
Integrating SystemC TLM into FMI 3.0
Co-Simulations with an Open-Source Approach

A. M. Albu, G. Pollo, A. Burrello, D. J. Pagliari, C. Tesconi, 
L. Panaro, D. Soldi, F. Autieri, S. Vinco

Politecnico di Torino – Dumarey Group



Motivation

• Growing complexity and heterogeneity of modern systems 
• Cosimulation as a winning strategy 

Definition of custom ad-hoc integration strategies

Integration standards 

• Functional Mockup Interface (FMI)
• Widely used in control systems and system dynamic

• Not fully supported in HW-SW co-design flows



Goal: FMI + SystemC TLM

• Goal: enable seamless integration of SystemC TLM into FMI-based 
co-simulation workflows
• Fully open-source and standard-compliant

• No modifications of the initial SystemC TLM code
TOOL

SYSTEMC 
TLM

• FMI lacks SystemC TLM support
• Some solutions proposed for RTL

• SystemC TLM excellent for HW/SW 
• Limited interoperability with other 

domains



FMI standard

• Developed to allow co-simulation with a standardized 
interface 

• Encapsulation of models into self-contained 
components 
• Functional Mockup Units, FMUs

• An XML-based model description file 

• Platform-specific binary files 

• Executable must comply with the defined FMI API

FMU

modelDescription.xml

Binary file (.dll)

Optional resources

…



FMI standard

• Subset of API: 
• fmi3Instantiate

• Creates a new instance of an FMU

• fmi3SetXXX / fmi3GetXXX
• Set/Get the value of a variable (XXX = type)

• fmi3DoStep
• Advance simulation by a specific time interval

• fmi3FreeInstance
• Release allocated resources

• Co-simulation algorithm:

fmi3Instantiate

repeat many times{

fmi3SetXXX

fmi3DoStep

fmi3GetXXX

}

fmi3FreeInstance



SystemC TLM

• Extension of SystemC standard

• Higher-level transaction-based 
communication
• Interface supporting blocking and non-

blocking communication

• Focus on blocking
• Initiator directly calls the target b_transport

method

• Processes the request immediately

TLM INITIATOR

TLM TARGET

tlm_initiator
_socket

tlm_target
_socket

b_transport
(payload)



A. DESIGN ANALYSIS

TLM TARGET

tlm_target
_socket

model
Description.xml



Design Analysis

• Scan data structure uploaded to payload
• Detect which fields are read/written

• Map type onto FMI types

• Generate modelDescription.xml file TLM TARGET

tlm_target
_socket

modelDescription.xml



A. DESIGN ANALYSIS

TLM TARGET

TLM INITIATOR
FMI WRAPPER

fmi3SetXXX()
fmi3doStep()
fmi3GetXXX()

b
_
t
r
a
n
s
p
o
r
t

set_and_send

retrieve
_result

B. FMI WRAPPER GENERATION

TLM TARGET

tlm_target
_socket

model
Description.xml



TLM Subsystem Generation

• TLM initiator
• tlm_initiatior_socket for handling communication 

with TLM target 

• Manages communication with the target
• sending_thread process

• Repeatedly sets the payload fields 

• Invokes the b_transport primitive of the target

• send_data function
• Public, can be invoked by top level

• Wakes up the sending_thread process
TLM TARGET

TLM INITIATOR

b
_
t
r
a
n
s
p
o
r
t

send_data



TLM Subsystem Generation

• TLM top level
• Instantiates and binds initiator and target

• Makes TLM data updatable and visible + allows TLM 
activation
• set_and_send function 

• Receives as parameter data to be transferred to the target

• Copies it to the initiator

• Invokes the send_data function to start communication

• retrieve_result function 
• Collects target output once the transaction has completed

