instruction retires or Iinterrupt Is
l:) 114
115 endclass
I<: 116
ta e n 795 covergroup sub cg with function sample(ins_t ins);
796 option.per _instance = 1;
797 cp_rd : coverpoint get gpr name(ins.ops[0].val, ins.ops[0].key, "sub");
798 cp_rsl : coverpoint get gpr name(ins.ops([1l].val, ins.ops[1l].key, "sub")
On these eve nts VLG 2COV 799 cp_rs2 : coverpoint get gpr name(ins.ops[2].val, ins.ops[2].key, "sub");
800 endgroup
801

option.per instance = 1;

calls ‘sample’ in coverage class e T LT e s, e o,

/::g/z/v covergroup sw cg with function sample(ins_t ins);

805 cp_r : coverpoint get gpr name(ins.ops[1l].val, ins.ops[1].key, "sw");
. . 806 cp igm s covez?ginil?et imm(ins.ops([2].key, "sw") {

807 = He H
Which then calls the appropriate -

809 bins pos = {[1:$%]};

L 810 }

covergroup sample functions

813 covergroup wfi cg with function sample(ins_t ins);

: option.per instance = 1;

cp_asm : coverpoint ins.asm == WFI {
ignore bins zero = {0};
endgzoup

covergroup xor cg with function sample(ins t ins);
option.per instance = 1;

cp_rd : coverpoint get gpr_name(ins.ops[0].val, ins.ops[0].key, "xor")

cp_rsl : coverpoint get gpr name(ins.ops[1].val, ins.ops[1].key, "xor")

cp_rs2 : coverpoint get gpr name(ins.ops[2].val, ins.ops[2].key, "xor")
endgroup

DESIGN AND VERIFICATION ™

CONFERENCE AND EXHIBITION Page 122 © Imperas Software Ltd. Q1 2022

VIRTUAL
FEBRUARY 28 - MARCH 3, 2022

RVVI Functional Coverage Innperas

So the use of a standard interface from DUT ‘tracer’ to testbench means
reusable standard components can be developed

A key one is a SystemVerilog Functional Coverage sub system

And for RISC-V standard extensions they can be provided as SystemVerilog
source

And then extended for DV specifics of the specific micro-architecture
Such as pipeline issues, hazards, assertions — design specific items

Imperas has an example available (Feb2022) and will shortly release others
(contact Imperas for more information)

NNNNNNNNNNNNNNNNNNNNN

Page 123 © Imperas Software Ltd. Q1 2022

SystemVerilog simulators provide Coverage
reports

Covergroups
¥/ Name

=) hiscv_instr_pkg/riscv_instr_cover_group

+ o TYPEadd_cg
| s/ TYPEsub_cg
+)-4 TYPE addi_cg
-4 TYPElui_cg
+) 4 TYPE auipc_cg
4 TYPEsra_cg
- TYPESI_cg
- TYPEs_cg
+) 4 TYPE srai_cg
+)- TYPEslii_cg
- TYPEstii_cg
- TYPE xor_cg
4 TYPEor_cg
+)-4 TYPEand_cg
/-4 TYPE xori_cg
-4 TYPEori_cg
+) 4 TYPEandi_cg
- TYPEsit cg
-4 TYPEsiu_cg
+) 4 TYPEsl_cg
+)- 4 TYPEsltiu_cg
44 TYPEbeq_cg
-4 TYPEbne_cg
+ 4 TYPEDIt_cg
4 4 TYPEbge_cg
+-4 TYPEDItu_cg
2} TYPEbgeu_cg
+ o TYPEIb_cg
3 TYPEIh_cg
-4 TYPEIw_cg

D TVBE hii

|Class Type |Coverage
riscv_instr_co... 100.00%
fiscv_instr_co... 100.00%
fiscv_instr_co... 99.55%
riscv_instr_co.

riscv_instr_co.., (
riscv_instr_co... 100.00%
niscv_instr_co... 100.00%
riscv_instr_co... 100.00%
riscv_instr_co... 0.00%%
riscv_instr_co... 100.00%
riscv_instr_co... 100.00%

|~ © Covergroups
¥| Name
=) Mrscv_instr_pkg/riscv_instr_cover_group
=4 TYPEadd _cg
+ 4 CVP add_cg:cp_rsl
)4 CVP add_cg:cp_rs2
}- 4 CVP add_cg:cp_rd
;- CVP add_cg:cp_rs1_sign
+ 4 CVP add_cg:cp_rs2_sign
;-4 CVP add_cg:cp_rd_sign
-4 CVP add_cg:cp_gpr_harzard
4 CROSS add_cg:cp_sign_cross

