
“In-emulator” UVM++ randomized testbenches
for high performance functional verification

Adnan Hamid & David Kelf
Breker Verification Systems

Agenda
• UVM++ for efficient coverage closure

• UVM++ for fast IP emulation

• Enabling Firmware to run on UVM++ for IP simulation & emulation

• Reusing verification content for SoC System Coherency

The Verification Gap

UVM Block Simulation
Environment

UART1

VIP

AES

Silicon / Prototyping
Environment

SW Drivers & OS

Hybrid Emulation Environment

SoC
Memory

DMAC AES

Fabric

Fabric

UART1

VIP

System
and

Power
Control

UART0

VIP

CPUCPU

UVM Testbench

Bare Metal Firmware

UVM Testbench

SoC
RTL Memory

DMAC AES

Fabric

Fabric

UART1

VIP

System
and

Power
Control

UART0

VIP

VIP VIP

Simulation/Emulation
Acceleration

performanceflexibility

Block Functionality
UVM simulation

SoC Integration “Gap”
Ad hoc test content

System Validation
Real-workloads on HW

The Verification Gap (IP and Sub-System)
• UVM is not scaling for complex IPs and sub-systems
• UVM testbench & sequence development overshadows verification work

• Need emulation performance for IP verification
• UVM testbench & sequence performance is limiting factor
• Insufficient test content for sub-system testing

• Need firmware executing on IP simulation/emulation
• Well ahead of when system is available

The Verification Gap (SoC and Post Silicon)
• Need reuse of IP / sub-system tests in SOC verification

• Need integration with System Coherency testing
• cache coherency, power management, security etc.

Agenda
• UVM++ for efficient coverage closure

• UVM++ for fast IP emulation

• Enabling Firmware to run on UVM++ for IP simulation & emulation

• Reusing verification content for SoC System Coherency

What is UVM++ ?
• UVM Style API interface to PSS tool
• Procedural SystemVerilog style classes
• Also implemented in C/C++ for Firmware use

• Allows UVM experts easy access to PSS tool capabilities
• No need to learn new language semantics

• Provides seamless integration to existing UVM testbenches
• Coexists with existing test case, scoreboard etc.

Why UVM++ ? (The Problem)
• UVM is not scaling for complex IPs and sub-systems
• UVM testbench & sequence development overshadows verification work

High value verification
Knowledge… … Locked up in uvm

implementation
complexity

IP / Sub-System RTLIP / Sub-System RTLIP / Sub-System RTL

Control UVCsSequences

Virtual SequencesScoreboard

Stimulus Coverage

Events & Scheduling

Debug

“Constraint Hell”

UVM Environment
Interface VIPsInterface VIPs Interface VIPsInterface VIPs

Why UVM++ (The Solution)

• High value verification content
captured in portable model

• Synthesize self-checking test from
UVM++ graph-based models

• Synthesizable VerificationOS
maps content to existing UVM
testbench

Stimulus

Coverage Constraint

Test Suite
Synthesis

Checks Coverage Debug

Reachability Analysis

Debug & Profiling

Synthesizable
VerificationOS

Testbench

CPU Photo
Processor

Memory

Camera Display
Controller

Fabric

Fabric

VIP

SD Card
Controller

VIP VIP

System
and

Power
Control

Testbench

SD Int. VIP

APB VIP

SD Card
Controller

C SW + TLMUVM Sequences

SD Controller ModelReused VIP

GUI composition

UVM++ PSS

Native C++

Writing UVM++ IP Models
action aes_encrypt {
input buf in;
input buf key;
output buf out;
lock aes_r lock;

// Start of user code Action_aes_encrypt
constraint in.len == 16;
constraint key.len == 16;
constraint out.len == 16;
ref aes_regs regs;

void post_solve() {
in.addr = regs.AES_INPUT0.get_address();
key.addr = regs.AES_KEY0.get_address();
out.addr = regs.AES_OUTPUT0.get_address();

