(2025

DESIGN AND VERIEFICATION ™

DVOCON

CONFERENCE AND EXHIBITION

MUNICH, GERMANY
OCTOBER 14-15, 2025

| Introduction of IEEE 1801-2024 (UPF4.0) improvements
for the specification and verification of low-power

Joshua Ong — Qualcomm
Nathalie Méloux — STMicroelectronics

Gabriel Chidolue — Siemens .
Shaun Durnan - ARM

SYSTEMS INITIATIVE

IEEE Disclaimers

* This presentation solely represents the views of the author(s), and does not necessarily represent
a position of either the IEEE P1801 Working Group, the IEEE Design Automation Standards
Committee, |IEEE or the |IEEE Standards Association.

* This presentation utilizes as reference the Design Automation Standards Committee of the IEEE
Computer Society, “IEEE Standard for Design and Verification of Low-Power, Energy-Aware
Electronic Systems”, IEEE Std. 1801™-2024. No further use of the material is permitted, including
use for Al or within Al systems, without explicit consent from IEEE.

/{f i . | | | (5005

DESIGN AND VERIFICATION

/ A DVCOIN

CONFERENCE AND EXHIBITION

Agenda

Introduction

Interconnect between UPF supplies and arbitrary HDL types

Improvements in successive refinement and refinable macros

Overview of Retention Changes

Virtual Supply and Virtual Equivalence

General Updates
Beyond 4.0

. Q/A

Introductions/Acknowledgements IEEE SA

STANDARDS
ASSOCIATION

Presenters
* Joshua Ong : Qualcomm
* Nathalie Meloux : STMicroelectronics
e Gabriel Chidolue : Siemens
e Shaun Durnan : ARM

Contributors
e John Decker — 1801 WG Chair, Cadence
* Amit Srivastava — 1801 WG Vice-Chair Synopsys
* Lakshmanan Balasubramanian : 1801 WG secretary, Texas Instruments
* Marcelo Glusman — Cadence, Paul Bailey - Nordic Semiconductor,
* Rick Koster - Siemens EDA, Progyna Khondkar - Cadence

Special thanks to the 1801 WG

* Currently over 40 members representing 16 companies
* Former members John Biggs(previous Chair), Phil Giangarra, David Cheng

Thanks to IEEE Standards Association and Accellera

/ DESIGN AND Vi ngQCgTéN o
y j DVCON

CONFERENCE AND EXHIBITION

Unified Power Format (UPF)

* |EEE Standard for expressing Based upon Tcl

Power Intent * Tcl syntax and semantics

* To define power architecture and power
management control

And HDLs

* To minimize power Consumptlon ° SystemVerilog’ VHDL’ Systemc

* Enables a consistent representation of power
intent across all aspects of the design and
verification flow

* Enables early verification of power intent

For Verification
» Simulation, Emulation, Static/Formal

* An Evolving Standard For Implementation
* 6 versions of IEEE -1801 over ~18 years e Synthesis, DFT, P&R, etc.

e Contributions from Accellera UPF1.0 and Si2
CPF2.0and 2.1 And for System Level Power Modeling

e 1801 has had contributions from more than « Abstract power models with power_expr
20 chip design and EDA companies -

//' 2025
/ DESIGN AND VERIFICATION

/ A DVCOIN

CONFERENCE AND EXHIBITION

Evolution of the Standard

UPF-1.0 UPF-1.0 CPF-2.0 CPF-2.1 New Project
Kick off Donated Donated Donated Revision of
Meeting to IEEE to IEEE to IEEE 1801-2024

009 2010 2011 20 013 2014 2015 2016 20 2048 22l 2024 2025
Accellera 1801-2009 1801-2013 1801a-2014 1801-2015 1801-2018 1801-2024
UPF-1.0 (AKA UPF-2.0) (AKA UPF-2.1) (AKA UPF-2.2) (AKA UPF-3.0) (AKA UPF-3.1) (AKA UPF-4.0)
Published Published Published Published Published Published Published

¢ IEEE ¢ IEEE ¢IEEE ¢IEEE & IEEE ¢ IEEE

2025

DESIGN AND VERIFICATION *

DVCCOIN

CONFERENCE AND EXHIBITION

UPF 4.0 — Major Goals

* Enable low power simulation with mixed-signal features like real
number modeling

* Enable accurate modeling of state retention
* Enhance IP design reuse with refinable macros

* Improve successive refinement flow

e Address over 200 Mantis items tracking improvement requests.

* Enable Virtual Supplies
» Updates/Clarifications to semantics
* Ease-of-use features

Where to get the IEEE 1801-2024 Spec

* 1801-2024 spec is available from the |IEEE GET program

 |[EEE SA open repository (NEW)
* Select examples and packages from the 1801-2024 specification
* Planned community space to provide comments, advice, additional examples
 Available at: https://opensource.ieee.org/upf

https://ieeexplore.ieee.org/browse/standards/get-program/page
https://opensource.ieee.org/upf

Summary of Change Topics

New Concepts
* Refinable Macro
* Implementation UPF
* Virtual nets/ports/sets/equivalence
e Tunneling
* Connections to real (VCM)

Major Updates
* Power distribution section 4.5.1
* Simulation of state retention (9.7)
* Annex | —VCM usage examples
* Supply equivalence

Clarifications (partial list)
* Major improvements to Definitions
* Resolved elements list
* Literal supply

Open SA repository
Complete update of Annex E (example)

* Precedence

SPA, retention, composite types, Macros

* Naming Related

Rooted vs Simple name clarifications
Escaped naming styles

Generate block delimiter

Library name (5.3.3.2)