IR TR (I TR AR AR T

(ol b
‘4 44§ § 34°
g
&

{38 CIR
[°Y
3
a
8

TYPE auipc_cg
- 4 TYPEsra_cg

+

"+

oy | TYPExon:cg
+/ 4 TYPEori_cg

22

DESIGN AND VERIFICATION ™

CONFERENCE AND EXHIBITION

VIRTUAL

100 Anas

Page 124

FEBRUARY 28 - MARCH 3, 2022

Goal

100
100
100
100
100
100
100
100
100
100
100

1nn

|% of Goal |Status

100.00% I v*
100.00% [v
99.55% [v*

0%] v

)09 (] v
100.00% G v
100.00% N v
100.00% N v
LT —
100.00% N v
100.00% I v*

100 NN, I S
|Class Type

riscv_instr_co...
riscv_instr_co...
riscv_instr_co...
fiscv_instr_co...
riscv_instr_co...
niscv_instr_co...
riscv_instr_co...
fiscv_instr_co...
riscv_instr_co...
riscv_instr_co...
fiscv_instr_co...
riscv_instr_co...
fiscv_instr_co...
riscv_instr_co...
riscv_instr_co...
riscv_instr_co...
riscv_instr_co...
riscv_instr_co...
fiscv_instr_co...
riscv_instr_co...
fiscv_instr_co...
fiscv_instr_co...
fiscv_instr_co...
riscv_instr_co...

Included | Merge_instances

|Get_inst_coverage

auto(1)

auto(1)

auto(1)

auto(1)

vl K

auto(1)

auto(1)

auto(1)

auto(1)

auto(1)

|Coverage |Goal |% of Goal |Status

100.00% 100 100.00% N
100.00% 100 100.00% G v
100.00% 100 100.00% NG v
100.00% 100 100.00% NG v
100.00% 100 100.00% I
100.00% 100 100.00% [
100.00% 100 100.00% G v
100.00% 100 100.00% EEEGN
100.00% 100 100.00% NG v
100.00% 100 100.00% NG v
99.55% 100 9955% I v
30.00 100 0% (] v
30.00 100 0%) v
100.00% 100 100.00% IEEGNG v
100.00% 100 100.00% GG v
100.00% 100 100.00% G
0.00% 100 0001V
100.00% 100 100.00% G v
100.00% 100 100.00% G v
100.00% 100 100.00% GG
100.00% 100 100.00% NG v
100.00% 100 100.00% NG v
100.00% 100 100.00% NG
100.00% 100 100.00% G

Included

: Covergroups
| ¥|Name
| =) hiscv_instr_pkgriscv_instr_cover_group

=) TYPE add_cg
) 4 CVPadd_cg:cp_rs1
34 CVPadd_¢
+) o CVPadd_¢
+) o CVP add_cg:cp_rsl_sign
+/ 4 CVPadd_cg:cp_rs2_sign
=4 CVP add_cg::cp_rd_sign
1B] bin auto[POSITIVE]
B] bin auto[NEGATIVE]
=4 CVP add_cg::cp_gpr_harzard
8] bin auto]NO_HAZARD]
18] bin auto[RAW _HAZARDI
B] bin auto[WAFS

Covergroups —

8] bin autoWAV v
=M CROSS add_cg

Name

|Class Type

riscv_instr_co...
fiscy_instr_co...

niscv_instr_co...

)4 Mriscy_instr_pkgiriscv_instr_cover_group

B8] bin <auto[PO ~
Ellunqum{NE =) M TYPEadd_cg
8] bin <auto[PO +) 4 CVPadd_cg:cp_rsl
B bin <auto[NE -4 CVP add_cg:cp_rs2
[B) bin <auto[PO =4 CVPadd_cg:cp_rd
B] bin <auto[NE 8] bin auto[ZERO)
B] bin <auto[PO B] bin auto[RA]
|B] bin <auto[NE B bin auto[SP]

&) TYPEsub_cg 8] bin auto[GP)

B ey) bin auto[TP]

33 T o 8] binauoT0]

& o TYPEsra_cg B] bin auto[T1]

