IEEE 1801 Assisted Custom IP Development and Low Power Checks Using Cadence Virtuoso Power Manager

Matthias Steffen, Infineon Technologies
Amit Chopra, Cadence Design Systems Inc.
Agenda

• Introduction
• Supply concept and domains — Concept Level vs IP Level
• Objectives and Benefit
• Brief Overview about IEEE 1801 Format
• Importing Power Intent via UPF
• Verifying power intent against design using IEEE 1801 Export
• Conclusion
Introduction

• Complex mixed-signal IPs can have multiple internal power domains powered by internal voltage regulators.
 – Supply concept and domains may be defined top-down at conceptual level

 – The designer needs to implement them in sub-blocks with corresponding power supply architecture.

 – Power domains in mixed-signal IPs lead to higher complexity in the implementation.
Supply concept and domains – Concept Level vs IP Level

Concept Level Power Intent
- Domains, Supplies and Voltages

IP Level Power Intent
- Supply network and Voltages

Architecture Team
- Chip (1.5 V)
- MEM
- CPU 1.5 V
- Level Shifter

IP Owners
- Mixed-signal Subsystem 3.3 V
- PLL
- Interface Logic
- PMU 1.8 V 2.5 V
- ADC
- ADC Interface Logic
- PLL
- PMU
- ADC
- Clock
- Reset
- Data
- Enable
- VDD50
- VDD33
- VDD15
- VSS
- out0
- out1
- out2

concept and domains – Concept Level vs IP Level
Relevant Terms and Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Denotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPF</td>
<td>Unified Power Format</td>
</tr>
<tr>
<td>IEEE 1801-2009</td>
<td>Industry standard defining the UPF</td>
</tr>
<tr>
<td>SoC</td>
<td>System on Chip</td>
</tr>
<tr>
<td>PDK</td>
<td>Process Design Kit</td>
</tr>
<tr>
<td>VSE</td>
<td>Virtuoso Schematic Editor</td>
</tr>
</tbody>
</table>

IEEE 1801 term

<table>
<thead>
<tr>
<th>IEEE 1801 term</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Domain (PD)</td>
<td>Group of the design elements with the same power supply requirements</td>
</tr>
<tr>
<td>Supply ports and nets</td>
<td>Representation of the actual power supply lines and pins.</td>
</tr>
<tr>
<td>Supply set</td>
<td>Pairs of supply nets that belong together</td>
</tr>
<tr>
<td>Power state, power state table (PST)</td>
<td>Valid combination of voltages. Power states are grouped together in a power state table.</td>
</tr>
<tr>
<td>Level shifter rule</td>
<td>Describes a transition of a signal voltage when the driver or receiver cells run at different supply voltages.</td>
</tr>
<tr>
<td>Isolation rule</td>
<td>Describes how a signal has to react when the corresponding block is powered off.</td>
</tr>
</tbody>
</table>
Objectives

1. Propose a **new methodology for creation of supply connectivity in schematic designs**

2. Describe how the existing **static low-power checks** can be extended to cope with **mixed-signal IPs**
 - Based on IEEE 1801 format
Benefit in mixed-signal Design?

• Why would a mixed-signal designer want to use this methodology?
 – Need to manage blocks having complex supply network
 – Ease design entry process in case of multiple internal power domains
 – Need to verify mixed-signal block concerning supply connectivity, shut-off blocks and level shifters
Manual Creation of Power Supply during Design Entry

• Manual implementation process of power supply system

› power supply system specification

<table>
<thead>
<tr>
<th>IP Level Power Intent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply network and Voltages</td>
</tr>
</tbody>
</table>

› Designers create supply domains and connections according to specification

• Proposal: For complex IP let’s use a standardized format and
• Put the power intent in a machine-readable form
Brief Overview about
IEEE 1801-2009 – aka UPF 2.0

• IEEE 1801 format
 – brings a unified way to describe the structure of the power supply system as well as low power requirements in the design process

• EDA tools can cope with IEEE 1801 (UPF)

• Hence the power specification can be passed through the EDA tool chain
Importing Power Intent via UPF

- Lets move towards more design automation
- Virtuoso Power Manager (VPM) reads in UPF and generate supply connections