* Command Updates

Map retention clamp cell

Set _isolation -async_set reset -—-async_clamp value
set port attributes —is_analog allowed on instance pins
set port attributes —-feedthrough improvements

set design_attributes with no object creates a “UPF“ wide

attribute
Find objects -expand to bits
set repeater -repeater supply mandatory

DESIGN AND VCIF:;ON ~

DVCOIN

CONFERENCE AND EXHIBITION

Command/Option Change Summary

New Options

set_isolation —async_set_reset
-async_clamp_value

connect_supply _net —vcm
-tunneling

set_port_attribute -is_refinable_macro
-async_clamp_value

load_upf -implementation

define_power_model —update
-implementation
-complete

create_supply_net -virtual
create_supply_port —virtual
create_supply_set -virtual

set_retention -applies_to {latch ff both}

—restore_period_condition
-powerdown_period_condition

-restore_event_condition
-save_event_condition

find_objects —expand_to_bits

create_vcm

create_upf_library

load_upf_library

use_upf_library

map_retention_clamp_cell

create_abstract_power_source

Legacy/Deprecated

set_isolation —applies_to_sink_clamp
-applies_to_source_clamp

create_supply _net -reuse
-domain

create_power_switch -domain

create_supply_port -domain

set_port_attribute
—sink_off_clamp
-source_off_clamp

create_upf2hdl_vct
create_hdl2upf_vct
set_retention_elements -transitive

set_retention —save_condition
-restore_condition
—retention_condition

2025

DESIGN AND VERIFICATION

DVCOIN

CONFERENCE AND EXHIBITION

DESIGN AND \Qﬂ?m\lm

10 YEAR ANNIVERSARY

New feature for UPF 4.0: interconnect
between UPF supplies and arbitrary HDL types

Joshua Ong— Qualcomm

Motivation for adding to the standard

* An increasing number of designs are mixed signal in nature and have significant
analog and mixed signal content

Co-verification of analog and mixed signal design elements with purely digital
components has increased in importance

Analog and digital portions of designs increasingly share power supplies

Use of Real Number Modeling (RNM) to represent analog functions for verification
has proliferated

Synchronization of analog and UPF representations of the power supply network has

7

/

become critical

/| /i

A

New concepts

* VCM - Value Conversion Method
extends and enhances VCT (Value Conversion Table)

* Tunneling
allows analog connections to be made via UPF

* UPF Library

helps avoid name collisions between otherwise global objects

* Automatic VCM selection by nettype and data type

allows successive refinement by supporting multiple representations with a
single UPF

—

VCMs

* VCMs provide a richer and more flexible
mechanism to translate between UPF
supply nets and HDL

* Improved simple table conversions vs VCT

* Enable advanced conversions of more
complex types by using user defined
Modules and Functions

* Ability to contain a list of other VCMs to
enable automated type conversions

* VCTs are now legacy
* Their functionality is a subset of VCMs

* As legacy they continue to work but 1801
encourages migration

* Examples of each type provided at end
of this presentation

=y

Syntax:

create_vcmvcm_name

And one of the following option sets:

e -table {{from value to value}*}
-hdl_type {<vhdl| | sv> [HDL typename]}
-conversion_direction <hdl2upf | upf2hdl>
-field field_name

e -—function hdl package::function_name

* -model module name
-parameters {{param_name param_value }*}

 -vems ext_vem_list

DESIGN AND Vg:AT\ION =

DVCON

CONFERENCE AND EXHIBITION

Example Situation in which to use VCMs

Convert between a UDN

and a UPF supply net * In addition to single-bit

logic, the VCM allows

uD1 (Digital) connecting UPF supply nets
to:
VDD (upf supply net) ° integer
uA (Analog) e enum
* real
VDDA .
uD2 (Digital) * User-Defined Nettype
(UDN)
VDD (upf supply net) UDN with struct
* record
* Only UPF supply nets (not
logic nets or supply sets)
can be connected with
connect supply net VDDA -ports {uA/VDD uD1l/VDD uD2/VDD} \ these methods.
-vcm myVCM
o’ 2025
/7 _‘ DESIGN AND VERIFICATION

CONFERENCE AND EXHIBITION

Tunneling

* Tunneling allows a connection between same type of HDL net to preserve

the full extent of that type
 Normal UPF conversions result in loss of information because the UPF supply type only
has an integer voltage and supply_state
 The HDL type may contain a richer set of values that the load HDL model may take
advantage of (e.g. current)

uD1 (Digital)

VCM translates HDL to
UPF_supply_net

VDD (upf supply net)

uA (analog)

VDDA

uA2 (Analog)

Connection in UPF but “tunneling” /‘
makes connections without translation

to UPF_supply_net

2025

DESIGN AND VERIFICATION *

DVCON

CONFERENCE AND EXHIBITION

VCMs and HDL Tunneling Paper

Applications of Supply Tunncling m Unified
Power Format 4.0 [or Mixed Signal Design

Abstract- A new UPF HDL supply tunneling concept was introduced in IEEE 1801-2024, It allows power supply
networks defined in IEEE 1801 to be represented in simulation by HDL-nartive netrypes, which can carry more power
supply information than the UPF supply net. Applications and limitations of UPF HDL supply tunneling are presented,
including situations in which UPF HDL supplv tunneling is not supported. Design examples and figures with sample UPF
code support the discussion. New features of [EEE 1801-2024 that help the user control tunneling behavior are shown.

