
Introduction of IEEE 1801-2024 (UPF4.0) improvements
for the specification and verification of low-power

Joshua Ong – Qualcomm
Nathalie Méloux – STMicroelectronics

Gabriel Chidolue – Siemens
Shaun Durnan - ARM

IEEE Disclaimers
• This presentation solely represents the views of the author(s), and does not necessarily represent

a position of either the IEEE P1801 Working Group, the IEEE Design Automation Standards

Committee, IEEE or the IEEE Standards Association.

• This presentation utilizes as reference the Design Automation Standards Committee of the IEEE

Computer Society, “IEEE Standard for Design and Verification of Low-Power, Energy-Aware

Electronic Systems”, IEEE Std. 1801 -2024. No further use of the material is permitted, including

use for AI or within AI systems, without explicit consent from IEEE.

Agenda
• Introduction

• Interconnect between UPF supplies and arbitrary HDL types

• Improvements in successive refinement and refinable macros

• Overview of Retention Changes

• Virtual Supply and Virtual Equivalence

• General Updates

• Beyond 4.0

• Q/A

Introductions/Acknowledgements
• Presenters

• Joshua Ong : Qualcomm
• Nathalie Meloux : STMicroelectronics
• Gabriel Chidolue : Siemens
• Shaun Durnan : ARM

• Contributors
• John Decker – 1801 WG Chair, Cadence
• Amit Srivastava – 1801 WG Vice-Chair Synopsys
• Lakshmanan Balasubramanian : 1801 WG secretary, Texas Instruments
• Marcelo Glusman – Cadence, Paul Bailey - Nordic Semiconductor,
• Rick Koster - Siemens EDA, Progyna Khondkar - Cadence

• Special thanks to the 1801 WG
• Currently over 40 members representing 16 companies
• Former members John Biggs(previous Chair), Phil Giangarra, David Cheng

• Thanks to IEEE Standards Association and Accellera

Unified Power Format (UPF)
• IEEE Standard for expressing

Power Intent
• To define power architecture and power

management control
• To minimize power consumption
• Enables a consistent representation of power

intent across all aspects of the design and
verification flow

• Enables early verification of power intent

• An Evolving Standard
• 6 versions of IEEE -1801 over ~18 years
• Contributions from Accellera UPF1.0 and Si2

CPF 2.0 and 2.1
• 1801 has had contributions from more than

20 chip design and EDA companies

• Based upon Tcl
• Tcl syntax and semantics

• And HDLs
• SystemVerilog, VHDL, SystemC

• For Verification
• Simulation, Emulation, Static/Formal

• For Implementation
• Synthesis, DFT, P&R, etc.

• And for System Level Power Modeling
• Abstract power models with power_expr

5

201920162009 2010 2011 2012 2013 20142006 2007 2008 2015

UPF-1.0

Donated

to IEEE

1801-2009

(AKA UPF-2.0)

Published

UPF-1.0

Kick off

Meeting

Accellera

UPF-1.0

Published

1801-2013

(AKA UPF-2.1)

Published

CPF-2.0

Donated

to IEEE

1801a-2014

(AKA UPF-2.2)

Published

1801-2015

(AKA UPF-3.0)

Published

2017

1801-2018

(AKA UPF-3.1)

Published

Evolution of the Standard

6

2018 2025

New Project

Revision of

1801-2024

1801-2024

(AKA UPF-4.0)

Published

2024

CPF-2.1

Donated

to IEEE

. . .

UPF 4.0 – Major Goals
• Enable low power simulation with mixed-signal features like real

number modeling

• Enable accurate modeling of state retention

• Enhance IP design reuse with refinable macros

• Improve successive refinement flow

• Address over 200 Mantis items tracking improvement requests.
• Enable Virtual Supplies

• Updates/Clarifications to semantics

• Ease-of-use features

Where to get the IEEE 1801-2024 Spec

• 1801-2024 spec is available from the IEEE GET program

• IEEE SA open repository (NEW)
• Select examples and packages from the 1801-2024 specification

• Planned community space to provide comments, advice, additional examples

• Available at: https://opensource.ieee.org/upf

https://ieeexplore.ieee.org/browse/standards/get-program/page
https://opensource.ieee.org/upf

Summary of Change Topics
• Precedence

• SPA, retention, composite types, Macros

• Naming Related

• Rooted vs Simple name clarifications

• Escaped naming styles

• Generate block delimiter

• Library name (5.3.3.2)

• Command Updates
• Map_retention_clamp_cell

• Set_isolation –async_set_reset –async_clamp_value

• set_port_attributes –is_analog allowed on instance pins

• set_port_attributes –feedthrough improvements

• set_design_attributes with no object creates a “UPF“ wide
attribute

• Find_objects –expand_to_bits

• set_repeater –repeater_supply mandatory

• New Concepts
• Refinable Macro
• Implementation UPF
• Virtual nets/ports/sets/equivalence
• Tunneling
• Connections to real (VCM)

