
IP/SoC Design, Co-Verify, Co-Validate,
Co-Everything in 90 minutes!

Nikita Gulliya, Agnisys
Neena Chandawale, Agnisys

Anupam Bakshi, Agnisys

Typical Chip Design
• Hardware of the SoC is designed by HW team

• But used by
• Verification/Emulation team
• Firmware team
• Validation team
• Software team

• How does the software interact with the IPs?
• Through the Hardware Software Interface (HSI)

• Hardware is at the core and software API is around it
• Device drivers (part of the HSI) are tedious to create

• They are written in C and Assembly

2

Introduction to a Typical SoC

3

A
PB

 S
la

ve

Sensors

A
PB

 S
la

ve

Sensors

CPU AXI /AHB Interconnect Fabric A
PB

B

ri
d

ge

A
PB

 b
u

s

Pr
o

gr
am

m
ab

le

Sl
av

e

Pr
o

gr
am

m
ab

le

Sl
av

e

Pr
o

gr
am

m
ab

le

Sl
av

e

Pr
o

gr
am

m
ab

le

Sl
av

e

Pr
o

gr
am

m
ab

le

Sl
av

e

C/C++
Program

Assembly
Slave w/
Memory

Memory

interrupts

Challenges Faced
• Design challenges

• Too much data
• Changes to data cause havoc
• Significant source of bugs
• Reusing IP

• Verification/Validation challenges
• Duplication of work across teams
• Rise in complexity of designs
• Inability to create same debug environment for multiple platforms
• Mismatch in specification and implementation

4

Challenges Faced - Contd..
• SOC design companies

• Increasing demands of design complexity and design performance
• Combining automation with flexibility to accommodate changes in

sub-systems across applications
• Driving down the cost of design for a better ROI
• Shrinking market windows
• Boosting productivity of design teams to meet shorter market

windows

5

An Ideal Solution
• Ease of generation
• Generated code should not be encrypted
• Should provide appropriate error messages
• Ability to reuse IPs

• Customizing the designs
• Configuring the designs

• Easy mechanism for generating IP blocks
• Ability to handle different bus protocols
• Handling metastability of multi clock domain designs
• Design must be functionally safe and secure

6

Creation of correct-by-construction, reusable designs, faster

Cross Platform IDE: IDS-NG

7

IDS-NG

Tcl Based
Configuration

Git
Integration

IDS-NG
Editor

IDSWord. IDSExcel,
OpenOffice Editor

ISequenceSpecTM

SystemRDL 2.0

YAML Format

Register View

Spreadsheet View

Sequence View

Param View

SystemRDL/Python
Editor

GUI

•
•

•
•

•

SOC

Capabilities of IDS-NG
• Git integration

• Creates design specifications

• Errors linking to specs are highlighted

• Hints are provided while writing sequences, checkers, etc.

• Navigators such as hierarchy view and sequence view show all

automated sequences that can be used

• Single GUI for capturing all information related to the IP/SoC

• Property panel to give values to possible properties which can be

applied to that component

8

Features Available for Designing
• Bus protocols

• The RTL generated can support different
bus protocols for high performance data
transfer among the IPs

• The protocols differentiate features such as
pipelining, burst, and split transfers

• The desired SoC bus can be selected using
the Configure button

9

Bus RTL

AMBA-AHB

AMBA3-AHB-Lite

AMBA-APB

AVALON

AMBA-AXI

AMBA-AXI4FULL

SPI

I2C

TILELINK

WISHBONE

OCP

Features Available for Designing - Contd..
• Multiple bus domains

• User can select bus domains from the configuration settings in which
the block or chip resides

• The chip/block/register can be configured to reside in multiple bus
domains

• Various domains (generally 2 or more) are described in a bus domain
template (see below) typically at the top of the document

10

Block A

RegA

RegB

AHB Bus

AXI Bus

RegA on
AMBA-AHB Bus RegB on

AMBA-AXI Bus

0X0000

0X1000

Features Available for Designing - Contd..
• Functional safety

• System is functioning correctly or not
• Human errors, environmental stress, cosmic rays, and hardware

failures should be handled properly if they occur in a design
• Designs should be addressed with mechanisms to detect and correct

the failures

11

Design Methods in
IDS

Parity

Sniffer

SECDED

TMR

CRC
Error detection
mechanisms

Error detection and
correction mechanism

Features Available for Designing - Contd..
• Functional security

• Security is one of the most important aspects of SoCs/IPs in the
Internet-of-Things (IoT) era

• Securing the SoCs/IPs is critical for providing authentication,
confidentiality, integrity, non-reproduction, and access control to the
system