& TYESI_cg 5] bin auto[T2]

- TYPEsr_cg B] bin auto[S0]

+-of TYPEsrai ca |B] bin auto[S1]

|B] bin auto[A0]
auto(1 |B] bin auto[Al]
auto(1 [B] bin auto[A2]
auto(1 [B] bin auto[A3]

[B] bin auto[Ad)
i [B] bin auto[A5]
auto(1 B) bin auto[A6]
auto(1 8] bin auto[A7]

] bin auto[S2]
atoll B] bin auto[S3]
auto(1 |B] bin auto[S4]
auto(1 B bin auto[S5]
auto(1 % :“3"'0{::}

B] bin auto|
auto(1 B] bin auto[S8]
auto(! B8] bin auto[S9]

B bin auto[S10]
[B] bin auto[S11]
[B] bin auto[T3]
|B] bin auto[T4]
|B] bin auto[T5]
B] bin auto[T6]

i+ 4 CVP add_cg:cp_rsl_sign
+ 4 CVPadd_cg:cp_rs2_sign

|Coverage

100.00%
100.00%
100.00%
100.00%
100.00%
100.00%
100.00%
7176
5158
100.00%
10832
728

|% of Goal |Status

100 100.00% I v
100 100.00% EEEG_——
100 100.00% [N v
100 100.00% I v
100 100.00% I
100.00% . v
100 100.00% N v
1 100.00% I
1 100.00% [v
100 100.00% [v
1 100.00% N v
1 100.00% I v

|Class Type

riscv_instr_co...
riscv_instr_co...
fiscv_instr_co...
riscv_instr_co...

riscv_instr_co...
fiscv_instr_co...

|Coverage

100.00%
100.00%
100.00%
100.00%
329
313
315
407
453
345
389
423
403
409
483
352
377
396
352
412
358
387
429
382
368
348
442
323
399
414
382
448
415
415
354
312
100.00%
100.00%

Goal

Included |Merge_instances

100
100
100
100

e e e e e e S

g

|Get_inst_cove

auto(1)

|% of Goal |Status Included

100.00% N v
100.00% I v*
100.00% [v
100.00% I v
100.00% I v
100.00% N v
100.00% N v
100.00% NN v
100.00% [v
100.00% | v
100.00% I v
100.00% NN v
100.00% I v*
100.00% I v
100.00% N v
100.00% I v
100.00% N v
100.00% N v
100.00% I v
100.00% [N v
100.00% I v
100.00% N v
100.00% N v
100.00% N v
100.00% I v
100.00% N v
100.00% G v
100.00% I v
100.00% I v
100.00% I v
100.00% IS v
100.00% N v
100.00% I v
100.00% I v
100.00% [N v
100.00% I v
100.00% N v
100.00% I v

* Coverage reports from Siemens/Mentor Questa

© Imperas Software Ltd.

Ilperas

Merge_instance

al

Ql 2022

Metrics: includes top level overview
dashboard |[ﬁ]ﬂ|P)€|'ﬂS

metrics

-t metrics B ibex Results GitLlab Settings Admin Help/Feedback @ Metrics PE

riscv_instr_base_regr
Get Started with :: metrics 5™
Passed/Total Test Runs

METRICS DOCS

{]
./ Metrics Overview 2

./. Metrics Platform User Guide
o————"7 e .//‘
DSIM AND USIM DOCS
Functional Coverage DSIM Release Notes
DSIM Known Issues @
- ® ° DSIM User Manual @
-/
—
% DSIM Legal &
USim User Guide &
y
Assertion Coverage If you need help or want to send us feedback, check

out the Help / Feedback feature...

Open Help / Feedback

Hide this help section on next visit

15

Allows management overview of status of verification

DESIGN AND VERIFICATION ™

CONFERENCE AND EXHIBITION

Page 125 © Imperas Software Ltd. Q1 2022

VIRTUAL
FEBRUARY 28 - MARCH 3, 2022

Agenda Innperas

Brief Introduction to RISC-V
RISC-V CPU HW DV approaches

Other components of RISC-V CPU DV environments
Compliance Tests and other Test Suites
Instruction Stream Generators
Functional Coverage