I. INTRODUCTION

Within the recent IEEE 1801-2024 standard [1] (henceforth termed Unified Power Format (UPF) 4.0 i this
writing), the new concept of HDL supply runneling was introduced. Tunneling of HDL (Hardware Description
Language) supply nets allows for simulation of supply nets using analog representations even though those supply
nets were declared as part of the power intent in a UPF file.

UPF HDL supply tunneling supports a design flow i which analog functional “1slands™ are embedded m a top
level design netlist constructed m an HDL language such as SystemVenlog. This flow 1s to be contrasted with a
flow 1 which all of the analog design 15 collected mto a single partition, with its netlist governed generally by a
schematic drawn m a graphic tool, mncluding the supply network. With the analog 1sland flow, the supply network
can be defined 1n UPF as 1s typical in all-digital design flows.

The UPF 4.0 standard also introduces Value Conversion Methods (VCMs) that replace and expand the concept of
Value Conversion Tables (VCTs). VCMs govern the interaction between Analog representations of supply nets in
HDL and UPF-defined supply nets (which are usually represented by the UPF supply net type). Analog
representations of nets — such as custom User Defined Nettypes (UDNs) in SystemVerilog — are generally more
expressive than the UPF supply net type, which has only supply net state and voltage components. Thus, an analog
supply connection through the UPF supply network would potentially lose valuable signal information, The concept
of UPF HDL supply tunneling was mtroduced to elimimnate this loss of information.

DESIGN AND VERIFICATION *

DVCCOIN

CONFERENCE AND EXHIBITION

UPF Library

 The UPF library was introduced to provide a way to avoid name collisions
between VCM definitions, which are otherwise global in scope.

e Using a UPF library, a third-party design contribution (Intellectual Property or IP) can
define VCMs for use in simulating the IP, without risking name collisions with VCMs
defined for the SoC or other IPs.

* New commands which support UPF library use:

crefgiﬁ‘éle’géﬂ{’ri‘ry upf library name \ Only create_vcm, load_upf_library
upf commands \ © use_upf library currently allowed

}
use upf library upf library name

load upf library upf library file

// DESIGN AND VERIFICATION
CONFERENCE AND EXHIBITION

Automatic Selection of VCM by net/data type

* Motivation:
* UPF supply nets may connect to multiple HDL types
* The —vcms option allows the specification of a list of VCM’s

* Tools can choose the matching VCM based on the HDL type and do the
proper conversion

create vem vcm bundle \
-vems {sv logicZupf sv realZupf sv udnZupf}

Commands and Option Changes

* New Commands and options
e create_vcm
e create_supply net -tunneling
e connect_supply_net -vcm
e create_upf _library
e use_upf library
* load upf library

* Legacy Commands and options

* The commands create hdl2upf vct and create upf2hdl vct are legacy.

* They can still be supported alongside VCMs by redirecting calls to these commands to
create vcm, supplying the necessary —conversion direction

 The —vet option in connect _supply net isalso legacy.
* Tools may continue to support —vct

/ Ll e
4 J DVCON

CONFERENCE AND EXHIBITION

Table VCM Examples

e Consider a SystemVerilog package with a UDN defined as follows:

package ldo net pkg;
typedef struct {
real volts;
real current;
} l1ldo struct t ;
nettype ldo struct t ldo supply net;
endpackage

* AVCM that maps values on a HDL port of type |ldo_supply _net can be
declared as follows:

create vcm LDONET2UPE \
-hdl type {sv ldo net pkg::ldo supply net} \

-conversion direction hdl2upf \
-field volts \
-table { \

{{5.0 * } {OFF b}
{{1.0 5.0} {FULL_ON 1.1 }}
{{0.6 1.0} {PARTIAL ON 0.9 }}
{{ ~ 0.6} {OFF b}

~ = -

//‘ 2025
/ DESIGN AND VERIFICATION

/ A DVCOIN

CONFERENCE AND EXHIBITION

Function VCM Example

package myVCM pkg;
import UPF::*;
import ldo net pkg::*;

function automatic upfSupplyTypeT func h2u snap (ldo struct t hdl in);
upfSupplyTypeT upf out;

upf out.voltage = 0;
upf out.state = UNDETERMINED;

if (hdl in.volts <= 0.2) begin
upf out.voltage = 0;

upf out.state = OFF;

end

else if ((hdl in.volts > 0.2)

&& (hdl in.volts <= 0.9)) begin

upf out.voltage = 0.9;
upf out.state = FULL ONj;

end

return upf out;

endfunction
endpackage

Using the package in UPF
create vcm LDONET2UPF function \
—-function myVCM pkg::func h2u snap

2025

DESIGN AND VERIFICATION *

DVCOIN

CONFERENCE AND EXHIBITION

Model VCM Example

//default
parameter
parameter
parameter
parameter
parameter

input

output
)

begin

end

endmodule

import UPF::*; import ldo net pkg::*;
module snap volt vecm # (

parameter defs
ov_threshold
hi snap volts
hi threshold
on_snap volts
on_ threshold

ldo supply net
upfSupplyTypeT

always @ (hdl in.volts)

OO U

NOORrO
N N N~

hdl in,
upf out

create_vcm LDONET2UPF module \
-model my module lib.snap volt vcm \

-parameters { \

{ov_threshold
{hi_snap volts
{hi_threshold
{on_snap volts
{on_threshold

.0}
.5}
.4}
.0}
.5}

oRr R RLrWL
-~ S

2025

DESIGN AND VERIFICATION *

DVCOIN

CONFERENCE AND EXHIBITION

N

Advantages of Functions over Modules

* Functions are less resource intensive.
* They exist for one event and then disappear

* Modules are instantiated in the netlist, and exist for the entire
simulation, occupying memory even when nothing happens to
them

* Functions can be imported from other languages (e.g. C++)
e Modules must be HDL

Advantages of Modules over Functions

* Modules can be easily parameterized

* One module description can be used as the basis for many VCMs (using
create_vcm —parameters)

* Modules can model time delay effects

* Since they are static objects, they can respond to stimuli over several event
times

* More complex behaviors can be modeled

List VCM Example

create vcm vcem bundle \
-vems {sv logicZupf sv realZupf sv udnZupf}

* You can include VCMs for both directions in a list, as long as the
ports you connect with it are input or output (but Nnot inout).

