

Implementing Functional Coverage for Analog IPs in Mixed-Signal Verification Environments

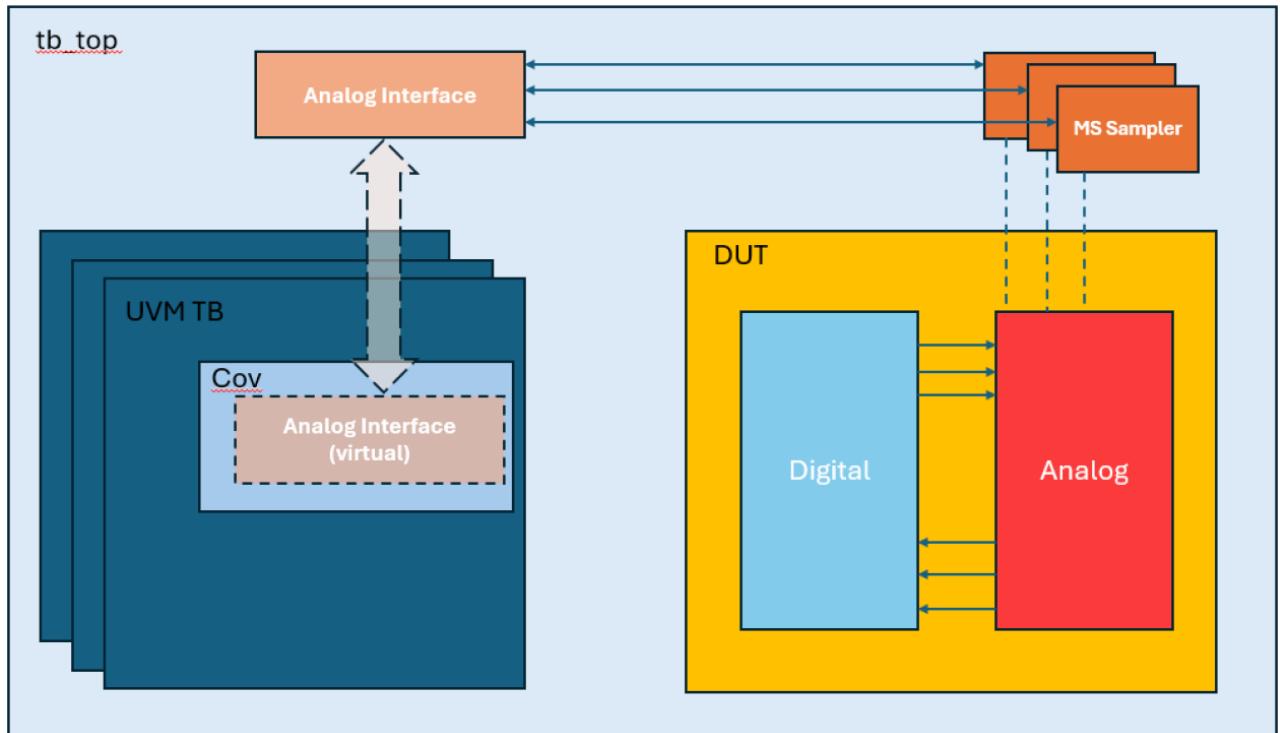
Akib Mohammad Azam Zaidi Ana-Maria Radu
ams OSRAM Group

Why Analog Coverage matters

Motivation

- Growing complexity of mixed-signal systems
- Digital verification uses MDV successfully
- Analog verification lacks structured coverage
- Prior work:
 - RNM + UVM flows exist
 - Some require schematic instrumentation or rely on abstraction

Challenges


- Continuous nature of analog signals
 - Dynamic behavior
 - Limited observability at schematic level
- RNM helps, but schematic-level coverage is still underdeveloped
- No scalable, unified approach for RNM + schematic coverage