Required inputs
- VPM setup file
- UPF 2.0
- Standard and Special cell models

Diagram:
- PDK, Standard cell Liberty → VPM Setup → Functional Schematic → Power requirement IEEE 1801 → 1801 Import Engine VPM → Schematic with supply connectivity → VSE
- Virtuoso
Importing Power Intent via UPF – Starting point

• UPF import is applied on usual hierarchical schematic without supply connectivity
• Leaf cells have default supply definition

net expression is defined for supply nets in the schematic of all the instances
Supply connections are generated in schematic according to UPF commands

- netSet properties are created at the instance level as per 1801 file:
 - create_supply_set SS_vdd1_vss -function {power vdd1} -function {ground vss}
 - create_power_domain PD1 -include_scope -supply {primary SS_vdd1_vss}
 - create_supply_set SS_vdd2_vss
 - create_power_domain PD2 - elements {I1} -supply {primary SS_vdd2_vss}
 - set_level_shifter ls_rule -domain PD2 -applies_to_inputs -location self

- Top level supply nets as per 1801 file, with possible configuration to create ports:
 - create_supply_port vdd1
 - create_supply_port vdd2
 - create_supply_port vss
 - create_supply_net vdd1

Schematic has evaluated value based on netSet property at the instance
VERIFYING POWER INTENT AGAINST DESIGN USING IEEE 1801 EXPORT
Check the design against power intent

• Check complete design against the power intent is essential to detect errors
• In digital designs these checks are used for many years as part of the digital verification
 – Checks stop at boundaries of analog blocks
 – normally black-box models are used
Extend checks to mixed-signal designs

• Lets extend this verification method to mixed-signal designs

• Types of errors we are looking for
 – Missing isolation cells in shut-off sub blocks
 – Wrong supply connections
 – Missing level shifters
 – Enable signals wrongly driven by shut-off block
Verifying the design by exporting UPF

- Export UPF 2.0 design model by using Virtuoso Power Manager (VPM)
- The UPF model is then checked before integration at SoC level
UPF design model - Example

- UPF design model contains IP relevant details of the power architecture like internal level shifters or power states

Primary power domain of AMS core:
create_supply_net vdd_ana
create_supply_port vdd_ana -direction inout
connect_supply_net vdd_ana -ports vdd
create_supply_set SS_analog -function {power vdd_ana}
 -function {ground vss}
create_power_domain pd_ana -elements {ams} -supply {primary SS_analog}
set_port_attributes -ports in_ana -receiver_supply SS_ana
add_port_state vdd_ana -state { V110 1.1 } -state { OFF 0 }

Internal power of AMS core:
create_supply_net vdd_int
connect_supply_net vdd_int -ports ams/vdd_int
create_supply_set SS_int -function {power vdd_int}
 -function {ground vss}
set_port_attributes -ports out_ana -driver_supply SS_int
add_port_state ams/vdd_int -state { V110 1.1 } -state { OFF 0 }

Primary power domain of Digital block:
create_power_domain pd_dig -include_scope -supply {primary SS_digital}
set_port_attributes -ports out_dig -driver_supply SS_digital
set_level_shifter pd_dig_ls -domain pd_dig -applies_to inputs
 -input_supply_set SS_ana -output_supply_set SS_dig -location self -rule low_to_high
add_port_state vdd_dig -state { V130 1.3 } -state { OFF 0 }
add_port_state vss -state { OFF 0 }

Power state tables:
cREATE_PST TOP_PST -SUPPLIES [VDD_ANA VDD_DIG VSS AMS/VDD_INT]
ADD_PST_STATE STATE_1 -PST TOP_PST -STATE { V110 1.1 V130 OFF V110 }
#PST are gen. for other port states as well #
Conclusion

• We have applied two design methodologies for IEEE 1801 (UPF 2.0)

1) power supply implementation
 • VPM IEEE 1801 import automates the creation of power supply connectivity in a design

2) static low power checking on mixed-signal IP blocks
 • VPM IEEE 1801 export capability enables the extraction of power relevant data from our schematic designs and export as UPF 2.0 design model
 • The exported model enables a thorough low power checking using Conformal Low Power
Acknowledgment

• Infineon Technologies
 – Steffen Rost
 – Jürgen Karmann
 – Gernot Zessar
 – Ibrahim Khan
 – Werner Grollitsch
 – Gregor Kowalczyk
 – Thomas Cemernek

• Cadence Design Systems
 – Madhur Sharma
 – Steffen Lorenz
THANK YOU