}

void body() {
pss_info(name(), "aes_encrypt", pss::target);
regs.AES_CTRL.START.set(1);
regs.AES_CTRL.MODE.set(0); // 0 for Encrypt, 1 for Decrypt
regs.AES_CTRL.write();

regs.AES_CTRL.DONE.poll(1); // wait for completion

// call reference model to predict results
encrypt_aes (in.expect, key.expect);
// forward expect to output
out.expect = in.expect;

}
// End of user code

};

Generated Model

Fitting UVM++ content into an existing UVM IP testbench
AES UVM++
Model AES0

TrekBox

TrekGen
test.tbx

UVM Testbench

AES RTL

APB VIP
class trek_apb_master_seq extends uvm_sequence #(apb_pkg::apb_transfer);
`uvm_object_utils(trek_apb_master_seq)

virtual task body();
forever begin
req.get(m_tb_path, trek_done);
if (trek_done) break;
`uvm_send(req)
if (req.direction == APB_READ) begin
rsp.send(m_tb_path);

end
req.item_done(m_tb_path);

end
endtask

endclass

UVM sequence detail to interface w/ VIPs

DPI_LIB := ${BREKER_HOME}/build/lib/libtrek.so
INCDIR += ${BREKER_HOME}/target/sv
VLOGSRC += ${BREKER_HOME}/target/sv/trek_uvm.sv
SIM_OPTION += +TREK_TBX_FILE=test.tbx

UVM environment

Running a single IP test

TrekBox

test.tbx

UVM Testbench

AES RTL

APB VIP

Composing UVM++ IP models
action dmac_xfr {
input buf in;
output buf out;
lock dmac_r lock;

// Start of user code Action_dmac_xfr
constraint in.len == out.len ;
ref dmac_regs regs;

void body() {
int chan = lock.instance_id;
pss_info (name(), “dma_xfr”, pss::target);
// configure target and source addrs
regs.dma[chan].DMA_TADDR.ADDRESS.set(out.addr);
regs.dma[chan].DMA_TADDR.write();
regs.dma[chan].DMA_SADDR.ADDRESS.set(in.addr);
regs.dma[chan].DMA_SADDR.write();
regs.dma[chan].DMA_BUFF.SRC_INCR.set(1);
regs.dma[chan].DMA_BUFF.DST_INCR.set(1);
regs.dma[chan].DMA_BUFF.write();
// start transfer
regs.dma[chan].DMA_TRANS.SIZE.set(in.len);
regs.dma[chan].DMA_TRANS.START.set(1);
regs.dma[chan].DMA_TRANS.write();
// wait for completion
regs.dma[chan].DMA_INT_STATUS.COMPLETED.poll(1);
// forward expect data
out.expect = in.expect;

}
// End of user code

};

Generated Model

Fitting UVM++ into existing UVM Sub-system testbench

UVM Testbench

SS
RTL Memory

DMAC AES

Fabric

Fabric

UART1

VIP

System
and

Power
Control

UART0

VIP

VIP VIP

TrekBox

TrekGen
test.tbx

UART1
Sys/Pwr

AES

SS Scenario
Model

DMAC

UART0 DPI_LIB := ${BREKER_HOME}/build/lib/libtrek.so
INCDIR += ${BREKER_HOME}/target/sv
VLOGSRC += ${BREKER_HOME}/target/sv/trek_uvm.sv
SIM_OPTION += +TREK_TBX_FILE=test.tbx

UVM environment

class trek_axi_master_seq extends uvm_sequence #(axi_pkg::axi_transfer);
`uvm_object_utils(trek_axi_master_seq)

virtual task body();
forever begin
req.get(m_tb_path, trek_done);
if (trek_done) break;
`uvm_send(req)
if (req.direction == AXI_READ) begin
rsp.send(m_tb_path);

end
req.item_done(m_tb_path);