* You can only include one VCM with a given HDL type and
direction in the list.

« All of the VCMs in the list have to be previously defined with a
create vcm command.

 The list can be a mix of table VCMs, function VCMs, module VCMSs,
or even other list VCMs.

* Use the name of the list VCM when you make UPF supply net

Making Connections with VCMs

. Appl{)your VCMs to make connections between HDL ports and UPF supply
nets by using the connect supply net command with a new option:

A e

* For example:
connect supply net vdd -ports {ul/vdd 1v0} -vcm vcm bundle

* Some things to be aware of:

e Expect an error if the VCM you specify does not match the HDL type and port
direction you are connecting to. If you specify a list, then exactly one of the VCMs in
the list has to match.

 If any ports listed in —Forts {} are UPF supply ports (and therefore do not need
conversion), -vem Wwill be ignored for those ports.

* You can also use connect supply net with -pg type to connect to many
ports with the same pg_type. -

(2025

DESIGN AND VERIFICATION ™

DVOCON

CONFERENCE AND EXHIBITION

MUNICH, GERMANY
OCTOBER 14-15, 2025

Refinable Macros and Terminal
Boundaries in UPF 4.0: Empowering
Soft IPs of the Future

Gabriel Chidolue - Siemens

Refinable Macros in UPF 4.0

Empowering Soft IPs of Future

* Enabling Non-Intrusive Refinements in Bottomup Verification Flows

* Presenter
e Gabriel Chidolue

* Agenda
* Why we need Refinable Macros
* How they differ from Soft Macros
* Marking IPs as Refinable Macro
* Refinable Macro in Action

Motivation: Challenges with SIPs in Bottom-

U p Ve r i fi C a t i O n IP Testbench(standalone)

* SoC Complexity

e 50+ SIPs, each with unique power
rules

* Higher-Level Implementation
Requires Power Intent Updates

* The Dilemma after Modifying SIPs SOC Integration

* Not revalidate SIPs -> risk introducing

bugs
) ﬁﬂevalidate SlPS e delay Tlme tO Intrusive Updates at SOC level
arket InvF;Iidatethe

 UPF 3.1’s Fix : Soft Macro SRCEIGNE ECEOn Soft_IP Soft_IP

e Good for implementation

* Too rigid for pre-verified SIPs createﬁ:::;i:m;;rll/sgPurple _pggz:e?;;;‘;gg;{_;;; /ggz}

Results in ISO optimization

2025

DESIGN AND VERIFICATION *

DVCCOIN

CONFERENCE AND EXHIBITION

Why Soft Macros Fall Short for Bottom-Up
Verification?

* Rigid Implementation Boundaries
* Protects IP from external overrides

e Suitable for Bottom-Up
Implementation Flows

SOC Integration

e No Room for Non-Intrusive
Refinements

Soft_Macro

* Forces Intrusive Edits and Re- —
Valldatlon TERMINAL BOUNDARIES

Pre-Hardened outside SoC
No logic optimizations

* Lacks System-Level Optimization

Refinable Macros in UPF 4.0

° REfI na b l € Te rmina l BO un d aries Identical Views for SoC RTL Simulation and SoC Implementation

* Tool-Enforced Safety

* Non-Intrusive Power Intent
Updates

* Preserved Verification
* Original IP UPF remains untouched

* Enables System-Level

SOC Integration

u1l

u3

Refinable _Macro

Refinable Macro

Optl m Izatlon. d uri ng Less rigid boundary: Safe optimizations are allowed, but
|mp|ementat|0n no intrusions from above
* |deal for Bottom-Up Verification

i / | 2025
/' DESIGN AND VERIFICATION =
7 , DVCON

7 CONFERENCE AND EXHIBITION
' | _

Marking IPs as Refinable Macros

e Simple UPF Attribute
* Mark IP internally or externally

 Maintains IP Verification
e OQverride to Soft Macro if Needed

Mark directly in IP UPF:
set design attributes -models . -is_refinable macro true

Or mark externally:
set design attributes -models IP Design -attribute {UPF_is refinable macro TRUE}

Py

Implementation UPF : Enforcing Safe

Refinements SoC IP UPF
/| set_isolation -update Updates
H . ereate_power domain
» Safe Refinements via Allowed ® l
Commands and options ot e o i § Modified UpF — _|02d_upf
* UPF 4.0 defines allowed -scope myIP \ -implementation
. -implementation
commands and options i [!
ip_impl.upf
H - set_isolation PGD_to AON \
* -implementation Enforces “donnin 75 \ T o
Correct-by-Construct UPF s Allowed «—— implementat
* EDA Tools Enforce Compliance Command Hlowed
* No Alteration of Original IP UPF | 8
o po . . Proceed to
* Preserves Verification Integrity Refinement

RV OIS

RE E AND EXHIBITIO

Practical Example: Refinable Macros in Action

ip.upf

set design attributes -models . \ SoC (ParlP.upf)