Instruction Set Simulators

NNNNNNNNNNNNNNNNNNNNN

Page 126 © Imperas Software Ltd. Q1 2022

zzzzzzzzzzzzzzzzzzzz

Agenda Innperas

Brief Introduction to RISC-V
RISC-V CPU HW DV approaches

Other components of RISC-V CPU DV environments
Compliance Tests and other Test Suites
Instruction Stream Generators
Functional Coverage

Instruction Set Simulators
Free riscvOVPsim (github)
Free riscvOVPsimPlus (ovpworld.org)
Commercial M*SIM (imperas.com)
Commercial M*SDK (imperas.com)
Commercial ImperasDV (imperas.com)

: Page 127 © Imperas Software Ltd. Q1 2022

. GitHub - ris fimperas-riscv-tests - Mozilla Firefox

I) GitHub - riscv-ovpsim/in X |) imperas-riscv-tests/risc. X | () imperas-riscv-tests/risc. X | W riscvOVPsimPlus_User ¢ X

o» Welcome Page | Open V' X | +

90%

=R YN DO & =

@ « > C [@ | & https://github.com/riscv-ovpsim/imperas-riscv-tests
<> Code @ lssues I Pull requests) Actions [Projects © Security |22 Insights
¥ main ~ P tbranch © Otags Go to file

=== Imperas Merge pull request #7 from riscv-ovpsim/updateOVPsim (... foas102 21daysago O 17 commits

B riscv-ovpsim-plus update riscv-ovpsim version 21 days ago
B riscv-ovpsim update riscv-ovpsim version 21 days ago
B riscv-target update riscv-ovpsim version 21 days ago
B riscv-test-env update riscv-ovpsim version 21 days ago
B riscv-test-suite update riscv-ovpsim version 21 days ago
@ Changelog.md update riscv-ovpsim version 21 days ago
. 3 Makefile additional information. update Makefile and README last month
File Ed
cd /scr| [README.md typo fixed 29 days ago
cd risc
./bin/L
./bin/L README.md

cd exam

cd fibo
cat fib
./RUN_R
cd ../d
./RUN_R
./RUN_R
./RUN_R
./RUN R

Imperas RISC-V riscvOVPsim reference simulator and
architectural validation tests

riscvOVPsim s released by Imperas based on their 12+ years of developing commercial industrial grade, reference
simulators for advanced processor architectures. It is a free closed source simulator binary that works with no
complling, no fiddling, and no external dependencies, It just works.

In the RISC-V world, Imperas simulators are used by most companies and organizations that are serious about getting
quality RTL working and signed off. They use it as an architectural reference and many use It as the golden simulator
to verify their RTL in a hardware design verification methodology. Imperas simulator technology and verification IP Is
the technology to use to obtain high quality results and to verify RTL works as expected.

The following is a list of some of the companies and organizations that rely on Imperas simulators as their RISC-V
reference:

We use optional third-party analytics cookies to understand how you use GitHub.com so we can build better products. Learn more.

Cyber, Invia, ...

About

No description, website, or topics
provided.

0 Readme

Releases

No releases published

Packages

No packages published

Contributors 2
== |mperas Imperas Github Account

‘:’ riscv-ovpsim

Languages

L[[|;S;§

® C503% ® Assembly 44.6%

® Cs+36% @ Python 0.7%

® Objective-C03% @ Makefile 0.2%
Other 0.3%

Accept Reject

) SR
I-) CIosztch to'\mﬂspace"

1 |

@ie] =]

. Terminal

pr"uﬂms _. e

|. Terminal

2020-11-13
1217

_
Imperas

Software Verification,
Analysis & Profiling
(VAP) tools

* Trace

* Profile

* Coverage

* Schedule

Imperas Tools for Embedded Software
Development, Debug & Test

Application Software
& Operating System

* Memory monitor
* Protocol checker
* Assertion checkers

CPU
CPU

B
u
S

IIooZ2mw-H4um -

-
.
o

IIIIIIIIIIIIIIIIIIIIII

NNNNNNNNNNNNNNNNNNNNN

bl bl Page 129 © Imperas Software Ltd. Q12022

@
e

Il) GitHub - riscv-ovps

() imperas-riscv-tests/: X

() imperas-riscv-tests

N\, riscvOVPsimPlus_Us: X

Welcome to Imperas | Imperas - S e

- Mozilla Firefox

Welcome Page | Opc X | i Welcome to Impera

Ruil;:le GQ

O &

www.imperas.com

X |\, Index of /home/sime X | N, Index of /home/simc X | =+ |

- O % ¥ In @D ® &

VCS |

a

File Ed
cd /scr|
cd risc
./bin/L
./bin/L
cd exam
cd fibo
cat fib
./RUN R|
cd ../d
./RUN R|
./RUN R
./RUN R|
./RUN R|
vi cove|