end
endtask

endclass

UVM sequence detail to interface w/ VIPs

Running multi-IP sus-system test

3D Coverage Closure
Combinatorial

Sequential

Concurrent
Se

t o
f it

em
s

at
sa

me t
im

e

Combinatorial

Sequential

Concurrent
Parallel sequence threads

Ti
m

e

Ite
ms

Combinatorial

Sequential

Concurrent

Se
qu

en
ce

 o
f s

et
s o

ve
r t

im
e

Ite
ms

SD Card
Controller

Read

Display
Controller

Photo
Processor

Encode

SD Card
Controller

Write
Camera

Photo
Processor
Decode

Thread 1
OR

Port/Reg 1

SD Card
Controller

Read

Camera

Photo
Processor

Decode

Display
Controller

SD Card
Controller

Write

Photo
Processor

Encode

Display
Controller

SD Card
Controller

Write

SD Card
Controller

Read

SD Card
Controller

Read

Photo
Processor

Decode

Display
Controller

test

Camera

SD Card
Controller

Write

Photo
Processor

Encode

Camera

Display
Controller

Camera

Thread 2
OR

Port/Reg 2

Thread 3
OR

Port/Reg 3

Path Constraint/Coverage

Combinatorial
Function been tested?

Concurrent
Has this timing combination been tested?

Sequential
Sequence of functions been tested?

High Level Scenario Debug
4 processors, 1 thread per processor

Green nodes have finished

Yellow nodes are
running

Blue nodes are waiting to run

Memory Usage by Region
Data used/changed by a task

Software Driven Test Source

Test Execution Log

Failing Node

Tight integration to Verdi

Pre-generation, Reactive and Hybrid constructs
• Prefer pre-generation constructs
• Better emulation performance
• Simpler reuse in SoC and post-silicon
• Supports checks, polls, scheduling etc.

• Prefer full reactive constructs for block level verification
• Necessary when DUT response cannot be predicted

• Hybrid mode allows most operations to be pre-generated, with
reactive generation where needed
• Small sacrifice in simplicity and performance for flexibility

Functional, UVM++ Test Content
• VerificationOS provides a “layer”
• Under the layer the UVM testbench

remains the same, with connections
based on RAL.
• Above the layer, the UVM++ tests

can be generated and applied
• This allows the same tests to be

ported as the design scales

SD Controller Model

Synthesizable
VerificationOS

UVM++
test.tbx

UVM
Testbench

SD Interface
VIP

APB VIP

SD Card
Controller

Test Suite
Synthesis

Coverage Analysis

Scoreboard & Debug

Coverage Constraint

UVM Testbench

Photo
Processor

Memory

Camera Display
Controller

Fabric
Fabric

VIP

SD Card
Controller

VIP VIP

VIP

Synthesizable
VerificationOS

UVM++
test.tbx

Test Suite
Synthesis

Agenda
• UVM++ for efficient coverage closure

• UVM++ for fast IP emulation

• Enabling Firmware to run on UVM++ for IP simulation & emulation

• Reusing verification content for SoC System Coherency

Emulation Functional Test Use Model Issues

Emulation Environment

Test
Content

Compile

Data
Collection

Random Testbench
on Simulator

Debug/Coverage
Data

Not enough tests to take
advantage of emulation

capacity

Long compile loop at odds
with frequent test recompile

Integrated simulator for
random solver slows

performance significantly

Coverage and debug data
collection slows

performance

Pre-Execution, Coverage-Driven, Randomized Test Generation:
Preserving Emulation Performance

Stimulus

Debug & Profiling

Coverage Constraint

Synthesizable
VerificationOS

Test Suite
Synthesis

Testbench

CPU Photo
Processor

Memory

Camera Display
Controller

Fabric

Fabric

VIP

SD Card
Controller

VIP VIP

System
and

Power
Control

Testbench

SD Int. VIP

APB VIP

SD Card
Controller

SD Controller ModelReused VIP

GUI composition

UVM++ PSS

Native C++

Checks Coverage Debug

C SW + TLMUVM Sequences

Reachability Analysis

Randomization on spec
model, prior to execution

No testbench simulator

Coverage performed
up-front, on model

Synthesized tests loaded
straight into memory –

no lengthy compile

Low to no data dump
required for coverage

and debug

Fitting UVM++ into IP Emulation Simulation Acceleration

Emulation/SimAccel

SS
RTL Memory

DMAC AES

Fabric

Fabric

UART1

VIP

System
and

Power
Control

UART0

VIP

VIP VIP

TrekBox

TrekGen
test.tbx

UART1
Sys/Pwr

AES

SS Scenario
Model

DMAC

UART0

DPI_LIB := ${BREKER_HOME}/build/lib/libtrek.so
SIM_OPTION += -DTREK_TBX_FILE=test.tbx