• Major Updates
• Power distribution section 4.5.1
• Simulation of state retention (9.7)
• Annex I – VCM usage examples
• Supply equivalence

• Clarifications (partial list)
• Major improvements to Definitions
• Resolved elements list
• Literal supply

• Open SA repository

• Complete update of Annex E (example)

Command/Option Change Summary
New Options

set_isolation –async_set_reset
-async_clamp_value

connect_supply_net –vcm
-tunneling

set_port_attribute -is_refinable_macro
-async_clamp_value

load_upf -implementation

define_power_model –update
-implementation
-complete

create_supply_net -virtual

create_supply_port –virtual

create_supply_set -virtual

set_retention -applies_to {latch ff both}
–restore_period_condition
-powerdown_period_condition
-restore_event_condition
-save_event_condition

find_objects –expand_to_bits

New Commands

create_vcm

create_upf_library

load_upf_library

use_upf_library

map_retention_clamp_cell

create_abstract_power_source

Legacy/Deprecated

set_isolation –applies_to_sink_clamp
-applies_to_source_clamp

create_supply_net -reuse
-domain

create_power_switch -domain

create_supply_port -domain

set_port_attribute
–sink_off_clamp
-source_off_clamp

create_upf2hdl_vct

create_hdl2upf_vct

set_retention_elements -transitive

set_retention –save_condition
-restore_condition
–retention_condition

New feature for UPF 4.0: interconnect
between UPF supplies and arbitrary HDL types
Joshua Ong– Qualcomm

Motivation for adding to the standard
• An increasing number of designs are mixed signal in nature and have significant

analog and mixed signal content

• Co-verification of analog and mixed signal design elements with purely digital

components has increased in importance

• Analog and digital portions of designs increasingly share power supplies

• Use of Real Number Modeling (RNM) to represent analog functions for verification

has proliferated

• Synchronization of analog and UPF representations of the power supply network has

become critical

New concepts

• VCM – Value Conversion Method
extends and enhances VCT (Value Conversion Table)

• Tunneling
allows analog connections to be made via UPF

• UPF Library
helps avoid name collisions between otherwise global objects

• Automatic VCM selection by nettype and data type
allows successive refinement by supporting multiple representations with a
single UPF

VCMs
• VCMs provide a richer and more flexible

mechanism to translate between UPF
supply nets and HDL

• Improved simple table conversions vs VCT
• Enable advanced conversions of more

complex types by using user defined
Modules and Functions

• Ability to contain a list of other VCMs to
enable automated type conversions

• VCTs are now legacy
• Their functionality is a subset of VCMs
• As legacy they continue to work but 1801

encourages migration

• Examples of each type provided at end
of this presentation

1
4

Syntax:
create_vcm vcm_name

And one of the following option sets:

• -table {{from_value to_value}*}
-hdl_type {<vhdl | sv> [HDL_typename]}
-conversion_direction <hdl2upf | upf2hdl>
-field field_name

• -function hdl_package::function_name

• -model module_name
-parameters {{param_name param_value }*}

• -vcms ext_vcm_list

Example Situation in which to use VCMs
1
5

connect_supply_net VDDA -ports {uA/VDD uD1/VDD uD2/VDD} \

-vcm myVCM

Convert between a UDN
and a UPF supply net • In addition to single-bit

logic, the VCM allows
connecting UPF supply nets
to:

• integer
• enum
• real
• User-Defined Nettype

(UDN)
• UDN with struct
• record

• Only UPF supply nets (not
logic nets or supply sets)
can be connected with
these methods.

uA (Analog)

uD1 (Digital)

uD2 (Digital)
myVCM

VDD(upf supply_net)

VDD(UDN)
VDDA

VDD(upf supply_net)

Tunneling
• Tunneling allows a connection between same type of HDL net to preserve

the full extent of that type
• Normal UPF conversions result in loss of information because the UPF supply type only

has an integer voltage and supply_state
• The HDL type may contain a richer set of values that the load HDL model may take

advantage of (e.g. current)

uA (analog)

uD1 (Digital)

uA2 (Analog)

VDD(upf supply_net)

VDD

(HDL)

VDDA

VDD(HDL)
Connection in UPF but “tunneling”

makes connections without translation

to UPF_supply_net

VCM translates HDL to

UPF_supply_net

VCMs and HDL Tunneling Paper

1
7

continued

UPF Library
• The UPF library was introduced to provide a way to avoid name collisions

between VCM definitions, which are otherwise global in scope.
• Using a UPF library, a third-party design contribution (Intellectual Property or IP) can

define VCMs for use in simulating the IP, without risking name collisions with VCMs
defined for the SoC or other IPs.

