

Integration Verification of Safety Components in Automotive Chip Modules

Holger Busch

Infineon Technologies AG

1

2

3

4

5

6

- Introduction
- Formal-Property-Checking Approach
- Structural Analyses
- Automatic Integration Checks
- Experience

Summary

Questions

1

3

4

5

6

Introduction

Structural Analyses

Automatic Integration Checks

Experience

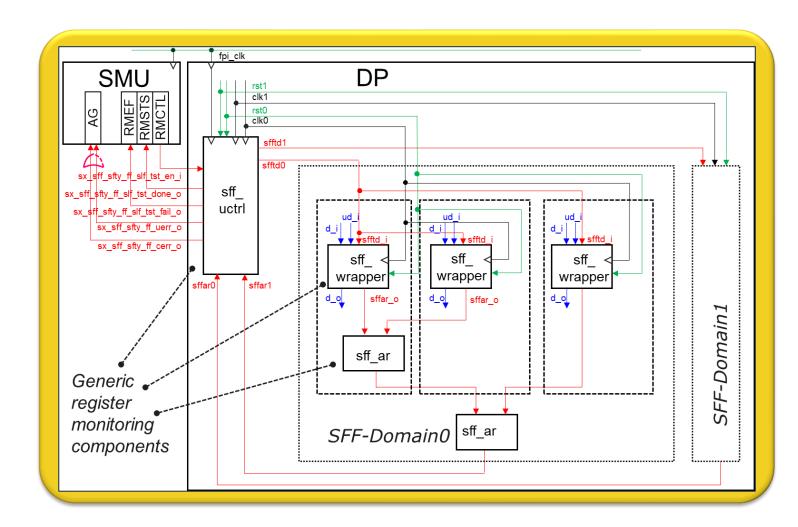
Summary

Questions

Introduction

- Safety requirements: prevent failure modes by random faults
 - Error detection: raise error flag
 - Alarm reaction: drive system into safe state
- HW and/or SW safety mechanisms
 - Redundancy + comparison
 - Read-back + comparison
 - Configurable alarm reaction
- Safety verification objective
 - Evidence that safety mechanism yields diagnostic coverage
 Automotive Safety Integrity Level D: detect 99% of all single point faults

Introduction (1)

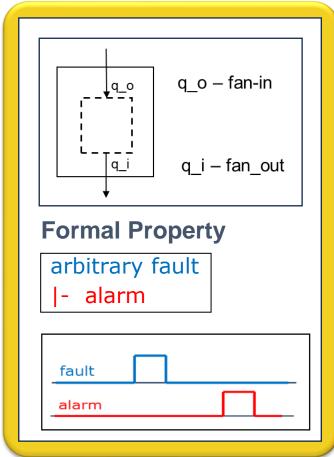

- Safety verification approaches
 - Fault simulation: specialized tool
 - Functional simulation: forcing signal to inverted or constant value
 - Formal-Property-Checking: formal fault injection by signal cutting + fault assumption

Introduction (2)

- HW-safety mechanism for registers (SFF – Safety-Flip-Flop)
 - Highly configurable safety library components
- Integration in DP (Design Part)
 - Replacement of previously unprotected registers by library components and wiring of test and alarm signals
 - Insertion of safety controller and connection to Safety-Management Unit

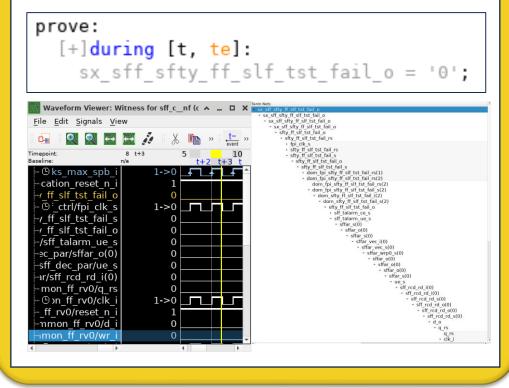
1

Introduction


Formal-Property-Checking Approach 2 3 **Structural Analyses** 4 **Automatic Integration Checks** 5 Experience 6 Summary Questions

