
Integrating Parallel SystemC Simulation
into Simics® Virtual Platform

Daniel Mendoza, UC Irvine and Intel Corporation
Ajit Dingankar, Intel Corporation

Zhongqi Cheng and Rainer Doemer, UC Irvine

© Accellera Systems Initiative 1

Overview
• What is Simics?
• Standard SystemC Simulation vs.

Out-of-Order Parallel SystemC Simulation
• Parallel SystemC Integration into Simics
• Experimental Results
• Conclusions

© Accellera Systems Initiative 2

Simics®
• Virtual Platform for modeling applications

– Pre-silicon software development
– Hardware validation
– BIOS regression testing

• Supports system modeling languages:
– C, C++
– Python
– DML
– SystemC

© Accellera Systems Initiative 3

Standard Sequential SystemC Simulation
• Reference: Accellera SystemC

– IEEE 1666-2011 standard
– Discrete Event Simulation (DES)

© Accellera Systems Initiative 4

10:1
10:2

10:3

20:5
20:4

20:6

30:7

0:0
T:Δth4th2 th3th1

Out-of-Order Parallel SystemC Simulation
• RISC Compiler and Simulator

– Recoding Infrastructure for SystemC
– Out-of-Order Parallel DES
– Orders of magnitude speedup (200x)
– Maximum compliance with IEEE std.
– Open Source (sponsored by Intel Corp.)

http://www.cecs.uci.edu/~doemer/risc.html

© Accellera Systems Initiative 5

10:1
10:2

10:3

20:5
20:4

20:6

30:7

0:0
T:Δth4th2 th3th1

RISC Tool Flow
• Input model automatically transformed into parallel model

– RISC compiler analyzes data and event conflicts
– Parallel model linked to RISC out-of-order parallel simulator

© Accellera Systems Initiative 6

RISC Compiler Target Compiler

RISC
SystemC
Library

systemc.h

Model.cpp

Segment Graph
Conflict Analysis

Source Code
Instrumentation

Input Model

Out-of-Order
Parallel

Simulation

systemc
_par.h

Model
_par.cpp

C++
Compiler

Instrumented Model Executable
Model

Segment Graph
• Parallel model based upon Segment Graph data structure

– RISC creates Segment Graph of input model
– Conflict Tables are inferred from Segment Graph
– Tables are passed to parallel simulator for fast scheduling decisions

© Accellera Systems Initiative 7

Segment GraphSource Code Conflict Table

(Schmidt et al. 2018)

RISC Experimental Results
• Mandelbrot Renderer Simulation

– Highly parallel model that generates Mandelbrot frames
– 60 core Intel® Xeon Phi™ host
– Thread and data level parallelism
– Peak speedup with RISC is 212x [DAC'17]

© Accellera Systems Initiative 8

Parallel SystemC in Simics
• Replace Standard SystemC Kernel with RISC Kernel

© Accellera Systems Initiative 9

Communication between Simics and SystemC
• Simics expects data transfers between Simics and SystemC devices to happen via TLM2.0 gaskets

– Gaskets are SystemC modules that contain TLM2.0 sockets
– Distinct implementation for Simics-to-SystemC and SystemC-to-Simics gaskets

• TLM2.0 and TLM1.0 supported by RISC
• Simics-to-SystemC Communication

– Gaskets interface to special SystemC target socket or port

• SystemC-to-Simics Communication
– Initiator socket interfaces to gasket

© Accellera Systems Initiative 10

Simics VP
Processor

RISC
SystemC
Device

Simics
TLM-2.0
Gasket

Simics-to-SystemC Communication

© Accellera Systems Initiative 11

Simics Device

write(Simics_payload,0x1000);

TLM2.0 Gasket (SC_MODULE)

initiator_socket;

trigger_transaction() {
initiator_socket.b_transport(payload);

}

SystemC Device
target_socket;

b_transport(payload) {
. . .
}

Device location at 0x1000

Access a
device
mapped
at
0x1000

Simics Device

write(Simics_payload,0x1000);

TLM1.0 Gasket (SC_MODULE)

sc_port<sc_fifo>;

trigger_transaction() {
send_transaction.notify();
sc_start();

}

SC_THREAD() {
sc_port->write();

}

SystemC Device
sc_fifo;
sc_port<sc_fifo>;

SC_THREAD() {
sc_port->read();

}

11

Via TLM2.0:

Via TLM1.0:

SystemC-to-Simics Communication

© Accellera Systems Initiative 12
12

SystemC Device

initiator_socket;

SC_THREAD() {
initiator_socket.b_transport(payload);

}

TLM2.0 Gasket (SC_MODULE)

target_socket;

b_transport(payload) {
interface_simics();
. . .