• New commands which support UPF library use:

create_upf_library upf_library_name \
-contents { \

upf commands \
}

use_upf_library upf_library_name

load_upf_library upf_library_file

1
8

Only create_vcm, load_upf_library
use_upf_library currently allowed

Automatic Selection of VCM by net/data type
• Motivation:

• UPF supply nets may connect to multiple HDL types

• The –vcms option allows the specification of a list of VCM’s

• Tools can choose the matching VCM based on the HDL type and do the
proper conversion

create_vcm vcm_bundle \

-vcms {sv_logic2upf sv_real2upf sv_udn2upf}

Commands and Option Changes
• New Commands and options

• create_vcm
• create_supply_net -tunneling
• connect_supply_net -vcm
• create_upf_library
• use_upf_library
• load_upf_library

• Legacy Commands and options
• The commands create_hdl2upf_vct and create_upf2hdl_vct are legacy.

• They can still be supported alongside VCMs by redirecting calls to these commands to
create_vcm, supplying the necessary –conversion_direction

• The –vct option in connect_supply_net is also legacy.
• Tools may continue to support –vct

Table VCM Examples
• Consider a SystemVerilog package with a UDN defined as follows:

package ldo_net_pkg;
typedef struct {

real volts;
real current;

} ldo_struct_t ;
nettype ldo_struct_t ldo_supply_net;
endpackage

• A VCM that maps values on a HDL port of type ldo_supply_net can be
declared as follows:

create_vcm LDONET2UPF \

-hdl_type {sv ldo_net_pkg::ldo_supply_net} \

-conversion_direction hdl2upf \

-field volts \

-table { \

{{5.0 * } {OFF }} \

{{1.0 5.0} {FULL_ON 1.1 }} \

{{0.6 1.0} {PARTIAL_ON 0.9 }} \

{{ * 0.6} {OFF }} \

}

2
1

Function VCM Example
package myVCM_pkg;

import UPF::*;

import ldo_net_pkg::*;

function automatic upfSupplyTypeT func_h2u_snap (ldo_struct_t hdl_in);

upfSupplyTypeT upf_out;

upf_out.voltage = 0;

upf_out.state = UNDETERMINED;

if (hdl_in.volts <= 0.2) begin

upf_out.voltage = 0;

upf_out.state = OFF;

end

else if ((hdl_in.volts > 0.2)

&& (hdl_in.volts <= 0.9)) begin

upf_out.voltage = 0.9;

upf_out.state = FULL_ON;

end

. . .

return upf_out;

endfunction

endpackage

2
2

Using the package in UPF
create_vcm LDONET2UPF_function \

-function myVCM_pkg::func_h2u_snap

Model VCM Example
import UPF::*; import ldo_net_pkg::*;
module snap_volt_vcm #(

//default parameter defs
parameter ov_threshold = 5.0,
parameter hi_snap_volts = 1.1,
parameter hi_threshold = 1.0,
parameter on_snap_volts = 0.9,
parameter on_threshold = 0.2

) (
input ldo_supply_net hdl_in,
output upfSupplyTypeT upf_out

);

always @(hdl_in.volts)

begin

. . .

end

endmodule

2
3

create_vcm LDONET2UPF_module \

-model my_module_lib.snap_volt_vcm \

-parameters { \

{ov_threshold 5.0} \

{hi_snap_volts 1.5} \

{hi_threshold 1.4} \

{on_snap_volts 1.0} \

{on_threshold 0.5} }

Advantages of Functions over Modules

• Functions are less resource intensive.
• They exist for one event and then disappear

• Modules are instantiated in the netlist, and exist for the entire
simulation, occupying memory even when nothing happens to
them

• Functions can be imported from other languages (e.g. C++)
• Modules must be HDL

2
4

Advantages of Modules over Functions

• Modules can be easily parameterized
• One module description can be used as the basis for many VCMs (using

create_vcm –parameters)

• Modules can model time delay effects
• Since they are static objects, they can respond to stimuli over several event

times

• More complex behaviors can be modeled

2
5

List VCM Example

• You can include VCMs for both directions in a list, as long as the
ports you connect with it are input or output (but not inout).

• You can only include one VCM with a given HDL type and
direction in the list.

• All of the VCMs in the list have to be previously defined with a
create_vcm command.

• The list can be a mix of table VCMs, function VCMs, module VCMs,
or even other list VCMs.

• Use the name of the list VCM when you make UPF supply net
connections to HDL ports.

2
6

create_vcm vcm_bundle \

-vcms {sv_logic2upf sv_real2upf sv_udn2upf}

Making Connections with VCMs
• Apply your VCMs to make connections between HDL ports and UPF supply

nets by using the connect_supply_net command with a new option:
-vcm

• For example:
connect_supply_net vdd -ports {u1/vdd_1v0} -vcm vcm_bundle

• Some things to be aware of:
• Expect an error if the VCM you specify does not match the HDL type and port

direction you are connecting to. If you specify a list, then exactly one of the VCMs in
the list has to match.

• If any ports listed in –ports {} are UPF supply ports (and therefore do not need
conversion), -vcm will be ignored for those ports.