TLM TARGET

TLM INITIATOR

b
_
t
r
a
n
s
p
o
r
t

set_and_send

retrieve
_result



Wrapper generation

• FMI wrapper
• Bridge between FMI and TLM

• Coordinate execution

• Manage data exchange

• Declares: 
• Pointer to the TLM top level

• FMI interface variables defined in the 
XML model description

• sc_time variable for simulation time TLM TARGET

TLM INITIATOR
FMI WRAPPER

fmi3SetXXX()
fmi3doStep()
fmi3GetXXX()

b
_
t
r
a
n
s
p
o
r
t

set_and_send

retrieve
_result



FMI API implementation

• Instantiation and initialization 
functions
• Declare and instantiate the top level 

entity
• Issue a sc_start(SC_ZERO_TIME) to 

construct SystemC TLM objects 

• Setter and getter functions
• Copy or retrieve values of FMI variables 

to local variables

• fmi3doStep function
• Advance simulation time

TLM TARGET

TLM INITIATOR
FMI WRAPPER

fmi3SetXXX()
fmi3GetXXX()



FMI API implementation

• Instantiation and initialization 
functions
• Declare and instantiate the top level 

entity
• Issue a sc_start(SC_ZERO_TIME) to 

construct SystemC TLM objects 

• Setter and getter functions
• Copy or retrieve values of FMI variables 

to local variables

• fmi3doStep function
• Advance simulation time



TLM TARGET

TLM INITIATOR
FMI WRAPPER

fmi3doStep()

b
_
t
r
a
n
s
p
o
r
t

set_and_send



TLM TARGET

TLM INITIATOR
FMI WRAPPER

fmi3doStep()retrieve
_result



A. DESIGN ANALYSIS

TLM TARGET

TLM INITIATOR
FMI WRAPPER

fmi3SetXXX()
fmi3doStep()
fmi3GetXXX()

b
_
t
r
a
n
s
p
o
r
t

set_and_send

retrieve
_result

B. FMI WRAPPER GENERATION C. SIMULATION

FMU

modelDescription.xml

Binary file:
TLM system + FMI 

wrapper
TLM TARGET

tlm_target
_socket

model
Description.xml



A. DESIGN ANALYSIS

TLM TARGET

TLM INITIATOR
FMI WRAPPER

fmi3doStep()
fmi3SetXXX()
fmi3GetXXX()

b
_
t
r
a
n
s
p
o
r
t

set_and_send

retrieve
_result

B. FMI WRAPPER GENERATION C. SIMULATION

FMU

modelDescription.xml

Binary file:
TLM system + FMI 

wrapper
TLM TARGET

tlm_target
_socket

model
Description.xml

AUTOMATED WITH PYTHON TOOL + JSON CONFIG FILE



I2C & ECC FMU generation

• 2 SystemC TLM designs
• Simulation time increases with 

number of FMI interactions
• And thus length of simulated time 

• Computational and communication 
overhead 

• Allowed to cosimulate the wrapped 
TLM DUMAREY Software-in-the-Loop 
(SIL) environment

• Stable memory overhead

DESIGN I2C ECC

MODULES 4 1

PROCESSES 5 3

LINES OF CODE 1,072 1,311

PAYLOAD FIELDS 7 10 

doStep (#)

DESIGN TARGET 250 1,000 10,000

I2C
Time 1.14x 2.20x 4.17x

Memory 22.82x 22.41x 21.45x

ECC
Time 1.02x 6.36x 10.11x

Memory 14.52x 15.01x 12.83x



Cosimulating with FMUs

• Single-pedal EV implemented in Simulink
• Exported as an FMU using the CATIA FMI-Kit

• Implemented the Electronic Control Unit (ECU) 
in SystemC TLM

• Integrated through a FMI master
• Vehicle speed response shows appropriate 

dynamic behavior

• Generated FMUs are fully compliant with the 
FMI standard



Concluding remarks

• Open-source automated framework for integrating SystemC TLM 
models with the FMI standard
• Automatic generation of FMU and non-intrusive integration

• No modifications to the SystemC TLM code

• Experimental results handled different designs efficiently

• Future work will focus on extending support for
• Additional SystemC TLM features + mixed RTL and TLM

• Integration with Instruction Set Simulator (ISS) based environments



Thank you! 


