5005 DUMAREY

DESIGN AND VERIEICATION ™

DVLCOIN

CONFERENCE AND EXHIBITION

MUNICH, GERMANY
OCTOBER 14-15, 2025

Integrating SystemC TLM into FMI 3.0
Co-Simulations with an Open-Source Approach

A. M. Albu, G. Pollo, A. Burrello, D. J. Pagliari, C. Tesconi,
L. Panaro, D. Soldi, F. Autieri, S. Vinco

Politecnico di Torino — Dumarey Group ()

Motivation

* Growing complexity and heterogeneity of modern systems
e Cosimulation as a winning strategy
x Definition of custom ad-hoc integration strategies
v'Integration standards

MECHQNICAL HARDWARE ELECTRICAL
PHYSICAL SOF'IE‘\‘NARE AN:LOG
* Functional Mockup Interface (FMI)
* Widely used in control systems and system dynamic EChodehl

THERMAL FLUDIC POWER

* Not fully supported in HW-SW co-design flows etc.

Goal: FMI + SystemC TLM

* SystemC TLM excellent for HW/SW * FMI lacks SystemC TLM support
* Limited interoperability with other * Some solutions proposed for RTL

.

* Goal: enable seamless integration of SystemC TLM into FMI-based
co-simulation workflows

* Fully open-source and standard-compliant

* No modifications of the initial SystemC TLM code
O_ SYSTEMC
TLM

domains ' |

FMI standard

* Developed to allow co-simulation with a standardized
interface

* Encapsulation of models into self-contained
components

Functional Mockup Units, FMUs

An XML-based model description file

Platform-specific binary files

Executable must comply with the defined FMI API

FMU

modelDescription.xml
/4

()

Binary file (.dll) <03

- J

.)
Optional resources

FMI standard

e Subset of API: e Co-simulation algorithm:
e fmi3Instantiate
* Creates a new instance of an FMU fmi3Instantiate
e fmi3SetXXX /fmi3GetXXX repeat many times{
* Set/Get the value of a variable (XXX = type) fmi3SetXXX
 fmi3DoStep fmi3DoStep
e Advance simulation by a specific time interval fmi3GetXXX
« fmi3Freelnstance }
* Release allocated resources fmiBFr‘eeInstanceV

(2025

DESIGN AND VERIEICATION ™

SystemC TLM (I

e Extension of SystemC standard

* Higher-level transaction-based TLVHINTTIATOR
communication t1m initiator
* Interface supporting blocking and non- _socket b_transport
blocking communication (payload)

* Focus on blocking t1m target

* Initiator directly calls the target b_transport _socket

method
* Processes the request immediately TLM TARGET

(2025

DESIGN AND VERIEICATION ™

A. DESIGN ANALYSIS

tlm_target
_socket

TLM TARGET

¥

model
Description.xml

(2025

DESIGN AND VERIEICATION ™

DVCCON

CONFERENCE AND EXHIBITION

Design Analysis

e Scan data structure uploaded to payload
e Detect which fields are read/written

* Map type onto FMI types

* Generate modelDescription.xml file

<fmiModelDescription fmiVersion="3.0" modelName="tlm"/>

<ModelVariables>

<Int32 name="fmi data in" wvalueReference="1"
causality="input" start="0"/>
<Int32 name="fmi_ result" wvalueReference="2"

causality="output"/>
</ModelVariables>

</fmiModelDescription>

modelDescription.xml

—

struct payload {
2 sc_dt::sc_int<32> data in;
sc_dt::sc _int<32> data_out; };

s

tlm_target
_socket

TLM TARGET

(2025

DESIGN AND VERIEICATION ™

DVCCON

CONFERENCE AND EXHIBITION

A. DESIGN ANALYSIS B. FMI WRAPPER GENERATION

tlzgzigfet set_and_send I enr) WRAPPER
- TLMINITIATOR | [<— |
retrieve fmi3SetXXX()
TLM TARGET € _result fmi3doStep()
a C fmi3GetXXX()
-
Q8]
C
4_J
' o
model
. .. TLM TARGET
Description.xml

(2025

DESIGN AND VERIEICATION ™

ON

D EXHIBITION

TLM Subsystem Generation

e TLM initiator

 tlm _initiatior socket for handling communication
with TLM target send_data

TLM INITIATOR
* Manages communication with the target —_—

« sending thread process 2
» Repeatedly sets the payload fields 2
* Invokes the b_transport primitive of the target o
* send_data function Z'