• You can also use connect_supply_net with –pg_type to connect to many
ports with the same pg_type.

2
7

Refinable Macros and Terminal
Boundaries in UPF 4.0: Empowering
Soft IPs of the Future
Gabriel Chidolue - Siemens

Refinable Macros in UPF 4.0

• Enabling Non-Intrusive Refinements in Bottomup Verification Flows

• Presenter
• Gabriel Chidolue

• Agenda
• Why we need Refinable Macros

• How they differ from Soft Macros

• Marking IPs as Refinable Macro

• Refinable Macro in Action

Empowering Soft IPs of Future

Motivation: Challenges with SIPs in Bottom-
Up Verification

• SoC Complexity
• 50+ SIPs, each with unique power

rules
• Higher-Level Implementation

Requires Power Intent Updates

• The Dilemma after Modifying SIPs
• Not revalidate SIPs -> risk introducing

bugs
• Revalidate SIPs -> delay Time to

Market

• UPF 3.1’s Fix : Soft Macro
• Good for implementation
• Too rigid for pre-verified SIPs

Intrusive Updates at SOC level
Invalidate the

Standalone Validation

create_power_domain PDPurple

–elements IP1/U3

u1 u2

VDD1 VDD2

u3

IP Testbench(standalone)

u1 u2

VDD1 VDD2

u3

SOC Integration

u1 u2

VDD1 VDD2

u3

Connect_supply_net VDD

–ports {IP2/VDD1 IP2/VDD2}

Results in ISO optimization

Soft_IP Soft_IP

Why Soft Macros Fall Short for Bottom-Up
Verification?
• Rigid Implementation Boundaries

• Protects IP from external overrides

• Suitable for Bottom-Up
Implementation Flows

• No Room for Non-Intrusive
Refinements

• Forces Intrusive Edits and Re-
Validation

• Lacks System-Level Optimization

u1 u2

VDD1 VDD2

u3

SOC Integration

u1 u2

VDD1 VDD2

u3

Pre-Hardened outside SoC
No logic optimizations

STRICT
TERMINAL BOUNDARIES

Soft_Macro Soft_Macro

Refinable Macros in UPF 4.0

• Refinable Terminal Boundaries

• Tool-Enforced Safety
• Non-Intrusive Power Intent

Updates

• Preserved Verification
• Original IP UPF remains untouched

• Enables System-Level
Optimization during
Implementation

• Ideal for Bottom-Up Verification

Identical Views for SoC RTL Simulation and SoC Implementation

u1 u2

VDD1 VDD2

u3

SOC Integration

u1 u2

VDD1 VDD2

u3

Refinable_Macro Refinable_Macro

Less rigid boundary: Safe optimizations are allowed, but
no intrusions from above

Marking IPs as Refinable Macros

• Simple UPF Attribute

• Mark IP internally or externally

• Maintains IP Verification

• Override to Soft Macro if Needed

Mark directly in IP UPF:

set_design_attributes -models . -is_refinable_macro true

Or mark externally:

set_design_attributes -models IP_Design -attribute {UPF_is_refinable_macro TRUE}

Mark IP as
Refinable Macro

Safe
Updates

Preserves
Verificatio

n

Implementation UPF : Enforcing Safe
Refinements
• Safe Refinements via Allowed

Commands and options
• UPF 4.0 defines allowed

commands and options

• -implementation Enforces
Correct-by-Construct UPF

• EDA Tools Enforce Compliance

• No Alteration of Original IP UPF

• Preserves Verification Integrity

SoC UPF

load_upf ip_impl.upf \

-scope myIP \

-implementation

ip_impl.upf

set_isolation PGD_to_AON \

-domain PGD \

-location parent

-update

SoC IP UPF
Updates

Error: Not
Allowed

Command

load_upf
-implementation

EDA Tool
Checks:

Implementati
on UPF

Allowed ?

Modified UPF

NO

Proceed to
Refinement

YES

create_power_domain

set_isolation –update

Practical Example: Refinable Macros in Action
ip.upf
set_design_attributes –models . \
-is_refinable_macro TRUE

create_supply_set ss_IP_AON
create_supply_set ss_IP_PGD

create_power_domain AON -elements {.}
create_power_domain PGD -elements
{ip1_pgd_wrapper}

Isolates all outputs where different
supplies power source and sink
set_isolation PGD_to_AON -domain PGD \
-isolation_supply_set ss_IP_AON \
-applies_to outputs -source ss_IP_PGD \
-diff_supply_only TRUE \
-isolation_signal pwr_manager/iso_en_b \
-isolation_sense low