-is refinable macro TRUE - i i i

= Ii " " " " " n [| " " " " " n

create supply set ss IP AON [| s
create supply set ss IP PGD .-] S R L
create power domain AON -elements {.}] . [] . [
create power domain PGD -elements . ipl s . ip2 :
(L Beel meEpei | ParlP.upf

Isolates all outputs where different create power domain par AON -elements {.}

supplies power source and sink create supply set ss SOC_AON

set isolation PGD to AON -domain PGD \ create supply set ss SOC PGD

-isolation supply set ss IP AON \

-applies to outputs -source ss_IP PGD \ load upf ip.upf -scope ipl

-diff supply only TRUE \ load_upf ip_impl.upf -scope ipl -implementation
-isolation signal pwr manager/iso _en b;\ assoclate supply set {ss SOC AON 1pl/ss_ 1P AON}
-isolation sense low associate supply set {ss SOC AON ipl/ss IP PGD}
ip_impl.upf load upf ip.upf -scope ip2

load upf ip impl.upf -scope ip2 -implementation

1 PGD to AON
set_isolation PGD_to AON \ associate supply set {ss SOC AON ip2/ss IP AON}

—-domain PGD \ i
-location parent anﬁnuﬂﬂaﬂon associate supply set {ss SOC PGD 1p2/ss IP PGD}
_update updates only

7 (2025
’, DESIGN AND VERIFICATION =

DV COIN

CONFERENCE AND EXHIBITION

Conclusion: Empowering Soft IPs of the

Future
* UPF 4.0 -> Bridges SIP Verification Gaps

* Refinable Macros = Flexibility + Safety +
Performance

* Implementation UPF -> Correct-by-
Construct

* Preserves Verification & Saves Time

@ y g

(2025

DESIGN AND VERIFICATION ™

DVOCON

CONFERENCE AND EXHIBITION

MUNICH, GERMANY
OCTOBER 14-15, 2025

| Retention Modeling in UPF 4.0

Nathalie Méloux - STMicroelectronics

Future Proofing Retention in UPF 4.0

* Future Proofing Power Intent Specification through UPF 4.0 for
Evolving Advanced State Retention Strategies

* Primary Author
 Lakshmanan Balasubramanian

* Agenda

* What is new in UPF 4.0
* Examples enabled by new changes

Motivation

* Advances in state retention cell design have exposed limitations in
earlier versions of the UPF LRM

* Enhancements needed to model the more complex clock, setup,
retention relationships provided by these new technologies

* Improved modeling will catch issues early in the design cycle

* 4.0 improvements were designed to be forward looking and provide a
flexible platform that can adjust to future requirements

Retention Overview of changes

 Existing set_retention conditions were expanded and redefined to be more
accurate

* Behavior will closely match the retention cells and maintain high performance of
RTL

* Ability to specify how set/reset will affect the behaviors

4.0 set_retention

Earlier UPF set_retention -restore_event_condition

-restore_condition -save_event_condition

-save_condition -restore_period_condition

-retention_condition -powerdown_period_condition

-async_set_reset_effect

2025

DESIGN AND VERIFICATION *

DVCOIN

CONFERENCE AND EXHIBITION

4.0 new retention options
40setretenton |

-restore_event_condition Required condition for the restore_event
-save_event_condition Required condition for the save_event
-restore_period_condition A condition that must be true during the restore_period, the retention element will

corrupt if this becomes false

-powerdown_period_condition Condition required to maintain the retention value during powerdown

-async_set_reset_effect Defines the effect of set/reset on the retention elements

DESIGN AND VCIF:;ON ~

DVCOIN

CONFERENCE AND EXHIBITION

Retention Waveform Example

* 4.0 clearly defines the periods of Save_event Restore_event

the full retention cycle
y RETN \ /

* Each period can have an |
independent set of requirements
relative to clock, reset, and other PSO
design signals

restore_period powerdown_period restore period

* Overcomes limits and ambiguities

. . : #clock must be low at save event
In p revious versions Set_retention —save_event_condition {{UPF_GENERIC_CLK}

clock and reset must be low and stay low during restore
Set_retention —restore_period_condition {{UPF_GENERIC_CLK && 'UPF_ASYNC_SET_RESET}

CONFERENCE AND EXHIBITION

s L & " [Tt o AT
@ A N DVCON
2 MG TIATIV »/' \ ‘ 8

Async set reset effect

* Previously, there was no way to define the impact of set/reset on the saved
value of the register

* There are three main variations in state retention cell design in industry

* Set_retention now has a “-async_set_reset_effect” to cover these cases

* Ignored:

® The retained value will be not be affected by the reset

® No change will be observed in the output of the register
* Retained value:

® the retained value is reset and will be lost.

® The output will show the reset value of the register
* Qutput_value:

® The retained value will not be affected

® The output value will reflect the reset while the reset is asserted but return to the saved value after the
reset is deasserted during retention

/ 2025
7/ DESIGN AND VERIFICATION =

/ S DVCOIN

CONFERENCE AND EXHIBITION

Additional Changes for retention

* Improved definition of UPF_GENERIC CLOCK

e Allow UPF_GENERIC_CLOCK and UPF_GENERIC_ASYNC_SET_ RESET
to be used in all conditions

e 9.7 simulation of retention section overhauled

* Greatly enhanced examples with detailed waveforms for most common
retention types

Agenda

* Introduction

* Interconnect between UPF supplies and arbitrary HDL types

* Improvements in successive refinement and refinable macros
* Overview of Retention Changes