Emulation environment

void run(){
bool trek_done = false;
while(1){
req.get(m_tb_path, trek_done);
if (trek_done) break;
drive_transactor(req, rsp);
if (req.direction == APB_READ){
rsp.send(m_tb_path);

}
req.item_done(m_tb_path);

}
}

C/C++ sequence detail to interface w/ AVIPs

Randomization Up-Front

Emulation/SimAccel

SS
RTL Memory

DMAC AES

Fabric

Fabric

UART1

VIP

System
and

Power
Control

UART0

VIP

VIP VIP

TrekBox

TrekGen
test.tbx

UART1
Sys/Pwr

AES

SS Scenario
Model

DMAC

UART0

• All randomization and scheduling
solved off-line

• Allows emulator transactor to be
driven at speed

Eliminating Test Content Compile

Emulation/SimAccel

SS
RTL Memory

DMAC AES

Fabric

Fabric

UART1

VIP

System
and

Power
Control

UART0

VIP

VIP VIP

TrekBox

TrekGen
test.tbx

UART1
Sys/Pwr

AES

SS Scenario
Model

DMAC

UART0

• TrekBox loads generated schedule
at runtime

• No need for test compiles

Handling Coverage Up-Front

Stimulus

Debug & Profiling

Coverage Constraint

Synthesizable
VerificationOS

Test Suite
Synthesis

Testbench

CPU Photo
Processor

Memory

Camera Display
Controller

Fabric

Fabric

VIP

SD Card
Controller

VIP VIP

System
and

Power
Control

Testbench

SD Int. VIP

APB VIP

SD Card
Controller

SD Controller ModelReused VIP

GUI composition

UVM++ PSS

Native C++

Checks Coverage Debug

C SW + TLMUVM Sequences

Reachability Analysis

• Coverage reachability and coverage
analysis available before tests are
run

• Review coverage to decide if test
suite should run

• No need to track coverage data at
run time, leading to better
performance

Debug Data Minimization

Stimulus

Debug & Profiling

Coverage Constraint

Synthesizable
VerificationOS

Test Suite
Synthesis

Testbench

CPU Photo
Processor

Memory

Camera Display
Controller

Fabric

Fabric

VIP

SD Card
Controller

VIP VIP

System
and

Power
Control

Testbench

SD Int. VIP

APB VIP

SD Card
Controller

SD Controller ModelReused VIP

GUI composition

UVM++ PSS

Native C++

Checks Coverage Debug

C SW + TLMUVM Sequences

Reachability Analysis

• Synthesizable VerificationOS
collects minimal debug data

• Most debug information already
available in generated schedule

Portable UVM++ test can be applied to emulator

• The VerificationOS layer also
allows the UVM++ tests to be
ported to the emulator

• UVM++ enables full pre-
execution randomization,
compile bypass, etc.

• Emulation performance is
maximized

SD Controller Model

Synthesizable
VerificationOS

UVM++
test.tbx

Test Suite
Synthesis

Coverage Analysis

Scoreboard & Debug

Coverage Constraint

Synthesizable
VerificationOS

UVM++
test.tbx

Test Suite
Synthesis

Agenda
• UVM++ for efficient coverage closure

• UVM++ for fast IP emulation

• Enabling Firmware to run on UVM++ for IP simulation & emulation

• Reusing verification content for SoC System Coherency

Running Firmware Without an OS or a Processor

• For firmware execution on a
subsystem, how can we connect
the registers in SW and HW?
• How can we provide the services

needed by firmware, such as
memory allocation?
• How can we load the firmware

into the device memory?