ParIP.upf
create_power_domain par_AON -elements {.}
create_supply_set ss_SOC_AON
create_supply_set ss_SOC_PGD

load_upf ip.upf -scope ip1
load_upf ip_impl.upf -scope ip1 -implementation
associate_supply_set {ss_SOC_AON ip1/ss_IP_AON}
associate_supply_set {ss_SOC_AON ip1/ss_IP_PGD}

load_upf ip.upf -scope ip2
load_upf ip_impl.upf -scope ip2 -implementation
associate_supply_set {ss_SOC_AON ip2/ss_IP_AON}
associate_supply_set {ss_SOC_PGD ip2/ss_IP_PGD}

set_isolation PGD_to_AON \
-domain PGD \
-location parent
-update

ip_impl.upf

Implementation
updates only

SoC (ParIP.upf)

ip1 ip2

AON and PGD
supplies are shorted
for one instance of

the IP

iso

Conclusion: Empowering Soft IPs of the
Future
• UPF 4.0 -> Bridges SIP Verification Gaps

• Refinable Macros = Flexibility + Safety +
Performance

• Implementation UPF -> Correct-by-
Construct

• Preserves Verification & Saves Time

Retention Modeling in UPF 4.0

Nathalie Méloux - STMicroelectronics

Future Proofing Retention in UPF 4.0

• Future Proofing Power Intent Specification through UPF 4.0 for
Evolving Advanced State Retention Strategies

• Primary Author
• Lakshmanan Balasubramanian

• Agenda
• Why retention semantics were updated

• What is new in UPF 4.0

• Examples enabled by new changes

Motivation

• Advances in state retention cell design have exposed limitations in
earlier versions of the UPF LRM

• Enhancements needed to model the more complex clock, setup,
retention relationships provided by these new technologies

• Improved modeling will catch issues early in the design cycle

• 4.0 improvements were designed to be forward looking and provide a
flexible platform that can adjust to future requirements

Retention Overview of changes
• Existing set_retention conditions were expanded and redefined to be more

accurate

• Behavior will closely match the retention cells and maintain high performance of
RTL

• Ability to specify how set/reset will affect the behaviors

Earlier UPF set_retention

-restore_condition

-save_condition

-retention_condition

4.0 set_retention

-restore_event_condition

-save_event_condition

-restore_period_condition

-powerdown_period_condition

-async_set_reset_effect

4.0 new retention options
4.0 set_retention

-restore_event_condition Required condition for the restore_event

-save_event_condition Required condition for the save_event

-restore_period_condition A condition that must be true during the restore_period, the retention element will
corrupt if this becomes false

-powerdown_period_condition Condition required to maintain the retention value during powerdown

-async_set_reset_effect Defines the effect of set/reset on the retention elements

*IEEE 1801-2024 – IEEE Standard for Design and verification of Low-Power - Adapted and reprinted with

permission from IEEE. Copyright IEEE 2024. All rights reserved.

Retention Waveform Example

• 4.0 clearly defines the periods of
the full retention cycle

• Each period can have an
independent set of requirements
relative to clock, reset, and other
design signals

• Overcomes limits and ambiguities
in previous versions

RETN

PSO

restore_period powerdown_period restore_period

Save_event Restore_event

#clock must be low at save event

Set_retention –save_event_condition {!UPF_GENERIC_CLK}

clock and reset must be low and stay low during restore

Set_retention –restore_period_condition {!UPF_GENERIC_CLK && !UPF_ASYNC_SET_RESET}

Async_set_reset_effect

• Previously, there was no way to define the impact of set/reset on the saved
value of the register

• There are three main variations in state retention cell design in industry
• Set_retention now has a “-async_set_reset_effect” to cover these cases

• Ignored:
• The retained value will be not be affected by the reset
• No change will be observed in the output of the register

• Retained_value:
• the retained value is reset and will be lost.
• The output will show the reset value of the register

• Output_value:
• The retained value will not be affected
• The output value will reflect the reset while the reset is asserted but return to the saved value after the

reset is deasserted during retention

Additional Changes for retention

• Improved definition of UPF_GENERIC CLOCK

• Allow UPF_GENERIC_CLOCK and UPF_GENERIC_ASYNC_SET_RESET
to be used in all conditions

• 9.7 simulation of retention section overhauled
• Greatly enhanced examples with detailed waveforms for most common

retention types

Agenda

• Introduction

• Interconnect between UPF supplies and arbitrary HDL types

• Improvements in successive refinement and refinable macros

• Overview of Retention Changes

• Virtual Supply and Virtual Equivalence

• General Updates

• Beyond 4.0

• Q/A

Virtual Supplies & Equivalence

• Motivation
• Pre-4.0, no way to model a supply net that did not physically exist in the design

• No way to create driver/receiver supply to model external supplies

• Required use of power models to create internal supplies for macros and use them in power
states and strategy filters

• Many tools already have ad-hoc methods to address these

• Solution
• Define virtual supply nets, ports and supply_sets

• Supply nets/ports/sets that are virtual have no physical implementation

• Can be used in add power state, connect_supply_net, source/sink filtering, etc

• Have the same simulation semantics as non-virtual supplies

• New concept of virtually equivalent – general concept is the same as electrically equivalent
but without interchangeability

