
Improving Flexibility in Hardware-Software
Co-Development with Remote Virtual Prototypes

Przemysław Mikluszka, Patryk Górniak

Imagination Technologies



Context & Motivation



Imagination at a Glance

• Imagination Technologies – provider of GPU IP and related 
technologies

• Expertise in graphics, compute, and AI acceleration for SoCs

• Key markets: automotive, mobile, and data centre compute



Our HW-SW Co-Development Approach

• Virtual Prototypes (VPs) for early driver and software validation

• Multiple VP models at different abstraction levels
• e.g. C/C++, SystemC, FPGA emulators

• Models vary in accuracy and availability during the development cycle

• Integration with full-system simulators
• QEMU, Gem5, TLM2-based frameworks

• Unified integration through a common internal API
• Same front-end also used for emulator support



Possible Areas for Improvement

• Developer machines may lack sufficient resources to run compute-
intensive simulation components

• Remote execution could offload heavy tasks to better-equipped 
machines

• Repetitive setup for each developer or VP model change

• Some VP implementations require extra resources without possibility 
of setup/teardown automation



Our Goal

• Enable remote integration of GPU VPs into full-system simulations
• Similar solution previously implemented for our NNA IP

• Work focused on QEMU solution only

• Maintain a unified API for seamless switching between VP 
implementations

• Reduce setup overhead and simplify environment configuration

• Support consistent validation methodology across all VP variants



Architecture & Implementation



Requirements

• Maintain conformance with internal API
• Device has a defined, stateful life cycle

• Device memory managed outside the model

• Requires device memory accessors to be supplied during setup

• Support multiple client connections



Initial architecture (1)
• Client library conformant with 

internal API

• Device memory model 
implemented on the client 
side

• Forward API calls to the server 
over TCP

• Server provides memory 
accessors to the GPU model



Initial architecture (2)
• All memory and register 

transactions forwarded to the 
client

• Communication via Protocol 
Buffers over ZeroMQ for 
bidirectional messaging

• Dealer–Router pattern used 
for message routing



Initial results

• Initial tests with client and server on the same machine

• Promising results: performance penalty of 281%–347% vs. baseline

• Real-world scenario (60 ms latency) proved infeasible
• Simple workloads (baseline runtime of few seconds) failed to complete within 

hours



Optimisation ideas (1)

• Bottleneck caused by data transfer latency

• Reduce latency impact by minimizing the number of client-server 
transactions

• API used overly narrow data containers

• Move memory model to the server side
• Intercept all device memory transactions from the driver and forward to 

server

• GPU model now performs accesses to its memory locally

• Defer driver write requests and send them in batches



Optimisation ideas (2)

• Send memory in chunks for read operations
• Divide device memory into equal-sized chunks

• Subsequent reads reuse data from the same chunk if possible

• Chunk content has limited validity

• Chunk size is configurable

• Driver performs validation of data written
• Track contiguous memory regions written by the driver

• If the first address of a region is accessed, send a chunk matching that region’s 
size



Final architecture



Experimental Evaluation



Experimental 
Evaluation (1)

Approach version Number of transactions Portion of baseline

Initial (baseline) 95409 100 %

Server-side memory 937876 983 %

Batched writes 126448 132 %

Chunked reads 2430 2.54 %

Dynamic chunk sizing 2233 2.34 %

• Measured impact of 
optimizations on memory 
transaction count

• Evaluated progressively with 
each approach change

• Tests performed using a 
simple 3D application

• Significant reduction in 
number of transactions



Experimental Evaluation (2)

• Measured performance impact of the proposed solution

• Server and client on the same virtual local network (60 ms latency)

• Three application types tested
• Simple 3D app using OpenGL API (OGL)

• Simple 3D app using OpenGL ES with shader compilation (OGLES)

• Compute app using OpenCL for FFT calculations (IMGFFT)



Experimental Evaluation (3)

Application
Non-remote

baseline

Min chunk size

512 bits 2048 bits 4096 bits 8192 bits

OGL 1 frame (cold start) 100% 7867% 5500% 5033% 5300%

OGL 1 frame 100% 4800% 4800% 4700% 4750%

OGL 10 frames 100% 595% 586% 581% 595%

OGL 50 frames 100% 246% 236% 232% 417%

OGLES 1 frame 100% 12800% 12875% 12650% 12725%

OGLES 10 frames 100% 2567% 2552% 2524% 2538%

OGLES 50 frames 100% 663% 642% 630% 640%

IMGFFT 100% 143% 127% 120% 132%



Experimental Evaluation (4)

• Minimum chunk size must be chosen carefully
• Small size → increases number of transactions

• Large size → can saturate network bandwidth

• Compute workload showed proportionally lower overhead

• Solution is better suited for compute-bound workloads



Experimental 
Evaluation (5)
• Conducted additional 

experiments to measure 
impact of network latency

• Re-ran tests with latency set 
to 90 ms and 120 ms using 
traffic control mechanisms

• Observed overhead increase 
is approximately linear with 
latency



Conclusion & Future Work



Conclusion & Future Work (1)

• Current solution shows potential but needs refinement for interactive 
and graphics-heavy applications

• Best suited for compute-bound workloads with lower relative 
overhead

• Less effective for simple debugging applications due to high memory 
transaction volume in relation to compute

• Main bottleneck: frequency and volume of memory synchronization 
between client and server



Conclusion & Future Work (2)

• Future work: develop more efficient device memory synchronization 
mechanisms

• Key challenge: maintain compatibility with internal API while 
improving performance

• Balancing API conformance and optimization is critical for real-world 
adoption



Questions



Improving Flexibility in Hardware-Software
Co-Development with Remote Virtual Prototypes

Przemysław Mikluszka, Patryk Górniak

Imagination Technologies


	Slide 1: Improving Flexibility in Hardware-Software Co-Development with Remote Virtual Prototypes
	Slide 2: Context & Motivation
	Slide 3: Imagination at a Glance
	Slide 4: Our HW-SW Co-Development Approach
	Slide 5: Possible Areas for Improvement
	Slide 6: Our Goal
	Slide 7: Architecture & Implementation
	Slide 8: Requirements
	Slide 9: Initial architecture (1)
	Slide 10: Initial architecture (2)
	Slide 11: Initial results
	Slide 12: Optimisation ideas (1)
	Slide 13: Optimisation ideas (2)
	Slide 14: Final architecture
	Slide 15: Experimental Evaluation
	Slide 16: Experimental Evaluation (1)
	Slide 17: Experimental Evaluation (2)
	Slide 18: Experimental Evaluation (3)
	Slide 19: Experimental Evaluation (4)
	Slide 20: Experimental Evaluation (5)
	Slide 21: Conclusion & Future Work
	Slide 22: Conclusion & Future Work (1)
	Slide 23: Conclusion & Future Work (2)
	Slide 24: Questions
	Slide 25: Improving Flexibility in Hardware-Software Co-Development with Remote Virtual Prototypes