• Chip designs should be secured and protected, and should not be
affected by any misconfiguration at the designer’s end

12

Design methods in IDS

Lock
Register

Protection in
sw interfaces

Advanced
Encryption
Standard

Designing IPs in IDS-NG
• IDS-NG GUI

13

Designing IPs in IDS-NG - Contd..
• Register specification

14

Define
user
registers’
settings

C Header,
Misra-C,
C Tests,
….
SystemRDL,
Register
Sequences
…

Register view:

Spreadsheet view:

Designing IPs in IDS-NG - Contd..
• Sample specification

15

Designing IPs in IDS-NG - Contd..
• Register configuration

16

Designing IPs in IDS-NG - Contd..
• Generated sample codes

17
RTL UVM

Designing IPs in IDS-NG - Contd..
• Generated sample codes

18
HTMLCHeader

Auto Generating Standard IPs
• IDS-NG can also be used to automatically

generate standard IPs (fully verified and
validated) and their APIs, also provides
add-in functionality of configurability and
customizability

19

Standard Library of IP Generator (SLIP-G)

Memory
map

Generator

Customization

RTL

API

Automatically generated based on Generation Parameters

Generation
Parameters

Auto Generating Standard IPs - Contd..
• Register specification - Automatically generated by setting

generation parameters

20

Auto Generating Standard IPs - Contd..
• Generated sample codes

21
RTL C sequence

Smart IP Integration and SOC Assembly
• A flexible and customizable

environment for design assembly
• Create, package, integrate, and reuse

IPs and SoC/FPGA
• Generic, standards compliant (IP-XACT

- now IEEE 1685-2014)
• Automatically generates integration

logic components and subsystems
• Automatically creates appropriate files

for design, verification, and software
teams

• Creates schematics for design analysis
• Runs design rule checks to ensure IP

and SoC quality

22

Assembly in GUI Mode

23

Integration using
console:

soce
help
graph
showgraph
clear
cleanWorkSpace

• Following mentioned APIs can be either used in command mode or
in a tcl script which can be further used in GUI mode

APIs Available for Assembly

24

Configuration APIs

soc_set

Input APIs

soc_read

Creation APIs

soc_create
soc_add

Generation APIs

soc_generate

Connection APIs

soc_connect
soc_promote

Graphical APIs

soc_graph
soc_savegraph

Features Available for SOC-Level Design
• SoC assembly using IDS-NG supports architectural level chip

assembly
• Ability to create and edit a design through script/command line

interface
• Automatically adds instances in the design, makes connections,

restructures, etc
• View the resulting schematics for analysis
• Runs checks and generate different output collaterals for design,

verification and software teams altogether

• Automatically generate major subsystems of an SoC design with
flexibility to customize and/or configure for accommodating changes

25

Features Available for SOC-Level Design - Contd..
• Auto generation of bus aggregators

26

IP_Block1

AHB32

HDMI
PCI

Aggregator
AHB32

AHB32

TOP BLOCK

AHB32

IP_Block2

• Auto generation of bus bridges

27

Features Available for SOC-Level Design - Contd..

IP_Block1

AHB32

HDMI
PCI

AHB to APB
Bridge

APB32

TOP BLOCK

AHB32

IP_Block2

APB32

AHB32

• Auto generation of mirrored block

28

Features Available for SOC-Level Design - Contd..

TOP BLOCK

I2C

SPI

IP_Block2

HDMIHDMI

IP_Block1

AHB32

PCI

Sample Tcl Script

29

Corresponding Schematic

30

Functional Verification

31

I
N
T
E
R
F
A
C
E

DUT

Reg1

Reg2

Reg3

Regn

 UVM Register Model

DESIRED VALUE

DESIRED VALUE

DESIRED VALUE

DESIRED VALUE

Reg2

Reg3

Regn

MIRRORED VALUE

MIRRORED VALUE

MIRRORED VALUE

MIRRORED VALUE

ADAPTER

 Reg1

PREDICTOR

Sequencer

Driver

 Monitor

 BUS AGENT

Register Model Environment

• Automatically generates UVM-RAL model and environment around it

Features Available for Register Verification
• Generates the complete UVM testbench: bus agents, monitors,

drivers, adaptors, predictors, sequencers and sequences, as well as
the Makefile and Verification Plan

• The UVM testbench is fully connected to the UVM Regmodel and
DUT, providing you with a push-button verification

• Generates 100% functional coverage out of the box with
register-focused coverage reports

• Generate sequences for special registers including lock, shadow, alias
and interrupts registers