Virtual Supplies, Supply Sets and Ports
• Virtual supplies allow

• designers to describe supplies that are not physically connected to the block
• virtual connections between internal supplies of macros to setup equivalence
• specification of driver and receiver supply of ports and macro pins to enable –source/-sink

filtering
• power states to be easily defined for cases where there is no physical supply net

• Virtual supply restrictions
• They cannot be used to power any active logic in the design:
• Cannot be a primary supply of a domain, can not be used as the supply for any strategy
• They cannot be written out in the physical design outputs
• Connection of supply subnets does not create interchangeability

• Syntax changes
create_supply_net –virtual

create_supply_port –virtual

create_supply_set -virtual

Case1: Virtual Supply used to model
functionally equivalent supplies

• Motivation: Simplify the power state and LS/ISO
strategies for macros

• Methodology
• The internal supply (VDDI) pins are connected with a

virtual supply net making them virtually equivalent
• Allows creation of virtual supply sets that can be used

for power states and –source/-sink iso/LS rules
• Implementation tools are forbidden from using a

virtual net to power logic
• Implementation tools will not write these virtual

connections into the output Verilog

VDDI_virtual

VDDI VDDI

VDD

MEM_PSO MEM_PSO

• Multiple memories with the same input supply

and switch control

• Create a virtual supply net and connect it to

the internal pin of the memory

• Virtual net can be used to specify power

states once instead of per memory

MEM1 MEMN

Virtual Supply UPF code

An internal pin, virtual connection
- no physical connection

Create the virtual supply net and virtual supply set

create_supply_net VDDI_virtual –virtual –resolve parallel

create_supply_set SS1_virtual -function {power VDDI_virtual} –function {ground VSS} -virtual

#connect the virtual supply net to each memory’s internal supply pin VVDDI

connect_supply_net VDDI_virtual –ports { MEM1/VDDI …. MEMN/VDDI}

A single supply level power state instead of one per MEM block

add_power_state SS1_virtual –supply \

-state {OFF –supply_expr {power == OFF}} \

-state {ON -supply_expr { power == {FULL_ON} && ground == FULL_ON}}

The logic expression has a single term, instead of one term per MEM block

add_power_state PD1 –domain –state {ON –logic_expr {SS1_virtual == ON}}

A single set_isolation covers any output driven by any of the connected MEM blocks

set_isolation ISO1 –domain PD1 –source SS1_virtual –applies_to outputs

Virtual supplies can have states
specified in same way as physical

Virtual supplies can be used as
source/sink for ISO/LS strategies

Define the supply net as virtual

Create a supply set using the virtual net

Case2 : Virtual supply to model external supplies

create_supply_net VDD2_virtual -virtual

create_supply_set SS2_virtual –virtual

–function {power VDD2_virtual}

–function {ground VSS}

set_port_attribute –ports B

–driver_supply SS2_virtual

set_isolation iso1 –domain PD1

–source SS2_virtual

–applies_to inputs

IP2(SS2)

B

IP1 (SS1)

When IP1 is compiled standalone, there is no physical supply SS2
So IP1’s UPF creates SS2_virtual and sets it as B’s driver supply

SOC

Virtual Equivalence
• Prior to 4.0, any supply nets connected to each other were electrically equivalent

• Subnet equivalent – any drivers on any of the connected supply nets had to be treated as
one net and had to be resolved in simulation

• The nets were interchangeable: The nets could be used interchangeably including in
physical design.

• Virtual Nets are not real connections, they are not interchangeable

• Virtual Equivalence
• Keeps the subnet equivalence for simulation, but does not include interchangeability

• Affects transitive properties
• A(real) connects to B(real), and B(real) connects to C(real); Then A and C are electrically equiv

• A(real) connects to B(virtual) and B(virtual) connects to C(real); then A and C are only virtually equiv
and are non-interchangeable

Understanding Equivalence

Supply equivalence established by: Equivalence Type Functionally
Identical*

Subnet
Equivalent

Interchangeable

set_equivalent Electrical Yes Yes Yes

Connectivity(real) Electrical Yes Yes Yes

Connectivity(virtual) Virtual Yes Yes No

set_equivalent –function_only – interchangeable true Functional Yes No Yes

set_equivalent –function_only – interchangeable false Functional Yes No No

*Functionally Identical: From the perspective of any driver/load analysis the nets have the same value at any time

Agenda

• Introduction

• Interconnect between UPF supplies and arbitrary HDL types

• Improvements in successive refinement and refinable macros

• Overview of Retention Changes

• Virtual Supply and Virtual Equivalence

• General Updates

• Beyond 4.0

• Q/A

Details on select topics

• Support for set/reset on Latch Isolation

• map_retention_clamp_cell

• find_objects –expand_to_bits

• Precedence Updates

• set_port_attributes –feedthrough

• Naming Updates

Support for set/reset on Latch Isolation

• Support for set/reset on Latch based isolation
set_isolation

–async_set_reset {net_name <high|low>} #specify cntrl signal

-async_clamp_value <0|1> #specify set or reset

• Create a new port attribute to specify async_clamp_value
• UPF_async_clamp_value

• set_port_attributes –async_clamp_value <0|1>

set_isolation ISO -domain

-isolation_signal iso_ctrl

-isolation_sense high

-clamp_value latch

-async_set_reset { isosetn low}

-async_clamp_value 1

. . .