UVM Testbench

Photo
Processor

Memory

Camera Display
Controller

Fabric

Fabric

VIP

SD Card
Controller

VIP VIP

VIP

Camera Firmware PhotoP Firmware

Registers

Implement Firmware HAL in UVM++

UVM Testbench

Photo
Processor

Memory

Camera Display
Controller

Fabric

Fabric

VIP

SD Card
Controller

VIP VIP

VIP

Camera Firmware PhotoP Firmware

Synthesizable VerificationOS
Memory
Allocation

Interrupt
Processing

IO
 T

ra
ns

ac
tio

ns

Register
R/W

#include “registers.h”

void aes_encrypt(uint64_t offset){
REG_WRITE(offset + reg_AES_CTRL, AES_CTRL_START & ~AES_CTRL_MODE);
REG_POLL(offset+ reg_AES_CTRL, AES_CTRL_MODE, AES_CTRL_MODE);

}

#define REG_WRITE(addr, value) \
trek::reg r = regs.get_reg_by_addr(addr); \
r.write(value);

#define REG_POLL(addr, value, mask) \
trek::reg r = regs.get_reg_by_addr(addr); \
r.poll(value, mask);

Leveraging a Light VerificationOS for Firmware

• VerificationOS provides enough OS
capabilities while avoiding slow Linux
bootup and performance

• HW Registers defined in UVM RAL layer,
SW registers in headers
• Memory allocation, interrupt processing

and IO transactions also operated by OS
• OS schedules operations, provides

mapping, and synchronizes C with IO

UVM Testbench

Photo
Processor

Memory

Camera Display
Controller

Fabric

Fabric

VIP

SD Card
Controller

VIP VIP

VIP

Camera Firmware PhotoP Firmware

Synthesizable VerificationOS
Memory
Allocation

Interrupt
Processing

IO
 T

ra
ns

ac
tio

ns

Register
R/W

Synthesizable VerificationOS Requirements
test_cpu1 test_cpu2 test_cpu3

SD
Sys

DC
PP

CamSystem Model

SD

IP
Models

Testbench

CPU Photo
Processor

Memory

Camera Display
Controller

Fabric

Fabric

VIP

SD Card
Controller

VIP VIP

System
and

Power
Control

Testbench

Photo
Processor

Memory

Camera Display
Controller

Fabric

Fabric

VIP

SD Card
Controller

VIP VIP

VIP

Camera

Display
Controller

Photo
Processor

SD Card
Controller

Simulation Emulation Prototyping

So
C

Su
b-

Sy
st

em
Bl

oc
k

/ I
P

Synthesizable VerificationOS Services

Messages Memory Registers

Scheduling Transaction
s Interrupts

API

Synthesized Realization

SD
Sys

DC
PP

CamSystem Model

SD

IP
Models

Testbench

CPU Photo
Processor

Memory

Camera Display
Controller

Fabric

Fabric

VIP

SD Card
Controller

VIP VIP

System
and

Power
Control

Testbench

Photo
Processor

Memory

Camera Display
Controller

Fabric

Fabric

VIP

SD Card
Controller

VIP VIP

VIP

Camera

Display
Controller

Photo
Processor

SD Card
Controller

Simulation Emulation Prototyping

So
C

Su
b-

Sy
st

em
Bl

oc
k

/ I
P

Synthesizable VerificationOS Services

Messages Memory Registers

Scheduling Transaction
s Interrupts

API

Synthesized Realization

Horizontal Reuse

Ve
rt

ic
al

 R
eu

se

SD
Sys

DC
PP

CamSystem Model

SD

IP
Models

Synthesizable VerificationOS Services

Messages Memory Registers

Scheduling Transaction Interrupts

API

Synthesized Realization

Testbench

CPU Photo
Processor

Memory

Camera Display
Controller

Fabric

Fabric

VIP

SD Card
Controller

VIP VIP

System
and

Power
Control

Testbench

Photo
Processor

Memory

Camera Display
Controller

Fabric

Fabric

VIP

SD Card
Controller

VIP VIP

VIP

Camera

Display
Controller

Photo
Processor

SD Card
Controller

So
C

Su
b-

Sy
st

em
Bl

oc
k

/ I
P

Vi
rt

ua
l P

.

