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Agenda
• UVM++ for efficient coverage closure 

• UVM++ for fast IP emulation 

• Enabling Firmware to run on UVM++ for IP simulation & emulation

• Reusing verification content for SoC System Coherency



The Verification Gap
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The Verification Gap (IP and Sub-System)
• UVM is not scaling for complex IPs and sub-systems
• UVM testbench & sequence development overshadows verification work 

• Need emulation performance for IP verification
• UVM testbench & sequence performance is limiting factor 
• Insufficient test content for sub-system testing 

• Need firmware executing on IP simulation/emulation
• Well ahead of when system is available 



The Verification Gap (SoC and Post Silicon)
• Need reuse of IP / sub-system tests in SOC verification 

• Need integration with System Coherency testing
• cache coherency, power management, security etc.



Agenda
• UVM++ for efficient coverage closure 

• UVM++ for fast IP emulation 

• Enabling Firmware to run on UVM++ for IP simulation & emulation

• Reusing verification content for SoC System Coherency



What is UVM++ ?
• UVM Style API interface to PSS tool 
• Procedural SystemVerilog style classes 
• Also implemented in C/C++ for Firmware use

• Allows UVM experts easy access to PSS tool capabilities
• No need to learn new language semantics

• Provides seamless integration to existing UVM testbenches
• Coexists with existing test case, scoreboard etc. 



Why UVM++ ? (The Problem)
• UVM is not scaling for complex IPs and sub-systems
• UVM testbench & sequence development overshadows verification work 
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Why UVM++ ( The Solution )

• High value verification content 
captured in portable model

• Synthesize self-checking test from 
UVM++ graph-based models

• Synthesizable VerificationOS 
maps content to existing UVM 
testbench
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Writing UVM++ IP Models
action aes_encrypt {
input buf in;
input buf key;
output buf out;
lock aes_r lock;

// Start of user code Action_aes_encrypt
constraint in.len == 16;
constraint key.len == 16;
constraint out.len == 16;
ref aes_regs regs; 

void post_solve() {
in.addr = regs.AES_INPUT0.get_address();
key.addr = regs.AES_KEY0.get_address();
out.addr = regs.AES_OUTPUT0.get_address();

}

void body() {
pss_info( name(), "aes_encrypt", pss::target );
regs.AES_CTRL.START.set(1);
regs.AES_CTRL.MODE.set(0); // 0 for Encrypt, 1 for Decrypt
regs.AES_CTRL.write();

regs.AES_CTRL.DONE.poll(1); // wait for completion

// call reference model to predict results
encrypt_aes ( in.expect, key.expect);
// forward expect to output
out.expect = in.expect;

}
// End of user code

};

Generated Model



Fitting UVM++ content into an existing UVM IP testbench
AES UVM++
Model AES0

TrekBox
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test.tbx

UVM Testbench
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APB VIP
class trek_apb_master_seq extends uvm_sequence #(apb_pkg::apb_transfer);
`uvm_object_utils(trek_apb_master_seq)

virtual task body();
forever begin
req.get(m_tb_path, trek_done);
if (trek_done) break;
`uvm_send( req )
if ( req.direction == APB_READ ) begin
rsp.send(m_tb_path);

end
req.item_done( m_tb_path );

end
endtask

endclass

UVM sequence detail to interface w/ VIPs 

DPI_LIB := ${BREKER_HOME}/build/lib/libtrek.so
INCDIR += ${BREKER_HOME}/target/sv
VLOGSRC += ${BREKER_HOME}/target/sv/trek_uvm.sv
SIM_OPTION += +TREK_TBX_FILE=test.tbx

UVM environment 



Running a single IP test 
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Composing UVM++ IP models
action dmac_xfr {
input buf in;
output buf out;
lock dmac_r lock;

// Start of user code Action_dmac_xfr
constraint in.len == out.len ;
ref dmac_regs regs;

void body() {
int chan = lock.instance_id;
pss_info (name(), “dma_xfr”, pss::target);
// configure target and source addrs
regs.dma[chan].DMA_TADDR.ADDRESS.set(out.addr);
regs.dma[chan].DMA_TADDR.write();
regs.dma[chan].DMA_SADDR.ADDRESS.set(in.addr);
regs.dma[chan].DMA_SADDR.write();
regs.dma[chan].DMA_BUFF.SRC_INCR.set(1);
regs.dma[chan].DMA_BUFF.DST_INCR.set(1);
regs.dma[chan].DMA_BUFF.write();
// start transfer
regs.dma[chan].DMA_TRANS.SIZE.set(in.len);
regs.dma[chan].DMA_TRANS.START.set(1);
regs.dma[chan].DMA_TRANS.write();
// wait for completion
regs.dma[chan].DMA_INT_STATUS.COMPLETED.poll(1);
// forward expect data
out.expect = in.expect;

}
// End of user code

};

Generated Model



Fitting UVM++ into existing UVM Sub-system testbench
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UVM environment 

class trek_axi_master_seq extends uvm_sequence #(axi_pkg::axi_transfer);
`uvm_object_utils(trek_axi_master_seq)

virtual task body();
forever begin
req.get(m_tb_path, trek_done);
if (trek_done) break;
`uvm_send( req )
if ( req.direction == AXI_READ ) begin
rsp.send(m_tb_path);

end
req.item_done( m_tb_path );

end
endtask

endclass

UVM sequence detail to interface w/ VIPs 



Running multi-IP sus-system test 



3D Coverage Closure
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High Level Scenario Debug 
4 processors, 1 thread per processor

Green nodes have finished

Yellow nodes are 
running

Blue nodes are waiting to run

Memory Usage by Region
Data used/changed by a task
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Pre-generation, Reactive and Hybrid constructs
• Prefer pre-generation constructs 
• Better emulation performance
• Simpler reuse in SoC and post-silicon
• Supports checks, polls, scheduling etc. 