Defines latch based isolation where the latch resets to 1

based on isosetn being low.

map_retention_clamp_cell

• For “zero-pin” state retention a clamp cell is
automatically inserted on the clock/reset pins

• The map_retention_clamp_cell allows the
specification of what cell to use to implement that
clamp.

• Example:

CK

RST

Data
ICG-ISO P

S

RETN

RESET

CLK

set_retention RET1 –domain PD1 ...

–save_signal {RETN high} -restore_signal {RETN low}

map_retention_cell RET1 –domain PD1 –lib_cells {SCL9T_ZPR_X2}

map_retention_clamp_cell {RET1} –domain PD1

–clock_clamp_lib_cells {SCL9T_ISOT1_X1} # green isolation in diagram

-async_clamp_lib_cells {SCL9T_ISOT2_X1} # orange isolation in diagram

find_objects –expand_to_bits
• find_objects can return a single object for a bus or a list of individual bits

• This was possible before by using patterns like “xyz\[*\]” to return a list of individual bits

• In 4.0, this process has been made easier by adding an “-expand_to_bits”
option

• When set true, the individual bits will always be returned
• When false (or not set), the pre-4.0 behavior will apply

• Whether the individual bits are returned or the full bus is returned can affect the
precedence of this list in other commands

• Example : set_isolation ISO1 –elements [find_objects ….]
• In the elements list, bits will have higher precedence than the full bus

Find_objects . –object_type port Return Value

-pattern {pmda\[*\]} {pmda[1] pmda[0]}

-pattern {pmda\[*\]} -expand_to_bits {pmda[1][0] pmda[1][1] pmda[0][1] pmda[0][0]}

Examples of Precedence Updates

• set_retention

• set_retention with –no_retention now has precedence over set_retention
without –no_retention

• set_port_attributes –driver_supply/-receiver_supply

• If after applying the precedence rules above, the predefined port attributes
UPF_receiver_supply or UPF_driver_supply are defined on a given port using both
hierarchical and non-hierarchical names then the hierarchical name shall take precedence.

• Composite types
• When determining precedence, composite data types are treated as a multibit signal. A

record field or array index of a composite data type referred to explicitly by name is also
treated as a part of the multibit signal.

• set_design_attributes -is_hard_macro|-is_soft_macro|-
is_refinable_macro

• If the macro has multiple -is_*_macro attributes set, then -is_hard_macro has highest
precedence, followed by -is_soft_macro

*IEEE Std. 1801 -2024

set_port_attributes -feedthrough

• In 3.1, the semantics around multiple feedthrough groups was unclear.

• In 4.0:
• set_port_attributes –ports {port_list} –feedthrough feedthrough_name

• All ports connected with the UPF_feedthrough attribute set to the same
feedthrough name, are defined as connected

• Example:
• The following code defines two separate feedthrough groups: X that includes a, b and c, and Y

that only contains e and f.
set_port_attributes –ports {a b} –feedthrough X

set_port_attributes –ports {c} –feedthrough X

set_port_attributes –ports {e f} –feedthrough Y

-feedthrough without a “feedthrough_name” provides backward compatibility

set_port_attributes –ports {g h} –feedthrough

Naming Updates

• Clarify what character should be used in UPF to specify the generate
block delimiter

• In the design flow generate blocks are unique, for simulation they create a hierarchy but for
implementation they don’t. The naming style also can differ based on tools settings.

• In 4.0, the LRM was updated to define a single style that should be used in the UPF

• generate block delimiter character: A special character used in composing names containing generate
block labels. The generate block delimiter character is a dot (.). *

• New Library naming
• When referencing a model in a command argument, its name may be prefixed by its library name

followed by a dot ("."). This limits the effect of a command to the particular version of that model
compiled into the specified library. A model name specified with the "<library>.<model>" syntax is
considered a simple name (5.3.3.2)*

*IEEE 1801-2024 – IEEE Standard for Design and verification of Low-Power - Adapted and reprinted with

permission from IEEE. Copyright IEEE 2024. All rights reserved.