 Virtual Supply and Virtual Equivalence

* General Updates

* Beyond 4.0

. Q/A

SYSTEMS INITIATIVE

Virtual Supplies & Equivalence

* Motivation

* Pre-4.0, no way to model a supply net that did not physically exist in the design
* No way to create driver/receiver supply to model external supplies

* Required use of power models to create internal supplies for macros and use them in power
states and strategy filters

* Many tools already have ad-hoc methods to address these

e Solution

* Define virtual supply nets, ports and supply_sets
* Supply nets/ports/sets that are virtual have no physical implementation
* Can be used in add power state, connect_supply_net, source/sink filtering, etc
* Have the same simulation semantics as non-virtual supplies
* New concept of virtually equivalent — general concept is the same as electrically equivalent

2025

DESIGN AND VERIFICATION

DVCOIN

CONFERENCE AND EXHIBITION

Virtual Supplies, Supply Sets and Ports

 Virtual supplies allow
* designers to describe supplies that are not physically connected to the block
* virtual connections between internal supplies of macros to setup equivalence

. ??ecification of driver and receiver supply of ports and macro pins to enable —source/-sink
iltering

* power states to be easily defined for cases where there is no physical supply net

* Virtual supply restrictions
* They cannot be used to power any active logic in the design:
e Cannot be a primary supply of a domain, can not be used as the supply for any strategy
* They cannot be written out in the physical design outputs
* Connection of supply subnets does not create interchangeability

* Syntax changes
create supply net -virtual
create supply port —-virtual
create supply set -virtual

/ Ll e
4 J DVCON

CONFERENCE AND EXHIBITION

Casel: Virtual Supply used to model
functionally equivalent supplies T—— T

MEM_PSO _—o| H MEM_PSO __O| H
* Motivation: Simplify the power state and LS/ISO 1 1
strategies for macros voo ! VoI |
* Methodology — e
VDDI_virtual

* The internal supply (VDDI) pins are connected with a
virtual supply net making them virtually equivalent
Multiple memories with the same input supply

* Allows creation of virtual supply sets that can be used |~ 4 switch control
for power states and —source/-sink iso/LS rules

* Implementation tools are forbidden from using a
virtual net to power logic

* Implementation tools will not write these virtual . Vti:tii'gfé:?n”;eeagssd t;?:])eeﬁ:gy power
. . . S |
connections into the output Verilog P y

e Ay
> 145 INFTIATIVI »/' ~ |)

Create a virtual supply net and connect it to
the internal pin of the memory

CONFERENCE AND EXHIBITION

Virtual Supply UPF code

Define the supply net as virtual # Create the virtual supply net and virtual supply set
—
Create a supply set using the virtual net create supply net VDDI virtual -virtual -resolve parallel

create supply set SS1 virtual -function {power VDDI virtual} —function {ground VSS} -virtual

- - - - #connect the virtual supply net to each memory’s internal supply pin VVDDI
An internal pin, virtual connection

- no physical connection ——» connect supply net VDDI virtual -ports { MEM1/VDDI ... MEMN/VDDI}

A single supply level power state instead of one per MEM block

add power state SS1 virtual -supply \

-state {OFF -supply expr {power == OFF}} \
Virtual supplies can have states

specified in same way as physical -state {ON -supply expr { power == {FULL ON} && ground == FULL ON}}

The logic expression has a single term, instead of one term per MEM block

add power state PD1 —-domain —-state {ON -logic expr {SS1 virtual == ON}}
Virtual supplies can be used as # A single set isolation covers any output driven by any of the connected MEM blocks
source/sink for ISO/LS strategies g set isolation ISOl -domain PDl1 -source SS1 virtual —-applies to outputs

2025

DESIGN AND VERIFICATION *

DVCOIN

CONFERENCE AND EXHIBITION

Case?2 : Virtual supply to model external supplies

create supply net VDDZ virtual -virtual

SOC create supply set S$SS2 virtual -virtual
—function {power VDD2Z2 virtual}
IP2(SS2) IP1 (SSI) —function {ground VSS}
B
. set port attribute -ports B
= = ///////, —driver supply SS2 virtual

set isolation isol —-domain PD1

] —-source SS2 virtual

When IP1 is compiled standalone, there is no physical supply SS2 —applies_to inputs
So IP1’s UPF creates SS2_virtual and sets it as B’s driver supply

//‘ 5025
/ DESIGN AND VERIFICATION

/ L DVCON

CONFERENCE AND EXHIBITION

Virtual Equivalence

* Prior to 4.0, any supply nets connected to each other were electrically equivalent

e Subnet equivalent — any drivers on any of the connected supply nets had to be treated as
one net and had to be resolved in simulation

* The nets were interchangeable: The nets could be used interchangeably including in
physical design.
 Virtual Nets are not real connections, they are not interchangeable

* Virtual Equivalence
* Keeps the subnet equivalence for simulation, but does not include interchangeability

» Affects transitive properties
* A(real) connects to B(real), and B(real) connects to C(real); Then A and C are electrically equiv

* A(real) connects to B(virtual) and B(virtual) connects to C(real); then A and C are only virtually equiv
and are non-interchangeable

// DESIGN AND VERIFICATION
CONFERENCE AND EXHIBITION

Understanding Equivalence

Supply equivalence established by: Equivalence Type | Functionally Subnet Interchangeable
Identical* Equivalent

set_equivalent Electrical

Connectivity(real) Electrical Yes Yes Yes
Connectivity(virtual) Virtual Yes Yes No
set_equivalent —function_only —interchangeable true Functional Yes No Yes
set_equivalent —function_only — interchangeable false Functional Yes No No