Simulation Emulation Prototyping Post-Silicon
Project

Reuse

Multi-threaded
Tests in SW

Multi-threaded
Transactions

Testbench

CPU Photo
ProcessorMemory

Camera Display
Controller

Fabric

Fabric

VIP

SD Card
Controller

VIP VIP

System
and

Power
Control

Coverage

Debug, Profiling

Execution Management

Task & Resource Scheduling
Virtualized OS Services

Sy
nt

he
siz

ab
le

Ve

rif
ic

at
io

nO
S

Testbench

CPU Photo
ProcessorMemory

Camera Display
Controller

Fabric

Fabric

VIP

SD Card
Controller

VIP VIP

System
and

Power
Control

Synthesized
Test Content

Virtualized OS Services
Mapping

Display
Controller

SD Card
Controller

Read

SD Card
Controller

Read

Photo
Processor

Decode

Display
Controller

test Memory
Region 1

Memory
Region 2

Memory
Region 3

Raw Image
#1

JPEG-
Image #1

Camera

SD Card
Controller

Write

Photo
Processor

Encode

JPEG-
Image #2

Raw Image
#2

Camera

Display
Controller

SD Card
Controller

Write

Camera

SD Card
Controller

Read

Photo
Processor

Decode

Display
Controller

Camera

SD Card
Controller

Write

Photo
Processor

Encode

SD Card
Controller

Read

Display
Controller

Display
VIP

SD
Card
VIP

CCD
VIP

Photo
Processor

Encode

SD Card
Controller

Write
Camera

SD
Card
VIP

Photo
Processor
Decode

Gen-Time
Task & Resource Scheduling

Run-Time
Execution Management

Sy
nc

hr
on

iza
tio

n

Firmware at the Block, Sub-System & Full SoC

UVM Testbench

Photo
Processor

Memory

Camera Display
Controller

Fabric

Fabric

VIP

SD Card
Controller

VIP VIP

VIP

Camera Firmware PhotoP Firmware

“Light” VerificationOS Layer

Testbench

CPU Photo
Processor

Memory

Camera Display
Controller

Fabric

Fabric

VIP

SD Card
Controller

VIP VIP

System
and

Power
Control

Testbench

Camera VIP

APB VIP

SD Card
Controller

Agenda
• UVM++ for efficient coverage closure

• UVM++ for fast IP emulation

• Enabling Firmware to run on UVM++ for IP simulation & emulation

• Reusing verification content for SoC System Coherency

Reusable SoC System Coherency VIP Library

Cache
Coherency

ARM

Power
Management

Security

RISC-V

Networking

• SoC infrastructure testing can be
effectively handled using pre-built
scenarios that can be configured
for the design
• By composing these at the

specification abstraction level and
synthesizing them, we can target
coverage levels and corner cases
not possible using templating
• Breker has a library, and other

users create their own over time

TrekApps may be Configured and Expanded
System Coherency Top Graph

Max
Memsize

Specialized
Algorithm

Addl
Instructions

Example
Customizations

Specific Component
Characteristic

Special Coherency
Test Algorithm

Extra Processor
Instruction

Combining TrekApps with UVM++

Stimulus

Debug & Profiling

Coverage Constraint

Synthesizable
VerificationOS

Test Suite
Synthesis

Testbench

CPU Photo
Processor

Memory

Camera Display
Controller

Fabric

Fabric

VIP

SD Card
Controller

VIP VIP

System
and

Power
Control

Testbench

SD Int. VIP

APB VIP

SD Card
Controller

SD Controller ModelReused VIP

GUI composition

UVM++ PSS

Native C++

Checks Coverage Debug

C SW + TLMUVM Sequences

Reachability Analysis

Randomization on spec
model, prior to execution

No testbench simulator

Coverage performed
up-front, on model

Synthesized tests loaded
straight into memory –

no lengthy compile

Low to no data dump
required for coverage

and debug

TrekApps

Summary
• UVM++ for efficient coverage closure

• UVM++ for fast IP emulation

• Enabling Firmware to run on UVM++ for IP simulation & emulation

• Reusing verification content for SoC

Thanks for Listening!
Any Questions?