* Public, can be invoked by top level
* Wakes up the sending thread process

TLM TARGET

(2025

DESIGN AND VERIEICATION ™

DVCCON

CONFERENCE AND EXHIBITION

TLM Subsystem Generation

* TLM top level

* |nstantiates and binds initiator and target

* Makes TLM data updatable and visible + allows TLM
activation

 set_and_send function
* Receives as parameter data to be transferred to the target
* Copies it to the initiator
* Invokes the send_data function to start communication
* retrieve_result function
e Collects target output once the transaction has completed

port

b_trans

TLM INITIATOR

TLM TARGET

set_and_send

s

retrieve
_result

s

(2025

DESIGN AND VERIEICATION ™

DVCCON

CONFERENCE AND EXHIBITION

struct WRAPPER STRUCT {
Top *top; // Pointer top—-level module
sc_time current_time; // Current simulation time
fmi3Int32 fmi_data_in; // Input data from FMI domain
fmi3Int32 fmi_result; // Output data to FMI domain

* FMI wrapper f

* Bridge between FMI and TLM set_and_send I en i WWRAPPER

e Coordinate execution TLM INITIATOR c
retrieve fmi3SetXXX()

Wrapper generation

= B

* Manage data exchange

p _result fmi3doStep()

* Declares: § C fmi3GetXxXX()
* Pointer to the TLM top level 5
* FMI interface variables defined in the :|

XML model description

e sc_time variable for simulation time TLM TARGET

(2025

DESIGN AND VERIEICATION ™

ON

D EXHIBITION

struct WRAPPER_STRUCT {
Top *top; // Pointer top—-level module
sc_time current_time; // Current simulation time
fmi3Int32 fmi data in; // Input data from FMI domain
fmi3Int32 fmi_result; // Output data to FMI domain

b

* Instantiation and initialization "

FMI APl implementation

(o IV SR R R S

functions FMI WRAPPER
* Declare and instantiate the top level TLM INITIATOR
entity £mi3setXxX ()
* Issuea sc_start(SC _ZERO TIME) to Fmi3GetXXX()
construct SystemC TLM objects

e Setter and getter functions

* Copy or retrieve values of FMI variables
to local variables

TLM TARGET

(2025

DESIGN AND VERIEICATION ™

DVCCON

CONFERENCE AND EXHIBITION

FMI APl implementation

1 fmi3DoStep (fmi3Instance instance,
2 fmi3Float64 currentCommunicationPoint,
3 fmi3Float64d communicationStepSize, ...
4 fmi3Boolean* earlyReturn,
. . L. . . 5 fmi3Float64« lastSuccessfulTime) ({
* Instantiation and initialization :
. 7 WRAPPER_STRUCT+ fmu = static cast<WRAPPER_STRUCT#*> (
functions < instance); - |
. . 8 sc_time step_size(communicationStepSize, SC_SEC);
* Declare and instantiate the top level 9 | |
. 10 fmu—->top->set_and_send(static_cast<int32_t> (fmu—>
entity <y fmi_data_in));
11 _ rt (_size);
* Issue a sc_start(SC_ZERO_TIME) to oo
construct SystemC TLM objects 13 int32.t result;
14 fmu->top->retrieve_result (result);
. 15 fmu—>fmi_ result = result;
e Setter and getter functions 16
. . 17 sc_time next_time;
* Copy or retrieve values of FMI variables 18 if (! (rearlyReturn))
: 19 next_time = fmu->current_time + step_size;
to |Oca| Va”ables 20 else next_time = fmu->current_time + (%
o . <+ lastSuccessfulTime) ;
® 'le3dOStep functlon 21 fmu—->current_time = next time;
22
* Advance simulation time 23 return fmi30K;
24}

(2025

DESIGN AND VERIEICATION ™

DVCCON

CONFERENCE AND EXHIBITION

struct WRAPPER_STRUCT {
Top =*top; // Pointer top—-level module
sc_time current_time; // Current simulation time
fmi3Int32 fmi_data_in; // Input data from FMI domain
fmi3Int32 fmi_result; // Output data to FMI domain

o IV S S

}s 1 fmi3DoStep (fmi3Instance instance,
2 fmi3Float64 currentCommunicationPoint,
3 fmi3Float64d communicationStepSize, ...
4 fmi3Boolean* earlyReturn,
5 fmi3Float64« lastSuccessfulTime) ({
6
7 WRAPPER_STRUCT+ fmu = static cast<WRAPPER_STRUCT#*> (
set_and_send I enr) WRAPPER 5 instance) ;
TLM |N|T|ATOR C g sc_time step_size(communicationStepSize, SC_SEC);
-FminoS'tep() 10 fmu->top->set_and_send(static_cast<int32_t> (fmu->
- — fmi_data_in));
% 11 sc_start (step_size);
Q 12
2 13 int32_t result;
© 14 fmu->top->retrieve_result (result);
[: _
D 15 fmu—>fmi_ result = result;
| 16
© 17 sc_time next_time;
18 if (! (xearlyReturn))
TLM TARGET 19 next_time = fmu->current_time + step_size;
20 else next_time = fmu->current_time + (%
— lastSuccessfulTime) ;
21 fmu—->current_time = next time;
22
23 return fmi3O0K;
24}