*Functionally Identical: From the perspective of any driver/load analysis the nets have the same value at any time

DESIGN AND VERIFICATION *

DVCCOIN

CONFERENCE AND EXHIBITION

Agenda

* Introduction
* Interconnect between UPF supplies and arbitrary HDL types
* Improvements in successive refinement and refinable macros
* Overview of Retention Changes
* Virtual Supply and Virtual Equivalence
I e General Updates
* Beyond 4.0

. Q/A

SYSTEMS INITIATIVE

Details on select topics

* Support for set/reset on Latch Isolation
* map retention clamp cell

* find objects —-expand to bits

* Precedence Updates

* set port attributes —-feedthrough

* Naming Updates

Support for set/reset on Latch Isolation

» Support for set/reset on Latch based isolation

set isolation
—async_set reset {net name <high|low>} #specify cntrl signal
-async_clamp value <0|1> #specify set or reset

* Create a new port attribute to specify async_clamp_value
* UPF_async_clamp value
* set port attributes -async clamp value <0|1>

set isolation ISO -domain
—-isolation signal iso ctrl
-isolation sense high
—-clamp value latch
—async_set reset { isosetn low}
—async_clamp value 1

Defines latch based isolation where the latch resets to 1
based on isosetn being low.

DESIGN AND VERIFICATION

/ A DVCOIN

CONFERENCE AND EXHIBITION

S 7 2025
/

map retention clamp cell

* For “zero-pin” state retention a clamp cell is cotso| |lmoata [p
automatically inserted on the clock/reset pins CLK = sl >
* The map_retention_clamp_cell allows the e T
. - . SET RST
specification of what cell to use to implement that
clamp.
* Example:

set retention RET1 —-domain PD1 ...
—-save signal {RETN high} -restore signal {RETN low}

map retention cell RET]1 -domain PD1 -1lib cells {SCL9T ZPR X2}

map retention clamp cell {RET1} —-domain PD1
—clock clamp lib cells {SCLO9T ISOT1 X1} # green isolation in diagram
—async clamp lib cells {SCLY9T ISOTZ2 X1} # orange isolation in diagram

-'"‘W / DESIGN AND V gFQC%%N o
(acosllera) /4 | BYEON

E AND EXHIBITIO

find objects —expand to bits

* find_objects can return a single object for a bus or a list of individual bits
* This was possible before by using patterns like “xyz\[*\]” to return a list of individual bits

* In 4.0, this process has been made easier by adding an “-expand _to_bits”
option
* When set true, the individual bits will always be returned
* When false (or not set), the pre-4.0 behavior will apply

e Whether the individual bits are returned or the full bus is returned can affect the
precedence of this list in other commands

* Example : set_isolation ISO1 —elements [find_objects]
* In the elements list, bits will have higher precedence than the full bus

-pattern {pmda\[*\]} {pmda[l] pmda[0]}

-pattern {pmdal\[*\]} -expand to bits {pmda[l][0] pmda[l][1l] pmda[0][1l] pmda[0][0]}

2025

DESIGN AND VERIFICATION *

DVCOIN

CONFERENCE AND EXHIBITION

Examples of Precedence Updates

* set retention
* set retention with-no retention now has precedence over set retention
without -no_retention

* set port attributes -driver supply/-receiver supply

* If after applying the precedence rules above, the predefined port attributes
UPF_receiver_supply or UPF_driver_supply are defined on a given port using both
hierarchical and non-hierarchical names then the hierarchical name shall take precedence.

* Composite types

* When determining precedence, composite data types are treated as a multibit signal. A
record field or array index of a composite data type referred to explicitly by name is also
treated as a part of the multibit signal.

* set design attributes -is hard macro|-is soft macro|-

is reflnable macro

« If the macro has n multiple -is_*_macro attributes set, then -is_hard macro has highest
precedence, followed by -is soft macro et S 1801 2000

/ 2025
/ DESIGN AND VERIFICATION =

DVCOIN

CONFERENCE AND EXHIBITION

set port attributes -feedthrough

* In 3.1, the semantics around multiple feedthrough groups was unclear.
*|n 4.0:

* set port attributes -ports {port list} —feedthrough feedthrough name

* All ports connected with the UPF_feedthrough attribute set to the same
feedthrough name, are defined as connected

* Example:

e The following code defines two separate feedthrough groups: X that includes a, bandc, andY
that only contains e and f.
set port attributes -ports {a b} —-feedthrough X
set port attributes -ports {c} —-feedthrough X
set port attributes -ports {e f} —-feedthrough Y
—-feedthrough without a “feedthrough name” provides backward compatibility
set port attributes -ports {g h} —-feedthrough

/ DESIGN AND Vi ngQCgTéN o
y j DVCON

CONFERENCE AND EXHIBITION

Naming Updates

* Clarify what character should be used in UPF to specify the generate
block delimiter

* In the design flow generate blocks are unique, for simulation they create a hierarchy but for
implementation they don’t. The naming style also can differ based on tools settings.

* In 4.0, the LRM was updated to define a single style that should be used in the UPF

* generate block delimiter character: A special character used in composing names containing generate
block labels. The generate block delimiter character is a dot (.). *

* New Library naming

 When referencing a model in a command argument, its name may be prefixed by its library name
followed by a dot ("."). This limits the effect of a command to the particular version of that model
compiled into the specified library. A model name specified with the "<library>.<model>" syntax is

considered a simple name (5.3.3.2)*

*IEEE 1801-2024 — IEEE Standard for Design and verification of Low-Power - Adapted and reprinted with
permission from IEEE. Copyright IEEE 2024. All rights reserved.

