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Context & Motivation




Imagination at a Glance

* Imagination Technologies — provider of GPU IP and related
technologies

* Expertise in graphics, compute, and Al acceleration for SoCs

e Key markets: automotive, mobile, and data centre compute




Our HW-SW Co-Development Approach

* Virtual Prototypes (VPs) for early driver and software validation

* Multiple VP models at different abstraction levels
* e.g. C/C++, SystemC, FPGA emulators

* Models vary in accuracy and availability during the development cycle

* Integration with full-system simulators
e QEMU, Gem5, TLM2-based frameworks

e Unified integration through a common internal API
* Same front-end also used for emulator support




Possible Areas for Improvement

* Developer machines may lack sufficient resources to run compute-
intensive simulation components

 Remote execution could offload heavy tasks to better-equipped
machines

* Repetitive setup for each developer or VP model change

 Some VP implementations require extra resources without possibility
of setup/teardown automation




Our Goal

* Enable remote integration of GPU VPs into full-system simulations
e Similar solution previously implemented for our NNA IP
* Work focused on QEMU solution only

* Maintain a unified API for seamless switching between VP
implementations

* Reduce setup overhead and simplify environment configuration

e Support consistent validation methodology across all VP variants




Architecture & Implementation




Requirements

* Maintain conformance with internal API
* Device has a defined, stateful life cycle
* Device memory managed outside the model
* Requires device memory accessors to be supplied during setup

e Support multiple client connections




Initial architecture (1)

* Client library conformant with
internal API

Device memory model
implemented on the client
side

Forward API calls to the server
over TCP

Server provides memory
accessors to the GPU model

QEMU

* Proprietary API calls *

Client
library

&

Proprietary API calls*
over TCP

Server

‘ Register Reads/Writes *

* Memory Reads/Writes ’

GPU
Simulator
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Initial architecture (2)

e All memory and register
transactions forwarded to the

client
‘ Register Reads/Writes *
* Communication via Protocol e e rromsorcundy| St oyl g ey
Buffers over ZeroMQ for e e I
bidirectional messaging S

e Dealer—Router pattern used
for message routing
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Initial results

* |nitial tests with client and server on the same machine

* Promising results: performance penalty of 281%—347% vs. baseline

e Real-world scenario (60 ms latency) proved infeasible

e Simple workloads (baseline runtime of few seconds) failed to complete within
hours




Optimisation ideas (1)

* Bottleneck caused by data transfer latency

* Reduce latency impact by minimizing the number of client-server
transactions

* APl used overly narrow data containers

* Move memory model to the server side

* Intercept all device memory transactions from the driver and forward to
server

* GPU model now performs accesses to its memory locally

e Defer driver write requests and send them in batches
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Optimisation ideas (2)

* Send memory in chunks for read operations
* Divide device memory into equal-sized chunks
* Subsequent reads reuse data from the same chunk if possible
* Chunk content has limited validity
* Chunk size is configurable

* Driver performs validation of data written
* Track contiguous memory regions written by the driver

* If the first address of a region is accessed, send a chunk matching that region’s
Size




Final architecture

) ) ) | |
+ Proprietary API calls+
over TCP

. Client i i GPU
QEMU '* Proprietary API calls * library Server * Register Reads/Writes * Simulator

Chunked memory
transactions over TCP

Chunked Chunked .
Reads Reads/Writes Reads'IW rites
vory r ST T Device memory model
memory reads chunk
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Experimental Evaluation




Experimental
Evaluation (1)

* Measured impact of
optimizations on memory
transaction count

* Evaluated progressively with
each approach change

e Tests performed using a
simple 3D application

* Significant reduction in
number of transactions

Approach version Number of transactions Portion of baseline
Initial (baseline) 95409 100 %
Server-side memory 937876 983 %
Batched writes 126448 132 %
Chunked reads 2430 2.54%
Dynamic chunk sizing 2233 2.34%
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Experimental Evaluation (2)

* Measured performance impact of the proposed solution
 Server and client on the same virtual local network (60 ms latency)

* Three application types tested
e Simple 3D app using OpenGL APl (OGL)
e Simple 3D app using OpenGL ES with shader compilation (OGLES)
* Compute app using OpenCL for FFT calculations (IMGFFT)




Experimental Evaluation (3)

Non-remote Min chunk size
Application .

baseline 512 bits 2048 bits 4096 bits 8192 bits

OGL 1 frame (cold start) 100% 7867% 5500% 5033% 5300%

OGL 1 frame 100% 4800% 4800% 4700% 4750%

OGL 10 frames 100% 595% 586% 581% 595%

OGL 50 frames 100% 246% 236% 232% 417%
OGLES 1 frame 100% 12800% 12875% 12650% 12725%

OGLES 10 frames 100% 2567% 2552% 2524% 2538%

OGLES 50 frames 100% 663% 642% 630% 640%

IMGFFT 100% 143% 127% 120% 132%
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Experimental Evaluation (4)

* Minimum chunk size must be chosen carefully
* Small size = increases number of transactions
e Large size - can saturate network bandwidth

 Compute workload showed proportionally lower overhead

 Solution is better suited for compute-bound workloads




Experimental
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Conclusion & Future Work




Conclusion & Future Work (1)

* Current solution shows potential but needs refinement for interactive
and graphics-heavy applications

* Best suited for compute-bound workloads with lower relative
overhead

* Less effective for simple debugging applications due to high memory
transaction volume in relation to compute

* Main bottleneck: frequency and volume of memory synchronization
between client and server




Conclusion & Future Work (2)

e Future work: develop more efficient device memory synchronization
mechanisms

* Key challenge: maintain compatibility with internal APl while
improving performance

* Balancing APl conformance and optimization is critical for real-world
adoption
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