cd ~/Im
cd ~/Im
tree U7
cd U7/U
./Run P
cd ../m

[

-- INSE

Developer

Home Products v

CONTINUOUS
INTEGRATION

Compile
Bulld

Unit Test A8
commit
fail g pass
o '
« g/
Code & -
Tests
ertors
e

Solutions v

OVPworld Resources v

Release | Doploy

~

Packaging
Stress Test
Full Application
QA Test

Imperas Continuous Integration

About Us v

News v

Welcome to Imperas - Revolutionizing Embedded Software Solutions

EX-

<A

@] =]

0Appli<at|ons l.'l Welcome to Imp... u Terminal |u Terminal |! Terminal ’

2020-11-13

12:58

H s Imperas RISC-V Solutior X | 4+ File Edit View Search Terminal Help

1simond@lnx6478:/scratch/simond/demo/riscv Andes N25 FreeRTO0S$ [
Rubbish B{ = €= cC @ © | & https://www.imperas.com/imperaf

File Syster I m @e ra s Home Products v

2 Revolutionizing Embedded Software

Home

.| Imperas RISC-V Solutions

VCS manu|

. Terminal v o (@

File Edit View Search Terminal Help

different shell

cd ~/simond/force-riscv/force-riscv/; clear ; ls -1tr ; ls -ltr ./utils/regression/master run.py
./utils/regression/master run.py --keep=all

tail -50 output/regression/regression summary.log ; echo ""; echo ""

ls -ltr output/regression/*/*/*.ELF

cd ~/simond/force-riscv; clear; ./CLEAN.sh; source setup.sh; ls -1ltr; cat ./GEN.sh
./GEN.sh; 1s -ltr

cat ./RUN.sh

./RUN.sh

different shell
cd /home/simond/riscv/valtrix; isetup; clear; ls -ltr tests/*.elf
make

clear; isetup; cd /scratch/simond/demo; ls -ltr
cd /scrlatch/simond/demo/riscv Andes N25 FreeRT0S; ls -ltr; firefox Andes N25 NX25 FreeRTO0S.jpg &

./RUN N25 FreeRTO0S.sh

cd /scratch/simond/demo/riscv SiFiveFU540 Linux; ls -ltr ; firefox Linux SiFiveFU540.jpg &

RUN SiFiveFU540.sh # root sifive

cd /scratch/simond/demo//Hetero ARM RISCV NeuralNetwork; ls -ltr ; firefox ©.NeuralNetwork Platform.jpg 1.NeuralNetwork Alexnet.jpg &
cdf/scratch/simond/demo/Hetero ARM RISCV NeuralNetwork/harness; ./RUN Hetero ARM RISCV NeuralNetwork Alexnet.sh

"demoreadme.txt" 66L, 2975C written 63,3 95%

H a . ' l:—;l‘: ' aj i‘ a a8 ®Applicat|ons @ Imperas RISCV

2020-11- 1«
& [Terminal) Terminal ec2-user@ip-17...
hl ' e 18:34

1ISS: Summary |[ﬁ]n|P)eraS

Only mentioned Imperas simulators (as we use daily, our customers rely on them , and we understand their quality)
There are are others...

There are many open source grad. student project simulators... - go search github...
RISC-V has a formal model under development — ‘sail’

There is also spike from Berkeley — for architectural exploration

And there are full system software emulators like gemu

Free: github: riscvOVPsim.exe
Model selection configuration
Signature, logs, coverage
Includes rv32l tests
Useful for compliance tests

Free: ovpworld.org (needs registration): riscvOVPsimPlus.exe
As riscvOVPsimPlus
trace, debug
Useful for post-sim-trace-compare, e.g. in Google riscv-dv

Commercial from Imperas — the industry leader in processor based simulation solutions
Full range of ISS, virtual platforms, full system emulation, fixed & extendable platforms
50 reference platforms, 250+ peripheral components, 300+ processor models