Formal-Property-Checking Approach

- Instrument model: cut signals
- Provide pre-defined formal safety properties:
 - Error implies alarm
 - No error implies no alarm
 - Test activation causes alarm as expected
- Enhance functional properties:
 - Functional deviation implies alarm



Formal-Property-Checking Approach (1)

- Benefit:
 - Exhaustive coverage of all potential faults
- Bottleneck:
 - Module complexity
 - Debugging of proof failures
 - Design familiarity
 - Tool expertise
- Experience:
 - Library components correct
 - Bugs by wrong integration: structural root cause

Debugging:

Tracing through deep instance-hierarchy

Formal-Property-Checking Approach (2)

- New Approach:
 - 1. Exhaustive formal verification of library components in parameterizable test-architecture using actual configurations
 - Structural integration checks of library components in modules
 ➢No formal proofs required

1

3

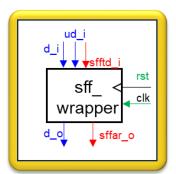
Introduction

Structural Analyses

4 Automatic Integration Checks
5 Experience
6 Summary
7 Questions

Structural Analyses

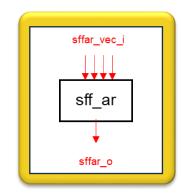
• Clock and reset domains


A B		С	D		E	F	G
no	clk	par_clkL	sel		en	clk0_diff	uctrl_clk_en
0clocks_0/clk_gate_2/cl	k_o	1		clk_ga	ate_en_i(0)	0	-1
1clocks_0/clk_gate_1/cl	k_o	2		(s_spl	o_dft_ctrl_i	2	-1
2 sx_clocks_clks_max_sp	ob_i	-1				2	-1
A B		С	D	Е			
no	rst	par_rstL	sel	en			
0 sx_reset_application_rese	t_n_i	-1					
1 sx_reset_system_reset_n	i	-1					

Structural Analyses (1)

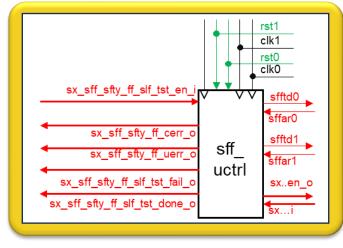
- Safety registers
 - Protection method
 - Data width
 - Testability
 - Alarm connectivity

А	В	С	D	F	Н
no	signal	wrp_no	type	width	sfr_bf
5	_oven5_s	6	DED	1	OVCENABLE.OVEN5
6	ble_god_s	6	DED	1	OVCENABLE.GOD
7	0_edav_s	7	DED	1	PRDCFG0.EDAV


А	В	С	D	Е	F	G	Н	I	J	U	V	Х
no	wrp	par_comp	clk_no	rst_no	ctrl_fo	ctrl_fi	ar_fo	pmeth_g	sff_ste	dw	rcw	pdw
6		int_ubs_sfr		0	3	3	5	2	true	7	4	7
71	et_prdcfg0	int_ubs_sfr	0	0	3	3	5	2	true	32	6	32

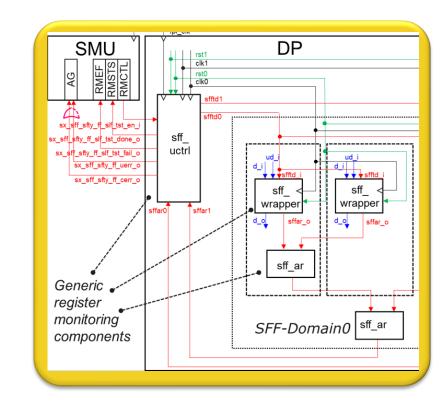
Structural Analyses (2)

- Alarm reductors
 - Protection method
 - Alarm connectivity


А	В	С	D	Е	F	
no	ar	par_comp	ctrl_fo	ar_fo	pmeth	
4	r_sfr/sffar1	int_ubs_sfr	2	-1	2	
5	r_sfr/sffar2	int_ubs_sfr	3	-1	2	