Proposed Solution

- UVM-based top-level testbench for mixed-signal verification
- Cross-compatible coverage for:
 - **Real Number Models (RNM)**
 - **Analog schematics**
- Convert analog signals → discrete real values for monitoring
- Define SystemVerilog covergroups from IP specifications
- Scalable approach for AMS & DMS environments
 - Unified infrastructure
 - Reusable components
- Non-Intrusive Approach
- Consistent Metrics Across Configurations

Methodology Overview

- Identify key analog signals and nodes
- Convert analog signals → real values
- Route the signals to SV interface
- Define covergroups based on IP specs
- Merge coverage data from DMS & AMS simulations

Signal Extraction

- Identify critical analog signals and nodes
- Use proprietary sampling code (**MS-Sampler**) to extract signals from DUT boundaries
- Convert analog signals → real values for monitoring
- Route real-valued signals to SystemVerilog interface
- Broadcast interface to UVM components via *uvm_config_db*
- Supports both **DMS** and **AMS** simulation modes

```
BEGIN
  INPUT : STRING PATH, LOGIC_HI, LOGIC_LO
  OUTPUT : DISCRETE REAL SIGNAL, LOGIC SIGNAL

  READ PORT FROM STRING PATH
  IF ANALOG PORT
    IF CURRENT_MODE
      SAMPLE CURRENT @ ANALOG STEP
      CONV TO DISCRETE REAL → OUTPUT REAL SIGNAL
    ELSE
      IF LOGIC MODE
        SAMPLE VOLTAGE @ ANALOG STEP
        CONV TO LOGIC USING LOGIC_HI, LOGIC_LO → OUTPUT LOGIC SIGNAL
      ELSE
        SAMPLE VOLTAGE @ ANALOG STEP
        CONV TO DISCRETE REAL → OUTPUT REAL SIGNAL
    ELSE
      IF LOGIC MODE
        SEND DISCRETE FROM PATH → OUTPUT LOGIC SIGNAL
      ELSE
        SEND DISCRETE FROM PATH → OUTPUT REAL SIGNAL
  END
```

Coverage Plan

- Analyze IP spec & align with designers
- Gather key parameters: voltage, current, timing
- Define SV package for real-type attributes
- Create coverage plan: items, behaviors, spec relevance

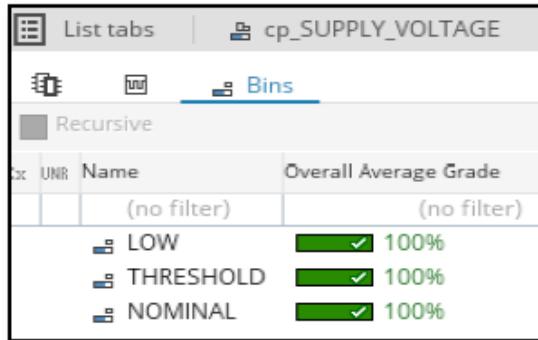
Block	Coverage Item	Functional Behavior	Specification Relevance
LDO_A	cp_LDO_A_sel	Selection bits exercised	Selection Settings
	cross_LDO_A_sel_x_SUPPLY	Impact of output voltage selection	Output response match selection setting
POR1	cross_SUPPLY_VOLTAGE_x_POR_TRIGGER	Expected POR1 triggers for different supply voltage region	Validate voltage trip window sensitivity
	cp_RAMP_TIME	Fast, Nominal and slow ramping of input supply	Capture ramp sensitivity
	cross_RAMP_DIRECTION_RAMP_TIME	Fast and slow ramping in both direction	Power Sequencing
UVA	cross_SUPPLY_VOLTAGE_x_UV_A_OUT_TRIGGER	UVA supply threshold match with output response	Expected UV condition trigger
	cross_RAMP_TIME_x_GLITCH_DETECTION	Rejection and Glitch Exercise	Corner Case Stimulus