DESIGN AND VERIFICATION ™

NNNNNNNNNNNNNNNNNNNNN

Page 132 © Imperas Software Ltd. Q1 2022

Agenda Innperas

Brief Introduction to RISC-V
RISC-V CPU HW DV approaches
Other components of RISC-V CPU DV environments

Summary

NNNNNNNNNNNNNNNNNNNNN

Page 133 © Imperas Software Ltd. Q1 2022

Imperas

Congratulations... on getting to the end of this tutorial

if you got this far — and still have some energy...

send us an email (info@imperas.com) with
Subject: imperasdv at dvcon22 tutorial

With: comments on this tutorial
and we will send the first 50 of you one of our ImperasDV drinking mugs

NNNNNNNNNNNNNNNNNNNNN

Page 134 © Imperas Software Ltd. Q1 2022

mailto:info@imperas.com

We covered... Innperas

Brief Introduction to RISC-V
RISC-V CPU HW DV approaches
Components of RISC-V CPU DV environment

NNNNNNNNNNNNNNNNNNNNN

Page 135 © Imperas Software Ltd. Q1 2022

zzzzzzzzzzzzzzzzzzzz

We covered (2) Innperas

Brief Introduction to RISC-V

RISC-V CPU HW DV approaches
#0 “hello world” test
#1 self checking tests (e.g. Berkeley torture tests pre2018)
#2 Post simulation trace log file compare (e.g. Google riscv-dv 2019)
#3 sync-lock-step-compare (e.g. CV32E40P in OpenHW 1H 2020)
#4 async-lock-step-compare (e.g. CV32E40P in OpenHW 2H H2020)
#5 test bench use of standards (RVVI) (e.g. CV32E40X/S in OpenHW 2021)

#6 using standards based DV products and VIP (ImperasDV)
And had a 35 minute walk through

NNNNNNNNNNNNNNNNNNNNN

Page 136 © Imperas Software Ltd. Q1 2022

We covered (3)

Components of RISC-V CPU DV environment

Compliance Tests and other Test Suites
RISC-V architectural test suites
Imperas architectural test suites
Bremen fuzz testing
Instruction Stream Generators
Google riscv-v
OpenHW force-riscv
Valtrix STING
Functional Coverage
Imperas build-in instruction coverage
SystemVerilog covergroups and coverpoints
Instruction Set Simulators & tools
Free riscvOVPsim (github)
Free riscvOVPsimPlus (ovpworld.org)
Commercial M*SIM (imperas.com)
Commercial M*SDK (imperas.com)
Commercial ImperasDV (imperas.com)

DESIGN AND VERIFICATION ™

CONFERENCE AND EXHIBITION

Page 137

zzzzzzzzzzzzzzzzzzzz

© Imperas Software Ltd.

Imperas

Q1 2022

What we did not talk about... Innperas

SystemVerilog encapsulation of Imperas models (yes we do that)

Using ISS with RTL emulators
Including hybrid simulation (yes we do that)

Formal tools
(no we don’t do these...)

NNNNNNNNNNNNNNNNNNNNN

Page 138 © Imperas Software Ltd. Q1 2022

zzzzzzzzzzzzzzzzzzzz

Summary

Ilnperas
The open standard ISA of RISC-V offers many design freedoms

Many standard extensions and configuration options plus custom instructions
The key verification requirements are to detect discrepancies with efficient debug

The open standard RVVI offers a framework for verification reuse with support for both
open-source and commercial tools

RISC-V Verification Interface
https://github.com/riscv-verification/RVVI

Lockstep / Compare is by far the best and most efficient approach (industry ‘gold standard’)
https://www.imperas.com/imperasdv

NNNNNNNNNNNNNNNNNNNNN

Page 139 © Imperas Software Ltd. Q1 2022

https://github.com/riscv-verification/RVVI
https://www.imperas.com/imperasdv

_
mperas

Thank You!

info@imperas.com
www.imperas.com
wWWwWWw.imperas.com/ImperasDV

www.QOVPworld.org

IIIIIIIIIIIIIIIIIIIIII
NNNNNNNNNNNNNNNNNNNNN

Page 140 © Imperas Software Ltd. Ql 2022

nnnnnnn

http://www.imperas.com/
http://www.imperas.com/ImperasDV
http://www.ovpworld.org/

Imperas

Questions?

DESIGN AND VERIFICATION ™

NNNNNNNNNNNNNNNNNNNNN

Page 141 © Imperas Software Ltd. Q1 2022

