
How to leverage the power of MATLAB from
Functional Verification Test Benches

Tom Richter - MathWorks

Agenda

• Verification Challenges

• Why MATLAB?

• Verification options
• Co-simulation with MATLAB® on top

• Co-simulation with HDL Simulator on top

• SystemVerilog DPI component generation

• UVM testbenches and components

• Questions

Verification Challenges

• The complex nature of the design

• Time and resource limitation

• Stimulus generation

• Golden reference model creation

• Verify that the deployed algorithm works the same as the reference

• Are all requirements implemented and tested?

Why MATLAB?

• Used in many domains such as signal processing, image processing
and communications

• There, it is de facto standard language to explore, evaluate, and
design architectures and algorithms

• MATLAB environment and its add-on products:
• Intuitively learnable high-level programming language

• Huge library of Functions, Classes, and System Objects

• Diverse visualization options

• Many apps, functions and objects for signal generation

Requirement Implementation and Testing

• MathWorks offers also tools to
• associate requirements with MATLAB code and

• plain-text external code, such as C code,

• This is achieved by
• creating selection-based links with the Requirements Editor or

• creating links programmatically at the MATLAB command line.

• Verify requirements with MATLAB code by creating links to MATLAB
unit tests and running the tests

• View and edit links to code

Stimulus - Wireless Waveform Generator App

Certain MATLAB add-on come with rich features for waveform
generation, full system simulation, and visualization.

• Waveform Generator App from
5G Toolbox offers:
• Off-the-shelf waveforms : NR-TMs/FRCs

• Custom downlink & uplink waveforms

• CCDF measurement

• Export waveform or generate code

Verification with MATLAB and Simulink

• Early verification and prototyping capabilities
• FPGA-in-the-loop on FPGA and SoC boards

• Automated insertion of probes into FPGA netlists for viewing and analysis

• Hardware-based testing through read/write access to AXI registers and DDR

• Capabilities for functional verification
• Co-simulation with HDL simulators from Siemens® EDA, Cadence®, and AMD®

• SystemVerilog DPI components and testbenches from MATLAB and Simulink

• Universal Verification Methodology (UVM) testbenches and components

Three ways to do Co-Simulation in MATLAB

There are three options to achieve co-simulation with MATLAB
by using a MATLAB:

• System Object hdlverifier.HDLCosimulation or hdlcosim

• Callback function in combination with the instance matlabtb

• Callback function in combination with the instance matlabcp

MATLAB on Top - Workflow

Using a Co-Simulation System Object is considered to be a
“MATLAB on top – workflow”:

• MATLAB will be the manager
• Creates stimuli for the device under test (e.g.: manually written RTL)

• Controls the compilation of the HDL files

• Launches the HDL simulator tool (GUI or batch mode)

• Sends stimuli to the HDL simulator continually (sample or frame based)

• Receives simulated data from the HDL simulator

• Compares, visualizes, or postprocesses the received data

Example – Verify a Viterbi Decoder (VVD)

The Viterbi decoding algorithm is still used in space communications,
voice recognition, …, and DNA sequencing. Assume:

• The algorithm was developed and tested in MATLAB

• VHDL code was manually written following the same specs

• You think about reusing the MATLAB code for verification

BER
(post-calculation)

Viterbi Decoder
(DUT)

Example VVD – Reference Algorithm

• System design

• Write code (unstructured, floating point)

• Test algorithms

Example VVD – Refine Reference Algorithm

• Research on algorithm implementation

• Write code (unstructured, fixed-point)

• Test algorithm against reference

Example VVD – Streaming Algorithm

• Research on IP requirements

• Refine code (streaming, fixed-point)

• Test algorithm against unstructured
fixed-point reference

Example VVD – Integration Decision

Depending on your final target (FPGA/ASIC/SoC) and preferences you
may now decide how to resume in the integration process.