Covergroup - example

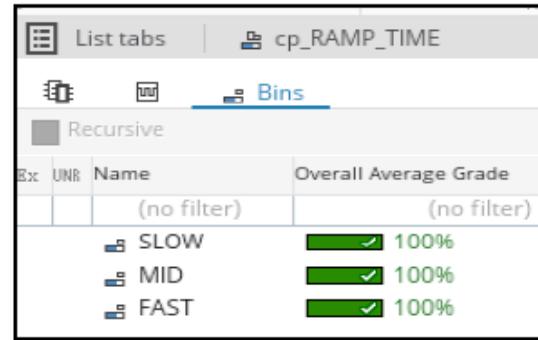
```
covergroup cg_POR_A
  option.per_instance = 1;
  cp_SUPPLY_VOLTAGE : coverpoint dut_monitor_ams_vif.POR_A_SUPPLY {
    bins LOW      = {[0.0 : POR_A_LOW]};;
    bins THRESHOLD = {[POR_A_THRESH_LL : POR_A_THRESH_UL]};;
    bins NOMINAL  = {[POR_A_THRESH_NOM_LL : POR_A_THRESH_NOM_UL]}; }
  // Coverage for how fast voltage ramps up/down
  cp_RAMP_TIME : coverpoint dut_monitor_ams_vif.ramp_time {
    bins SLOW    = {[POR_A_SLOW_RAMP_LL : POR_A_SLOW_RAMP_UL]};;
    bins MID     = {[POR_A_NOM_RAMP_LL : POR_A_NOM_RAMP_UL]};;
    bins FAST    = {[POR_A_FAST_RAMP_LL : POR_A_FAST_RAMP_UL]};}
  // Voltage ramping direction up/down
  cp_RAMP_DIRECTION: coverpoint dut_monitor_ams_vif.ramp_dir {
    bins rise = {1};;
    bins fall = {-1};}
  // Whether POR trip output asserted
  cp_POR_TRIGGER :coverpoint dut_monitor_ams_vif.POR_A_OUT {
    bins yes = {1};;
    bins no  = {0};}
  cross_RAMP_TIME_x_POR_TRIGGER: cross cp_RAMP_TIME, cp_POR_TRIGGER;
  cross_SUPPLY_VOLTAGE_x_POR_TRIGGER: cross cp_SUPPLY_VOLTAGE, cp_POR_TRIGGER {
    ignore_bins ignore_0 = binsof(cp_SUPPLY_VOLTAGE.LOW) && binsof(cp_POR_TRIGGER.no);
    ignore_bins ignore_1 = binsof(cp_SUPPLY_VOLTAGE.NOMINAL) && binsof(cp_POR_TRIGGER.yes); }
  cross_RAMP_DIRECTION_RAMP_TIME: cross cp_RAMP_DIRECTION, cp_RAMP_TIME;
endgroup: cg_POR_A
```

Cover items with bins as planned:

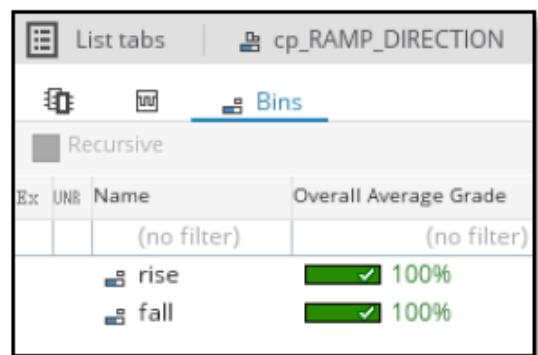
- Supply voltage
- Ramp time
- Ramp directions
- Trigger
- Crosses between the above