Beyond 1801-2024
• 1801-2024 major features were the response to new technologies

and design methodologies

• Beyond 1801-2024
• Continued innovation on mixed signal design and interfacing

• Enable supply networks to carry information about power generation and consumption

• Bi-directional supply ports

• Features to improve static checking of designs with mixed analog/digital components

• Power modeling in the context of mixed signal integrations

• Information model improvements beyond SV and VHDL

• Improvements to support new technology cells

• Ease of use/Ease of specification improvements

2025 DVCon US Related Papers

• [1082] Refinable Macros and Terminal Boundaries in UPF 4.0: Empowering
Soft IPs of the Future

• Amit Srivastava, Synopsys Inc;

• [1127] Applications for UPF HDL Supply Tunneling in Mixed Signal Design
• Daniel Cross, Cadence Design Systems

• [1136] Future Proofing Power Intent Specification through Unified Power
Format 4.0 for Evolving Advanced State Retention Strategies

• Lakshmanan Balasubramanian, IEEE, ACM & Texas Instruments (India) Pvt. Ltd.;
• Rick Koster, SIEMENS EDA;

• [1034] What’s New in IEEE 1801 and Why you Need to Know Now?
• Progyna Khonkdar, Cadence Design Systems

https://dvcon-proceedings.org/document/refinable-macros-and-terminal-boundaries-in-upf-4-0-empowering-soft-ips-of-the-future/
https://dvcon-proceedings.org/document/refinable-macros-and-terminal-boundaries-in-upf-4-0-empowering-soft-ips-of-the-future/
https://dvcon-proceedings.org/document/applications-of-supply-tunneling-in-unified-power-format-4-0-for-mixed-signal-design/
https://dvcon-proceedings.org/document/future-proofing-power-intent-specification-through-unified-power-format-upf-4-0-for-evolving-advanced-state-retention-strategies/
https://dvcon-proceedings.org/document/future-proofing-power-intent-specification-through-unified-power-format-upf-4-0-for-evolving-advanced-state-retention-strategies/
https://dvcon-proceedings.org/document/whats-new-in-ieee-1801-and-why/

Questions

	Slide 1: Introduction of IEEE 1801-2024 (UPF4.0) improvements for the specification and verification of low-power
	Slide 2: IEEE Disclaimers
	Slide 3: Agenda
	Slide 4: Introductions/Acknowledgements
	Slide 5: Unified Power Format (UPF)
	Slide 6: Evolution of the Standard
	Slide 7: UPF 4.0 – Major Goals
	Slide 8: Where to get the IEEE 1801-2024 Spec
	Slide 9: Summary of Change Topics
	Slide 10: Command/Option Change Summary
	Slide 11: New feature for UPF 4.0: interconnect between UPF supplies and arbitrary HDL types
	Slide 12: Motivation for adding to the standard
	Slide 13: New concepts
	Slide 14: VCMs
	Slide 15: Example Situation in which to use VCMs
	Slide 16: Tunneling
	Slide 17: VCMs and HDL Tunneling Paper
	Slide 18: UPF Library
	Slide 19: Automatic Selection of VCM by net/data type
	Slide 20: Commands and Option Changes
	Slide 21: Table VCM Examples
	Slide 22: Function VCM Example
	Slide 23: Model VCM Example
	Slide 24: Advantages of Functions over Modules
	Slide 25: Advantages of Modules over Functions
	Slide 26: List VCM Example
	Slide 27: Making Connections with VCMs
	Slide 28: Refinable Macros and Terminal Boundaries in UPF 4.0: Empowering Soft IPs of the Future
	Slide 29: Refinable Macros in UPF 4.0
	Slide 30: Motivation: Challenges with SIPs in Bottom-Up Verification
	Slide 31: Why Soft Macros Fall Short for Bottom-Up Verification?
	Slide 32: Refinable Macros in UPF 4.0
	Slide 33: Marking IPs as Refinable Macros
	Slide 34: Implementation UPF : Enforcing Safe Refinements
	Slide 35: Practical Example: Refinable Macros in Action
	Slide 36: Conclusion: Empowering Soft IPs of the Future
	Slide 37: Retention Modeling in UPF 4.0
	Slide 38: Future Proofing Retention in UPF 4.0
	Slide 39: Motivation
	Slide 40: Retention Overview of changes
	Slide 41: 4.0 new retention options
	Slide 42: Retention Waveform Example
	Slide 43: Async_set_reset_effect
	Slide 44: Additional Changes for retention
	Slide 45: Agenda
	Slide 46: Virtual Supplies & Equivalence
	Slide 47: Virtual Supplies, Supply Sets and Ports
	Slide 48: Case1: Virtual Supply used to model functionally equivalent supplies
	Slide 49: Virtual Supply UPF code
	Slide 50: Case2 : Virtual supply to model external supplies
	Slide 51: Virtual Equivalence
	Slide 52: Understanding Equivalence
	Slide 53: Agenda
	Slide 54: Details on select topics
	Slide 55: Support for set/reset on Latch Isolation
	Slide 56: map_retention_clamp_cell
	Slide 57: find_objects –expand_to_bits
	Slide 58: Examples of Precedence Updates
	Slide 59: set_port_attributes -feedthrough
	Slide 60: Naming Updates
	Slide 61: Beyond 1801-2024
	Slide 62: 2025 DVCon US Related Papers
	Slide 63: Questions

