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Overview
• What is Simics?
• Standard SystemC Simulation vs. 

Out-of-Order Parallel SystemC Simulation
• Parallel SystemC Integration into Simics
• Experimental Results
• Conclusions
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Simics®
• Virtual Platform for modeling applications

– Pre-silicon software development
– Hardware validation
– BIOS regression testing

• Supports system modeling languages:
– C, C++
– Python
– DML
– SystemC

© Accellera Systems Initiative 3



Standard Sequential SystemC Simulation
• Reference: Accellera SystemC

– IEEE 1666-2011 standard
– Discrete Event Simulation (DES)
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Out-of-Order Parallel SystemC Simulation
• RISC Compiler and Simulator

– Recoding Infrastructure for SystemC
– Out-of-Order Parallel DES
– Orders of magnitude speedup (200x)
– Maximum compliance with IEEE std.
– Open Source (sponsored by Intel Corp.)

http://www.cecs.uci.edu/~doemer/risc.html
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RISC Tool Flow
• Input model automatically transformed into parallel model

– RISC compiler analyzes data and event conflicts
– Parallel model linked to RISC out-of-order parallel simulator
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Segment Graph
• Parallel model based upon Segment Graph data structure

– RISC creates Segment Graph of input model
– Conflict Tables are inferred from Segment Graph
– Tables are passed to parallel simulator for fast scheduling decisions
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RISC Experimental Results
• Mandelbrot Renderer Simulation

– Highly parallel model that generates Mandelbrot frames
– 60 core Intel® Xeon Phi™ host
– Thread and data level parallelism
– Peak speedup with RISC is 212x [DAC'17]
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Parallel SystemC in Simics
• Replace Standard SystemC Kernel with RISC Kernel
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Communication between Simics and SystemC
• Simics expects data transfers between Simics and SystemC devices to happen via TLM2.0 gaskets

– Gaskets are SystemC modules that contain TLM2.0 sockets
– Distinct implementation for Simics-to-SystemC and SystemC-to-Simics gaskets

• TLM2.0 and TLM1.0 supported by RISC
• Simics-to-SystemC Communication

– Gaskets interface to special SystemC target socket or port

• SystemC-to-Simics Communication
– Initiator socket interfaces to gasket
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Simics-to-SystemC Communication
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Simics Device

write(Simics_payload,0x1000);

TLM2.0 Gasket (SC_MODULE)

initiator_socket;

trigger_transaction() {
initiator_socket.b_transport(payload);

}

SystemC Device
target_socket;

b_transport(payload) {
. . . 
}

Device location at 0x1000

Access a 
device 
mapped 
at 
0x1000

Simics Device

write(Simics_payload,0x1000);

TLM1.0 Gasket (SC_MODULE)

sc_port<sc_fifo>;

trigger_transaction() {
send_transaction.notify();
sc_start();

}

SC_THREAD() {
sc_port->write();

}

SystemC Device
sc_fifo;
sc_port<sc_fifo>;

SC_THREAD() {
sc_port->read();

}
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Via TLM2.0: 

Via TLM1.0: 



SystemC-to-Simics Communication
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SystemC Device

initiator_socket;

SC_THREAD() {
initiator_socket.b_transport(payload);

}

TLM2.0 Gasket (SC_MODULE)

target_socket;

b_transport(payload) {
interface_simics();
. . .

}

Simics Device 
Mapping

SystemC Device

sc_port<RISC Gasket>

SC_THREAD() {
prepare_payload();
sc_port->access(payload);

}

TLM1.0 Gasket (SC_CHANNEL)

access(payload) {
interface_simics();
. . .

}

Simics Device 
Mapping

Via TLM2.0: 

Via TLM1.0: 



Experiments of Parallel SystemC in Simics
• Handshaking Mandelbrot Renderer

– SystemC Device reads coordinates from RAM device written by Simics Vacuum 
platform and renders an image corresponding to the input coordinates

– 8 core Intel® Xeon® Processor E5-2670 (2.60GHz) and 60 core Intel® Xeon Phi™ 
host
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Standard 
SystemC

Runtime

Standard 
SystemC 

CPU 
Utilization

RISC

Runtime

RISC

CPU 
Utilization

RISC

Speedup

# of 
cores

Efficiency

Simics 59.93s 99% 9.37s 641% 6.40x 8 80.0%

Without 
Simics

394.2s 99% 7.9s 4902% 49.90x 60 83.2%



Experiments of Parallel SystemC in Simics
• Panorama Filter Application

– Inputs a number of images of the same panorama and attempts to remove the 
people within the image (Azumi et al. 2012). Example Input:
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Experiments of Parallel SystemC in Simics
• Panorama Filter Application

– For each input Image, has a corresponding output image with people 
“disappearing”
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Experiments of Parallel SystemC in Simics
• Panorama Filter Application

– Final output:
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Experiments of Parallel SystemC in Simics
• Panorama Filter Application features a Linux VP and PCI communication

– Use PCI to allow communication between a Linux-based VP and SystemC Device
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Experiments of Parallel SystemC in Simics
• Panorama Filter Application Results

– 8 core Intel® Xeon® Processor E5-2670 (2.60GHz)
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Standard 
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Runtime

Standard 
SystemC 

CPU 
Utilization

RISC

Runtime

RISC

CPU 
Utilization

RISC

Speedup

# of 
cores

Efficiency

Simics 50.11s 77% 27.20s 141% 1.84x 8 23.0%
Without 
Simics

73.42s 91% 49.47s 137% 1.48x 8 18.4%



Conclusions
• Two successful cases of a Simics simulation leveraging RISC
• Exhibits significant speedup
• Combination of RISC and Simics is feasible and valuable
• RISC can be used in a practical and realistic Simics simulation 

environment 
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Questions
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SystemC-to-Simics Device Communication
• initiator socket b_transport call interfaces to gasket

– SystemC-to-Simics gasket completes the TLM-2.0 transaction
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Simics-to-SystemC Device Communication
• TLM2.0 now available in RISC

– Simics-to-SystemC Gaskets interface to special SystemC target socket or port
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