(2025

DESIGN AND VERIEICATION ™

DVCCON

CONFERENCE AND EXHIBITION

struct WRAPPER_STRUCT {
Top =*top; // Pointer top—-level module
sc_time current_time; // Current simulation time
fmi3Int32 fmi_data_in; // Input data from FMI domain
fmi3Int32 fmi_result; // Output data to FMI domain

o IV S S

}s 1 fmi3DoStep (fmi3Instance instance,
2 fmi3Float64 currentCommunicationPoint,
3 fmi3Float64d communicationStepSize, ...
4 fmi3Boolean* earlyReturn,
5 fmi3Float64« lastSuccessfulTime) ({
6
7 WRAPPER_STRUCT+ fmu = static cast<WRAPPER_STRUCT#*> (
FMI WRAPPER — instance) ;
TLM |N|T|ATOR g sc_time step_size(communicationStepSize, SC_SEC);
retrieve -FminoS'tep() 10 fmu->top->set_and_send(static_cast<int32_t> (fmu->
«— fmi_data_in));
—r‘eSUJ‘t 11 sc_start (step_size);
- 2
13 int32_ t result;
14 fmu->top->retrieve_result (result) ;
15 fmu—>fmi_ result = result;
16
17 sc_time next_time;
18 if (! (xearlyReturn))
TLM TARGET 19 next_time = fmu->current_time + step_size;
20 else next_time = fmu->current_time + (%
— lastSuccessfulTime) ;
21 fmu—->current_time = next time;
22
23 return fmi3O0K;
24}

(2025

DESIGN AND VERIEICATION ™

DVCCON

CONFERENCE AND EXHIBITION

A. DESIGN ANALYSIS B. FMI WRAPPER GENERATION

C. SIMULATION
FMU
modelDescription.xml
tlrggtctigfet set_and_send EMI WRAPPER P
- TLMINITIATOR | |[<— 4 — R
. , Binary file:
retrieve fmi3SetXXX() TLM svstem + EM
TLM TARGET g _result fmi3doStep() Syste
: wrapper
o C fmi3GetXXX() L)
= i
C
+
' o
model
.. TLM TARGET
Description.xml

(2025

DESIGN AND VERIEICATION ™

ON

D EXHIBITION

tlm_target
_socket

TLM TARGET

AUTOMATED WITH PYTHON TOOL + JSON CONFIG FILE

FMU

modelDescription.xml

'r

(" i i
Binary file:
TLM system + FMI
wrapper
-

(2025

DESIGN AND VERIEICATION ™

DVCCON

CONFERENCE AND EXHIBITION

12C & ECC FMU generation

DESIGN 12C ECC
. MODULES 4 1
e 2 SystemC TLM designs
RO, " PROCESSES 5 3
[J
Simulation tlme. mcreas.es wit LINES OF CODE 1,072 1311
number of FMI interactions
) _ PAYLOAD FIELDS |7 10
* And thus length of simulated time
« Computational and communication doStep (#)
overhead DESIGN | TARGET | 250 1,000 | 10,000
* Allowed to cosimulate the wrapped - 114 520 117
TLM DUMAREY Software-in-the-Loop 2C 'me X X /X
(SIL) environment Memory | 22.82x 22.41x 21.45x
* Stable memory overhead Time 1.02x | 636x | 10.11x
ECC
Memory | 14.52x 15.01x 12.83x

(2025

DESIGN AND VERIEICATION ™

DVCCON

CONFERENCE AND EXHIBITION

. : . - | N
Cosimulating with FMUs =
B el @
 Single-pedal EV implemented in Simulink ° Ak T J
* Exported as an FMU using the CATIA FMI-Kit S = — -
* Implemented the Electronic Control Unit (ECU) - — e —

in SystemC TLM

* Integrated through a FMI master

* Vehicle speed response shows appropriate
dynamic behavior

* Generated FMUs are fully compliant with the
FMI standard

—— Torque Request (Nm)

1004 — Vehicle Speed

50 +

Speed (km/h) Torque (Nm)

0 5 10 15 20 25 30 35
Time (s)

(2025

DESIGN AND VERIEICATION ™

Concluding remarks

* Open-source automated framework for integrating SystemC TLM
models with the FMI standard

e Automatic generation of FMU and non-intrusive integration
* No modifications to the SystemC TLM code

* Experimental results handled different designs efficiently

* Future work will focus on extending support for
* Additional SystemC TLM features + mixed RTL and TLM
* Integration with Instruction Set Simulator (ISS) based environments

! hank, pou /

ﬁ)

p ‘?__:f"' Politecnico DUMAREY ace,era

SYSTEMS INITIATIVE