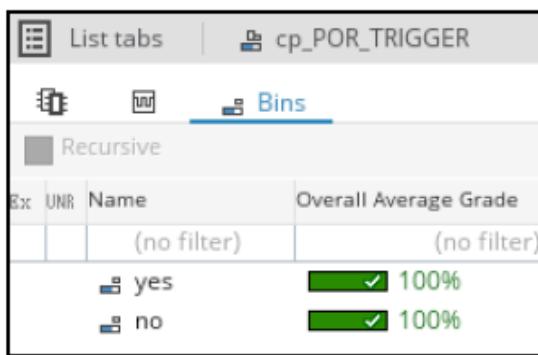

ignore_bins exclude irrelevant combinations to focus on spec-relevant cases;
e.g.: POR will always be triggered when supply reaches LOW

Simulation Flow


1. DMS runs – all analog coverage enabled
 - o RNM for speed
 - o Ideal for early-stage stimulus validation – aim 100% functional coverage
2. AMS runs – selective analog coverage enabled
 - o Schematic level simulation for accuracy – same testcases as on DMS run
 - o Coverage sampling only enabled for selected schematic IP
 - o Avoid mixing RNM and schematic data
3. Merge of all coverage database across configuration mix
 - o Reuse coverage models across RNM and schematic setups
 - o Use spec-based parameters for corner-aware AMS runs
 - o Merge results for consistent comparison and observability
 - o Avoid mixing RNM and schematic data for same IP

```
task ams_fcoverage::run_phase(uvm_phase phase);
  super.run_phase(phase);
  fork
    `ifdef AMS_SIM
    // Invoke Sample Task for Covergroups
    `ifdef LDO_A_SCHEM
      cg_LDO_A_OUT_sample();
    `endif
    `ifdef POR_A_SCHEM
      cg_POR_A_sample();
    `endif
    `ifdef UV_A_SCHEM
      cg_UV_A_sample();
    `endif
    `else
      cg_LDO_A_OUT_sample();
      cg_POR_A_sample();
      cg_UV_A_sample();
    `endif
    join_none
  endtask: run_phase
```


Results – Coverage Insights


a

b

c

d

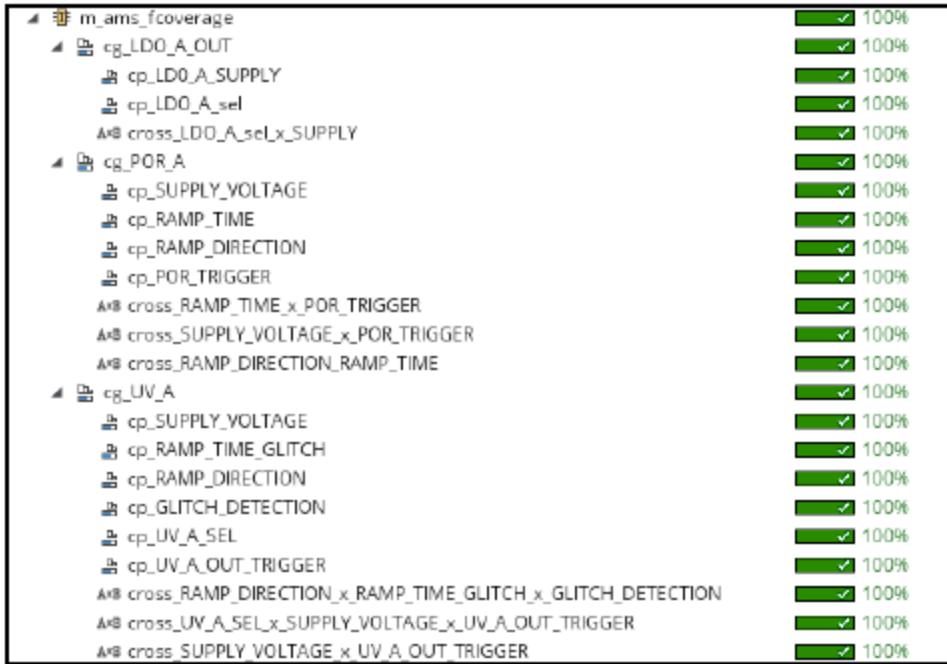
Full activation of Individual coverpoint **cg_POR_A**