}

Simics Device
Mapping

SystemC Device

sc_port<RISC Gasket>

SC_THREAD() {
prepare_payload();
sc_port->access(payload);

}

TLM1.0 Gasket (SC_CHANNEL)

access(payload) {
interface_simics();
. . .

}

Simics Device
Mapping

Via TLM2.0:

Via TLM1.0:

Experiments of Parallel SystemC in Simics
• Handshaking Mandelbrot Renderer

– SystemC Device reads coordinates from RAM device written by Simics Vacuum
platform and renders an image corresponding to the input coordinates

– 8 core Intel® Xeon® Processor E5-2670 (2.60GHz) and 60 core Intel® Xeon Phi™
host

© Accellera Systems Initiative 13

Standard
SystemC

Runtime

Standard
SystemC

CPU
Utilization

RISC

Runtime

RISC

CPU
Utilization

RISC

Speedup

of
cores

Efficiency

Simics 59.93s 99% 9.37s 641% 6.40x 8 80.0%

Without
Simics

394.2s 99% 7.9s 4902% 49.90x 60 83.2%

Experiments of Parallel SystemC in Simics
• Panorama Filter Application

– Inputs a number of images of the same panorama and attempts to remove the
people within the image (Azumi et al. 2012). Example Input:

© Accellera Systems Initiative 14

Experiments of Parallel SystemC in Simics
• Panorama Filter Application

– For each input Image, has a corresponding output image with people
“disappearing”

© Accellera Systems Initiative 15

Experiments of Parallel SystemC in Simics
• Panorama Filter Application

– Final output:

© Accellera Systems Initiative 16

Experiments of Parallel SystemC in Simics
• Panorama Filter Application features a Linux VP and PCI communication

– Use PCI to allow communication between a Linux-based VP and SystemC Device

© Accellera Systems Initiative 17

Simics Device Mapping

QSP x86 Virtual
Platform

DML
PCI

Device
SystemC Device

Experiments of Parallel SystemC in Simics
• Panorama Filter Application Results

– 8 core Intel® Xeon® Processor E5-2670 (2.60GHz)

© Accellera Systems Initiative 18

Standard
SystemC

Runtime

Standard
SystemC

CPU
Utilization

RISC

Runtime

RISC

CPU
Utilization

RISC

Speedup

of
cores

Efficiency

Simics 50.11s 77% 27.20s 141% 1.84x 8 23.0%
Without
Simics

73.42s 91% 49.47s 137% 1.48x 8 18.4%

Conclusions
• Two successful cases of a Simics simulation leveraging RISC
• Exhibits significant speedup
• Combination of RISC and Simics is feasible and valuable
• RISC can be used in a practical and realistic Simics simulation

environment

© Accellera Systems Initiative 19

Questions

© Accellera Systems Initiative 20

SystemC-to-Simics Device Communication
• initiator socket b_transport call interfaces to gasket

– SystemC-to-Simics gasket completes the TLM-2.0 transaction

© Accellera Systems Initiative 21

Simics-to-SystemC Device Communication
• TLM2.0 now available in RISC

– Simics-to-SystemC Gaskets interface to special SystemC target socket or port

© Accellera Systems Initiative 22

	Integrating Parallel SystemC Simulation�into Simics® Virtual Platform�
	Overview
	Simics®
	Standard Sequential SystemC Simulation
	Out-of-Order Parallel SystemC Simulation
	RISC Tool Flow
	Segment Graph
	RISC Experimental Results
	Parallel SystemC in Simics
	Communication between Simics and SystemC
	Simics-to-SystemC Communication
	SystemC-to-Simics Communication
	Experiments of Parallel SystemC in Simics
	Experiments of Parallel SystemC in Simics
	Experiments of Parallel SystemC in Simics
	Experiments of Parallel SystemC in Simics
	Experiments of Parallel SystemC in Simics
	Experiments of Parallel SystemC in Simics
	Conclusions
	Questions
	SystemC-to-Simics Device Communication
	Simics-to-SystemC Device Communication