• Ability to import IP-XACT, SystemRDL, RALF, Word, Excel, CSV, or
XML/YAML

• AMBA-AHB, AMBA-AHB3LITE, AMBA-APB, AMBA-AXI4LITE,
AMBA-AXI4FULL, and Wishbone

32

Sample Sequence
• For lock register various sequence classes are generated, one such

uvm sequence is as shown below

33

Formal Verification

34

• Automatic Generation of
• System Verilog properties and assertions to check the register access

policies etc
• Top-level file to bind the DUT RTL as well as third-party design IP with

the assertions
• Makefile or TCL command scripts
• A verification plan with ability to back-annotate these formal results

so that engineers can analyze the results
• Comprehensive C/C++ tests for Firmware/Validation

Types of Check Generated
• Protocol compliance checking of Standard buses

• AMBA-AHB
• AMBA3AHBLITE
• AMBA-APB
• PROPRIETARY
• AMBA-AXI

• Checks for repeat on address map & registers
• ARV Formal supports the following special registers

• Lock Register
• Shadow Register

• Reset checks for all fields
• Whether reset value specified in specification, also holds true for DUT

35

Sample Assertion
• Assertions for verifying special register, like lock register, is as shown

below

36

System Verification and Validation
• To test/verify a design against a given specification before the actual

tape-out to ensure functional correctness
• Involves validating the chip in a system level environment with real

software running on the hardware

37

Automatic Test Generation
• Process of sequence generation

include
• Positive and negative tests for

different access types
• Positive and negative tests to check

functionality of special register
including shadow, alias and interrupt
registers

• Test sequences can be customised to
generate 100% functional coverage
out of the box with register-focused
coverage reports

38

C Tests
• C-tests can be used to test IPs in a CPU simulation environment and

can be run on CPU that is connected to IPs
• The tool environment generates and uses standard C-tests for a

captured IP/registermap
• These C based standard tests includes

• Random value test
• Walking one tests
• Write/read 0s and 1s tests
• Special software register access test
• Special register (like lock, shadow, alias, etc) tests are generated
• Customized tests w.r.t supported properties

39

Sample C Test
• C Test are combination of read/write API’s to configure the register

and validate its firmware macros

40

These are the
customizable

read/write API’s

• UVM testbench generated automatically
• Tests from Register Map generated automatically
• Run custom sequences

Automatic Verification

41

App SW

SW Driver

Bus Layer

Register/
IP Layer

HW
App.
Layer

Project - Weather Station
• A weather station measures atmospheric parameters and shares

this data over a communication interface
• It typically has the following sensors

• Atmospheric pressure – BMP280
• Wind velocity – Tachometer pulses

42

GPIO

SPI

UART

I2C-M

TIMER

PIC

Pressure/
Temperature

Sensor

Wind
Speed
Pulses

Local
Display

Serial
Terminal

APP LOGIC

Functional Description
• Wind speed Sensor

• The total time for a round will be t
h
 x m x n,

where t
h

is cycle time for timer, n is total number
of pulses in a round and m is recorded timer
count between two pulses

• Wind velocity = (W x 1000 x 60)/(t
h
 x m x n)

• Atmospheric Pressure
• In the current design, the I2C interface is

considered for the sensor and is programmed in
Pressure mode

43

Functional Description - Contd..
• SPI Display

• To send the commands and data to the local display

• UART Terminal
• The weather station data is shared over a UART

interface with the external world
• Following is the ASCII format

#<Pressure in kg/sqcm>,<Wind velocity>

44

Directory Structure

45

Weather Station

gpio

timer

pic

i2c

spi

uart
contains gpio

block

contains timer
block

contains pic
block

contains i2c
block

contains spi
block

contains uart
block

● Contains top idsng file (containing reference to each ip)
● Contains rtl files in “idsng” directory (approx 12,730 lines)
● Contains tcl run file
● Contains graph and wrapper’s directory (containing wrapper top file, approx 240 lines) generated using soc-e

top

idsng

soce_graph

soce_rtl

app_logic

Details of Standard IPs
• GPIO

• Bus interface: APB
• Number of gpio pins: 4
• Number of input sources: 4
• Interrupt generation with

enable
• Pins are configured as input
• Edge detection mode: can be

used either in posedge or
negedge

46

Details of Standard IPs - Contd..
• TIMER

• Customised with registers to
store result value, pulse count
and wind velocity

• Bus interface: APB
• Number of TIMER: 1
• Number of input sources: 4
• Width of counter: 32-bit
• Width of prescaler register:

32-bit
• Incrementing counter mode
• Running mode to count

between two pulses
• Interrupt generation with

enable

47

Details of Standard IPs - Contd..
• PIC

• Bus interface: APB
• Number of interrupt sources:

7
• Software interface: 1
• Vectored addressing
• Interrupt clear functionality:

interrupt clear bits are packed
• Handling pending interrupt

requests: usage of register
read/write

• Single source output and
priority detection

48

Details of Standard IPs - Contd..
• I2C

• Bus Interface: APB
• data that can be transferred

per transaction: 16
• Size of slave address: 8
• By default, interrupt

generation is done via enable
• I2C IP acts in receiving mode

49

Details of Standard IPs - Contd..
• SPI

• Bus interface: APB
• Interrupt generation with enable
• SPI is configured in transmitting

mode

• UART
• Bus Interface: APB
• 8 bits are transferred per character
• Even parity is used
• 1-stop bit detection and generation
• UART is configured in transmitting

mode

50

Top Containing Standard IPs
• Contains references to the standard IPs
• RTL generated of this top is used as input while assembling designs

at SOC level

51

RTL of Top Specification

52

GPIO ports

TIMER instance
1 ports

TIMER instance
2-4 ports

PIC ports

I2C ports

SPI ports

UART ports

RTL of Top Specification - Contd..

53

TCL Script for Assembling Design at SOC Level

54

To read IPs or blocks in
different formats like
IP-XACT, RTL, IDS
supported blocks

To create the template
and the instance like
block, interface, etc

TCL Script - Contd..

55

To add an instance of an
IP/block whose template
is already present in the
memory either by using
a read api or a create api

To connect the instances
of IPs/blocks together
within a container or
connecting them with
the container itself

TCL Script - Contd..

56

TCL Script - Contd..

57

TCL Script - Contd..

58

TCL Script - Contd..

59

TCL Script - Contd..

60

Generated Wrapper File

61

• Calling standard reset APIs of IPs from top (chip-level)

Sequence Specification

62

Sequence Specification - Contd..
• Creating top sequence
• Calling reset sub-sequence and

configuration APIs of IPs

63

List of Files Generated

64

16. i2c_top.v – 218 lines

17. i2cm_byte_transfer.v – 94 lines

18. ids_top_apb_aggregation.v –
459

19. pic.v – 677 lines

20. pic_top.v – 293 lines

21. prescaler.v – 49 lines

22. spi.v – 950 lines

23. spi_core.sv – 522 lines

24. spi_rd_txn.sv – 124 lines

25. spi_wr_txn.sv – 125 lines

26. spi_wrapper.sv – 248 lines

27. sync_ff.v – 24 lines

28. timer_core.v – 214 lines

29. timer_inst1.v – 960 lines

30. timer_inst1_top.v – 175 lines

1. apb_widget.v – 80 lines

2. baud_rate_generator.v – 27
lines

3. clockgen.sv – 76 Lines

4. comp_vec.v – 80 lines

5. comp_vec_last.v – 63 lines

6. edge_detect.v – 26 lines

7. edge_detect_src.v – 30 lines

8. fifo.v – 100 lines

9. gpio.v –745 lines

10. gpio_detect_sync.v – 62 lines

11. gpio_edge_detect.v – 15 lines

12. gpio_sync_ff.v – 22 lines

13. gpio_top.v – 252 lines

14. i2c.v – 963 lines

15. i2c_block.v – 317 lines

31. timer_inst2_top.v – 172 lines

32. timer_inst3_top.v – 174 lines

33. timer_inst4_top.v – 174 lines

34. top.sv – 724 lines

35. top.v – 713 lines

36. txn_fifo.sv – 112 lines

37. uart.v – 1138 lines

38. uart_rx.v – 322 lines

39. uart_top.v – 223 lines

40. uart_tx.v – 309 lines

41. ahb2apb.v – 189 lines

42. wrapper_top.sv – 207 lines

43. wrapper_top.v – 215 lines

44. sequence related files - approx
500 lines each UVM and C

Generated Schematic

65

Generated Top IP-XACT File

66

Benefits
• Easier handling of complex and large SoC designs through Tcl like

scripts and GUI
• On-the-fly generation

• IPs and subsystems are automatically generated with support for
customization and configuration

• Unencrypted code
• Boosting productivity of SoC design teams significantly leading to

faster time-to-market for competitive advantage
• Keeps the development costs lower
• Ensures that semiconductor companies meet the stringent

time-to-market requirements for competitive advantage
• Reduces SoC design and development cost significantly

67

Questions

68