- a) supply voltage
- b) ramp time
- c) ramp direction
- d) POR trigger status

Results – Coverage Insights

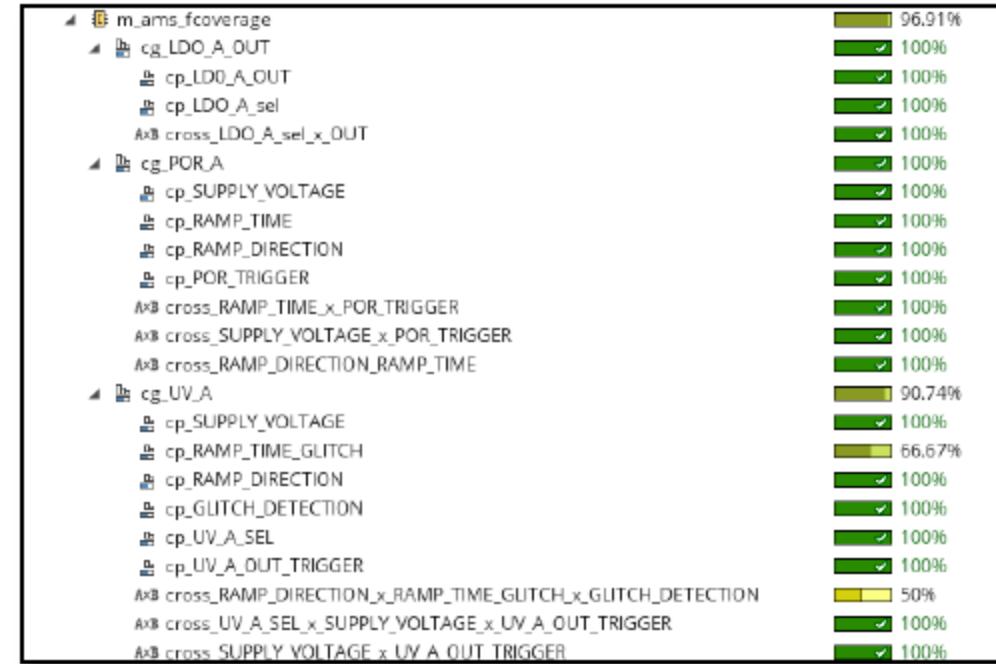
List tabs AxB cross_RAMP_TIME_x_POR_TRIGGER			
Bins		Recursive	
bx UNR	Name	cp_RAMP_TIME	cp_POR_TRIGGER
	(no filter)	(no filter)	(no filter)
↳	SLOW, yes	SLOW	yes
↳	SLOW, no	SLOW	no
↳	MID, yes	MID	yes
↳	MID, no	MID	no
↳	FAST, yes	FAST	yes
↳	FAST, no	FAST	no

a


List tabs AxB cross_SUPPLY_VOLTAGE_x_POR_TRIGGER			
Bins		Recursive	
bx UNR	Name	cp_SUPPLY_VOLTAGE	cp_POR_TRIGGER
	(no filter)	(no filter)	(no filter)
↳	LOW, yes	LOW	yes
↳	THRESHOLD, yes	THRESHOLD	yes
↳	THRESHOLD, no	THRESHOLD	no
↳	NOMINAL, no	NOMINAL	no

b

Cross-Coverage Results for POR Analog IP


- a) ramp time x por trigger
- b) supply voltage x por trigger

Results - Coverage Comparison

a

a) DMS Simulation – 100% coverage across all bins

b

b) AMS Simulation – partial coverage due to schematic-level effects

Conclusions

- Adapted digital coverage strategies for mixed-signal environments
- Unified MS-Sampler enables reusable access to analog signals
- Consistent coverage across DMS and AMS platforms AMS captures real-world effects
- Validates both functional intent and schematic integrity during pre-silicon verification

Questions

Thank you!