IEEE 1801 Assisted Custom IP Development and Low Power Checks Using Cadence Virtuoso Power Manager

Matthias Steffen, Infineon Technologies Amit Chopra, Cadence Design Systems Inc. Sonal Singh, Cadence Design Systems (I) Pvt. Ltd.

Agenda

- Introduction
- Supply concept and domains Concept Level vs IP Level
- Objectives and Benefit
- Brief Overview about IEEE 1801 Format
- Importing Power Intent via UPF
- Verifying power intent against design using IEEE 1801 Export
- Conclusion

Introduction

- Complex mixed-signal IPs can have multiple internal power domains powered by internal voltage regulators.
 - Supply concept and domains may be defined top-down at conceptual level
 - The designer needs to implement them in sub-blocks with corresponding power supply architecture.
 - Power domains in mixed-signal IPs lead to higher complexity in the implementation.

Supply concept and domains – Concept Level vs IP Level

Relevant Terms and Abbreviations

Abbreviation	Denotation
UPF	Unified Power Format
IEEE 1801-2009	Industry standard defining the UPF
SoC	System on Chip
PDK	Process Design Kit
VSE	Virtuoso Schematic Editor
IEEE 1801 term	Purpose
Power Domain (PD)	Group of the design elements with the same power supply requirements
Supply ports and nets	Representation of the actual power supply lines and pins.
Supply set	Pairs of supply nets that belong together
Power state, power state table (PST)	Valid combination of voltages. Power states are grouped together in a power state table.
Level shifter rule	Describes a transition of a signal voltage when the driver or receiver cells run at different supply voltages.
Isolation rule	Describes how a signal has to react when the corresponding block is powered off.

Objectives

- 1. Propose a **new methodology for creation of supply connectivity** in schematic designs
- 2. Describe how the existing **static low-power checks** can be extended to cope **with mixed-signal IPs**
 - Based on IEEE 1801 format

Benefit in mixed-signal Design?

- Why would a mixed-signal designer want to use this methodology?
 - Need to manage blocks having complex supply network
 - Ease design entry process in case of multiple internal power domains
 - Need to verify mixed-signal block concerning supply connectivity, shut-off blocks and level shifters

Manual Creation of Power Supply during Design Entry

• Manual implementation process of power supply system

- Designers create supply domains and connections according to specification
- Proposal: For complex IP let's use a standardized format and
- Put the power intent in a machine-readable form

Brief Overview about IEEE 1801-2009 – aka UPF 2.0

- IEEE 1801 format
 - brings a unified way to describe the structure of the power supply system as well as low power requirements in the design process
- EDA tools can cope with IEEE 1801 (UPF)
- Hence the power specification can be passed through the EDA tool chain

Importing Power Intent via UPF

- Lets move towards more design automation
- Virtuoso Power Manager (VPM) reads in UPF and generate supply connections

Importing Power Intent via UPF – Starting point

- UPF import is applied on usual hierarchical schematic without supply connectivity
- Leaf cells have default supply definition

net expression is defined for supply nets in the schematic of all the instances

Importing Power Intent via UPF – generated Supply Connections

 Supply connections are generated in schematic according to UPF commands

Schematic has evaluated value based on netSet property at the instance

VERIFYING POWER INTENT AGAINST DESIGN USING IEEE 1801 EXPORT

Check the design against power intent

- Check complete design against the power intent is essential to detect errors
- In digital designs these checks are used for many years as part of the digital verification
 - Checks stop at boundaries of analog blocks
 - normally black-box models are used

Extend checks to mixed-signal designs

• Lets extend this verification method to mixed-signal designs

- Types of errors we are looking for
 - Missing isolation cells in shut-off sub blocks
 - Wrong supply connections
 - Missing level shifters
 - Enable signals wrongly driven by shut-off block

Verifying the design by exporting UPF

- Export UPF 2.0 design model by using Virtuoso Power Manager (VPM)
- The UPF model is then checked before integration at SoC level

UPF design model - Example

• UPF design model contains IP relevant details of the power architecture like internal level shifters or power states

Power state tables :

create_pst top_pst -supplies [vdd_ana vdd_dig vss ams/vdd_int]

add_pst_state state_1 -pst top_pst -state { V110 V130 OFF V110 }

#PST are gen. for other port states as well **#**

Primary power domain of AMS core :

create_supply_net vdd_ana create_supply_port vdd_ana -direction inout connect_supply_net vdd_ana -ports vdd create_supply_set SS_analog -function {power vdd_ana} -function {ground vss} create_power_domain pd_ana -elements {ams} -supply {primary SS_analog} set_port_attributes -ports in_ana -receiver_supply SS_ana add_port_state vdd_ana -state { V110 1.1 } -state { OFF off }

Internal power of AMS core :

create_supply_net vdd_int connect_supply_net vdd_int -ports ams/vdd_int create_supply_set SS_int -function {power vdd_int} -function {ground vss} set_port_attributes -ports out_ana -driver_supply SS_int add_port_state ams/vdd_int -state { V110 1.1 } -state { OFF off }

Primary power domain of Digital block :

create_power_domain pd_dig -include_scope -supply {primary
SS_digital}

set_port_attributes -ports out_dig -driver_supply SS_digital
set_level_shifter pd_dig_ls -domain pd_dig -applies_to inputs
-input_supply_set SS_ana -output_supply_set SS_dig -location
self -rule low_to_high

add_port_state vdd_dig _state { V130 1.3 } -state { OFF off } add_port_state vss _state { OFF 0 }

Conclusion

- We have applied two design methodologies for IEEE 1801 (UPF 2.0)
 - 1) power supply implementation
 - VPM IEEE 1801 import automates the creation of power supply connectivity in a design
 - 2) static low power checking on mixed-signal IP blocks
 - VPM IEEE 1801 export capability enables the extraction of power relevant data from our schematic designs and export as UPF 2.0 design model
 - The exported model enables a thorough low power checking using Conformal Low Power

Acknowledgment

- Infineon Technologies
 - Steffen Rost
 - Jürgen Karmann
 - Gernot Zessar
 - Ibrahim Khan
 - Werner Grollitsch
 - Gregor Kowalczyk
 - Thomas Cemernek
- Cadence Design Systems
 - Madhur Sharma
 - Steffen Lorenz

THANK YOU