• Prefer full reactive constructs for block level verification
• Necessary when DUT response cannot be predicted

• Hybrid mode allows most operations to be pre-generated, with 
reactive generation where needed
• Small sacrifice in simplicity and performance for flexibility 



Functional, UVM++ Test Content
• VerificationOS provides a “layer”
• Under the layer the UVM testbench 

remains the same, with connections 
based on RAL. 
• Above the layer, the UVM++ tests 

can be generated and applied
• This allows the same tests to be 

ported as the design scales
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Agenda
• UVM++ for efficient coverage closure 

• UVM++ for fast IP emulation 

• Enabling Firmware to run on UVM++ for IP simulation & emulation

• Reusing verification content for SoC System Coherency



Emulation Functional Test Use Model Issues
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Pre-Execution, Coverage-Driven, Randomized Test Generation: 
Preserving Emulation Performance
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Fitting UVM++ into IP Emulation Simulation Acceleration
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DPI_LIB := ${BREKER_HOME}/build/lib/libtrek.so
SIM_OPTION += -DTREK_TBX_FILE=test.tbx

Emulation environment 

void run(){
bool trek_done = false;
while(1){
req.get(m_tb_path, trek_done);
if (trek_done) break;
drive_transactor( req, rsp);
if ( req.direction == APB_READ ){
rsp.send(m_tb_path);

}
req.item_done( m_tb_path );

}
}

C/C++ sequence detail to interface w/ AVIPs 



Randomization Up-Front
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• All randomization and scheduling 
solved off-line

• Allows emulator transactor to be 
driven at speed



Eliminating Test Content Compile
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Handling Coverage Up-Front

Stimulus

Debug & Profiling

Coverage Constraint

Synthesizable 
VerificationOS

Test Suite 
Synthesis

Testbench

CPU Photo
Processor

Memory

Camera Display
Controller

Fabric

Fabric

VIP

SD Card
Controller

VIP VIP

System
and

Power
Control

Testbench

SD Int. VIP

APB VIP

SD Card
Controller

SD Controller ModelReused VIP

GUI composition

UVM++ PSS

Native C++

Checks Coverage Debug

C SW + TLMUVM Sequences

Reachability Analysis

• Coverage reachability and coverage 
analysis available before tests are 
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• Review coverage to decide if test 
suite should run

• No need to track coverage data at 
run time, leading to better 
performance



Debug Data Minimization
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• Synthesizable VerificationOS 
collects minimal debug data 

• Most debug information already 
available in generated schedule



Portable UVM++ test can be applied to emulator

• The VerificationOS layer also 
allows the UVM++ tests to be 
ported to the emulator

• UVM++ enables full pre-
execution randomization, 
compile bypass, etc.

• Emulation performance is 
maximized
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Agenda
• UVM++ for efficient coverage closure 

• UVM++ for fast IP emulation 

• Enabling Firmware to run on UVM++ for IP simulation & emulation

• Reusing verification content for SoC System Coherency



Running Firmware Without an OS or a Processor

• For firmware execution on a 
subsystem, how can we connect 
the registers in SW and HW?
• How can we provide the services 

needed by firmware, such as 
memory allocation?
• How can we load the firmware 

into the device memory?
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Implement Firmware HAL in UVM++

UVM Testbench

Photo
Processor

Memory

Camera Display
Controller

Fabric

Fabric

VIP

SD Card
Controller

VIP VIP

VIP

Camera Firmware PhotoP Firmware

Synthesizable VerificationOS
Memory 
Allocation

Interrupt
Processing

IO
 T

ra
ns

ac
tio

ns

Register
R/W

#include “registers.h”

void aes_encrypt(uint64_t offset){
REG_WRITE(offset + reg_AES_CTRL, AES_CTRL_START & ~AES_CTRL_MODE);
REG_POLL(offset+ reg_AES_CTRL, AES_CTRL_MODE, AES_CTRL_MODE);

}

#define REG_WRITE(addr, value)               \
trek::reg r = regs.get_reg_by_addr(addr); \
r.write(value);

#define REG_POLL(addr, value, mask)          \
trek::reg r = regs.get_reg_by_addr(addr);  \
r.poll(value, mask);



Leveraging a Light VerificationOS for Firmware

• VerificationOS provides enough OS 
capabilities while avoiding slow Linux 
bootup and performance

• HW Registers defined in UVM RAL layer, 
SW registers in headers
• Memory allocation, interrupt processing 

and IO transactions also operated by OS
• OS schedules operations, provides 

mapping, and synchronizes C with IO
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Synthesizable VerificationOS Requirements
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Firmware at the Block, Sub-System & Full SoC
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Agenda
• UVM++ for efficient coverage closure 

• UVM++ for fast IP emulation 

• Enabling Firmware to run on UVM++ for IP simulation & emulation

• Reusing verification content for SoC System Coherency



Reusable SoC System Coherency VIP Library
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• SoC infrastructure testing can be 
effectively handled using pre-built
scenarios that can be configured 
for the design
• By composing these at the 

specification abstraction level and 
synthesizing them, we can target 
coverage levels and corner cases 
not possible using templating
• Breker has a library, and other 

users create their own over time



TrekApps may be Configured and Expanded
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Combining TrekApps with UVM++
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Summary
• UVM++ for efficient coverage closure 

• UVM++ for fast IP emulation 

• Enabling Firmware to run on UVM++ for IP simulation & emulation

• Reusing verification content for SoC



Thanks for Listening!
Any Questions?