Structural Analyses (3)

- Controller
 - Test support
 - Domains
 - Clock relations
 - Test connectivity
 - Alarm connectivity
 - Interface to SMU


А	В		С		D	Е		F	G	Н		M
no	u	ctrl p	ar_co	mp c	lk_no	rst_no	pm	eth_g	ste_g	top_g	clks_	diff_g
0	st_sff_u	ctrl p	wr_uc	W	0	0		2	true	true		8'h0
Α	В	(С	D	Е	F		G	1		J	K
no	ctrl	par_	comp o	clk_no	rst_no	o uctrl_	no	dom_n	o clk_	_diff f_p	ometh_	g ste_g
1	dom_ctrl	sff_u	ictrl	0) (C	0		1	0		2 true
2	dom_ctrl	sff_u	ıctrl	0) ·	1	0		2	0		2 true

Structural Analyses(4)

- Connectivity of library components
 - Clock domains
 - Reset domains
 - Test control
 - Alarms
- Data connectivity
 - Localization of registers specified to be protected
- ➢ Base technology
 - Efficient functions for transitive fan-in determination

1

2

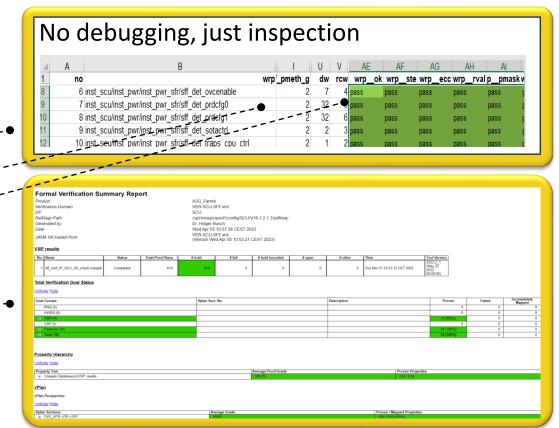
3

Introduction

- Formal-Property-Checking Approach
 - Structural Analyses

Automatic Integration Checks
Experience
Summary
Questions

Automatic Integration Checks


- "Just" evaluation of extracted structural data
- Compatibility of configuration parameters of connected components
 - Protection
 - Self-testability
 - Domain-controllers
 - Synchronization
- Connectivity
 - Clock and reset inputs
 - Test enabling
 - Alarms in domains and global

Automatic Integration Checks (1)

- Automatic integration verification flow
 - Collection of RTL libraries
 - Design compilation
 - Location of library components
 - Extraction SFF-data
- Result tables
 - Extraction data
 - Check results •
- Report Generation •

1

2

3

4

5

6

Introduction

- Formal-Property-Checking Approach
 - Structural Analyses
 - Automatic Integration Checks

Experience

Summary

Questions

Experience

- More than 100 module instances of MC product automatically verified
- Automatic compilation works for almost all modules
 - Manual set-up adjustment in few very specific cases
- Automatic integration checks in few seconds to minutes
- Integration bugs caused by manual wiring or configuration
- In case of findings:
 - No debugging required: Result tables with direct references to extraction data
 - Easy correction
 - No additional findings by formal-property checks

1

2

3

4

5

6

Introduction

- Formal-Property-Checking Approach
- Structural Analyses
- Automatic Integration Checks
- Experience

Summary

Questions

Summary

- New integration verification flow:
 - 1. Exhaustive formal library verification-for reduced test-architectures
 - 2. Fast automatic structural integration verification for modules
 - 3. Representative limited checks by sub-system or SoC-simulation
- Benefits
 - Efficiency
 - Ease-of-use
 - No expert knowledge for set-up, execution, root-cause analysis
 - Comprehensiveness
 - Uniformity
 - Substantial efforts saved

1

2

3

4

5

6

Introduction

- Formal-Property-Checking Approach
- Structural Analyses
- Automatic Integration Checks
- Experience

Summary

Questions

Thank You!

Questions ?