/ Ll e
4 J DVCON

CONFERENCE AND EXHIBITION

Beyond 1801-2024

e 1801-2024 major features were the response to new technologies
and design methodologies

* Beyond 1801-2024

e Continued innovation on mixed signal design and interfacing
* Enable supply networks to carry information about power generation and consumption
* Bi-directional supply ports
» Features to improve static checking of designs with mixed analog/digital components
* Power modeling in the context of mixed signal integrations

* Information model improvements beyond SV and VHDL
* Improvements to support new technology cells
* Ease of use/Ease of specification improvements

// DESIGN AND VERIFICATION
CONFERENCE AND EXHIBITION

2025 DVCon US Related Papers

* [1082] Refinable Macros and Terminal Boundaries in UPF 4.0: Empowering
Soft IPs of the Future

* Amit Srivastava, Synopsys Inc;

e [1127] Applications for UPF HDL Supply Tunneling in Mixed Signal Design
* Daniel Cross, Cadence Design Systems

e [1136] Future Proofing Power Intent Specification through Unified Power
Format 4.0 for Evolving Advanced State Retention Strategies

e Lakshmanan Balasubramanian, IEEE, ACM & Texas Instruments (India) Pvt. Ltd.;
* Rick Koster, SIEMENS EDA;

e [1034] What'’s New in IEEE 1801 and Why you Need to Know Now?

* Progyna Khonkdar, Cadence Design Systems

https://dvcon-proceedings.org/document/refinable-macros-and-terminal-boundaries-in-upf-4-0-empowering-soft-ips-of-the-future/
https://dvcon-proceedings.org/document/refinable-macros-and-terminal-boundaries-in-upf-4-0-empowering-soft-ips-of-the-future/
https://dvcon-proceedings.org/document/applications-of-supply-tunneling-in-unified-power-format-4-0-for-mixed-signal-design/
https://dvcon-proceedings.org/document/future-proofing-power-intent-specification-through-unified-power-format-upf-4-0-for-evolving-advanced-state-retention-strategies/
https://dvcon-proceedings.org/document/future-proofing-power-intent-specification-through-unified-power-format-upf-4-0-for-evolving-advanced-state-retention-strategies/
https://dvcon-proceedings.org/document/whats-new-in-ieee-1801-and-why/

Questions

	Slide 1: Introduction of IEEE 1801-2024 (UPF4.0) improvements for the specification and verification of low-power
	Slide 2: IEEE Disclaimers
	Slide 3: Agenda
	Slide 4: Introductions/Acknowledgements
	Slide 5: Unified Power Format (UPF)
	Slide 6: Evolution of the Standard
	Slide 7: UPF 4.0 – Major Goals
	Slide 8: Where to get the IEEE 1801-2024 Spec
	Slide 9: Summary of Change Topics
	Slide 10: Command/Option Change Summary
	Slide 11: New feature for UPF 4.0: interconnect between UPF supplies and arbitrary HDL types
	Slide 12: Motivation for adding to the standard
	Slide 13: New concepts
	Slide 14: VCMs
	Slide 15: Example Situation in which to use VCMs
	Slide 16: Tunneling
	Slide 17: VCMs and HDL Tunneling Paper
	Slide 18: UPF Library
	Slide 19: Automatic Selection of VCM by net/data type
	Slide 20: Commands and Option Changes
	Slide 21: Table VCM Examples
	Slide 22: Function VCM Example
	Slide 23: Model VCM Example
	Slide 24: Advantages of Functions over Modules
	Slide 25: Advantages of Modules over Functions
	Slide 26: List VCM Example
	Slide 27: Making Connections with VCMs
	Slide 28: Refinable Macros and Terminal Boundaries in UPF 4.0: Empowering Soft IPs of the Future
	Slide 29: Refinable Macros in UPF 4.0
	Slide 30: Motivation: Challenges with SIPs in Bottom-Up Verification
	Slide 31: Why Soft Macros Fall Short for Bottom-Up Verification?
	Slide 32: Refinable Macros in UPF 4.0
	Slide 33: Marking IPs as Refinable Macros
	Slide 34: Implementation UPF : Enforcing Safe Refinements
	Slide 35: Practical Example: Refinable Macros in Action
	Slide 36: Conclusion: Empowering Soft IPs of the Future
	Slide 37: Retention Modeling in UPF 4.0
	Slide 38: Future Proofing Retention in UPF 4.0
	Slide 39: Motivation
	Slide 40: Retention Overview of changes
	Slide 41: 4.0 new retention options
	Slide 42: Retention Waveform Example
	Slide 43: Async_set_reset_effect
	Slide 44: Additional Changes for retention
	Slide 45: Agenda
	Slide 46: Virtual Supplies & Equivalence
	Slide 47: Virtual Supplies, Supply Sets and Ports
	Slide 48: Case1: Virtual Supply used to model functionally equivalent supplies
	Slide 49: Virtual Supply UPF code
	Slide 50: Case2 : Virtual supply to model external supplies
	Slide 51: Virtual Equivalence
	Slide 52: Understanding Equivalence
	Slide 53: Agenda
	Slide 54: Details on select topics
	Slide 55: Support for set/reset on Latch Isolation
	Slide 56: map_retention_clamp_cell
	Slide 57: find_objects –expand_to_bits
	Slide 58: Examples of Precedence Updates
	Slide 59: set_port_attributes -feedthrough
	Slide 60: Naming Updates
	Slide 61: Beyond 1801-2024
	Slide 62: 2025 DVCon US Related Papers
	Slide 63: Questions