• Manually writing RTL code

• High-level synthesis

• Automatic code generation, e.g.: HDL CoderTM :
• Synthesizable VHDL, Verilog, and SystemVerilog code

• Fully generic, target independent, readable, and traceable

• Synthesizable SystemC code and testbench for StratusTM HLS

• Support for vertical products for AI, DSP, Comms, and Vision

https://www.mathworks.com/products/hdl-coder.html

Example VVD – Prepare Co-Simulation

The Cosimulation Wizard helps you with:

• Creating a MATLAB System Object or
callback function from a template

• Preparing the tcl-commands
for the HDL simulator

Adapt the generated files for your needs

Example VVD – Launch HDL Simulator
• Modify the System Object code if necessary

• Launch the HDL Simulator (that compiles the code and sets up the tool)

Example VVD – Run Co-Simulation
• Create a loop to run the whole transceiver chain

• Compare the results with the simulation reference

HDL Simulator on Top - Workflow

Using callback functions in MATLAB and instances like matlabtb or
matlabcp made known to the HDL Simulator we call the workflow
“HDL Simulator on top ”:

• MATLAB just works in the background
• It needs to run the HDL Link MATLAB server using shared memory inter-

process communication

• HDL Simulator controls the whole simulation
• Triggers the callback function in MATLAB

• Sends/requests data to/from MATLAB

Component vs. Testbench
matlabcp matlabtb

Test your HDL code in an HDL Simulator but a certain
component which does not yet exists in HDL will be
simulated through MATLAB. Testbench exists in EDA tool.

Drive stimuli from MATLAB to an HDL component and send
the output back to MATLAB. Testbench exists in MATLAB
but is controlled (called) from the HDL Simulator.

It sends output from HDL Simulator to MATLAB and receives
input to HDL from Simulator MATLAB

Acquire input to HDL Simulator from MATLAB and send
back output from HDL Simulator to MATLAB

Implement Filter Component of Oscillator in MATLAB Cosimulation for Testing Filter Component Using MATLAB Test Bench

https://www.mathworks.com/help/releases/R2022b/hdlverifier/ug/implementing-the-filter-component-of-an-oscillator-in-matlab-2.html
https://www.mathworks.com/help/releases/R2022b/hdlverifier/ug/batch-mode-cosimulation-for-testing-a-filter-component-2.html

Example – MATLAB Filter Component (MFC)
The following steps are required to create and test a MATLAB component that
can be used from an HDL Simulator:

• Generate a Callback Template

• Integrate your MATLAB function into
the template files

• Modify the generated tcl-file

• Start the HDL Link MATLAB server

• Run existing testbench in HDL Simulator

Example (MFC) – Cosimulation Wizard
The Cosimulation Wizard helps again with:

• Creating a callback function from a template

• Preparing the tcl-commands

Example (MFC) – Callback Template
Two options for MATLAB component function writing:

• Using the HDL Instance Object (used for the template)
• MATLAB function prototype: function matlabFuncName(obj)

• Object field examples:
• obj.portvalues, obj.tnow,

obj.userdata, obj.simstatus,

obj.argument, obj.portinfo

• TCL command: matlabcp hdlInstanceName -mfunc matlabFuncName

-use_instance_obj

• Using Port Information
• MATLAB function prototype:
function [oport, tnext] = matlabFuncName(iport, tnow, portinfo)

• TCL command: matlabcp hdlInstanceName -mfunc matlabFuncName

Example (MFC) – Run Co-Simulation
Run the HDL Link MATLAB server for communi-
cation between the HDL simulator and MATLAB:

• In an open MATLAB session run:
>> hdldaemon

• You can also open a MATLAB session in batch mode:
• Windows cmd: matlab -nodesktop -r "hdldaemon"

• Linux shell: xterm -e "matlab -nodesktop -r "hdldaemon"" &

• Start the cosimulation
• Windows cmd: vsim -do qcommands_osc_w.tcl

• Linux shell: vsim -do qcommands_osc_l.tcl
(here ModelSim was used)

SystemVerilog – DPI Component Generation
• Export a MATLAB function as a component with a direct programming

interface (DPI) for use in a SystemVerilog simulation
• MATLAB Coder is used for generating C code with a DPI wrapper

• The DPI wrapper communicates with a SystemVerilog interface function

• The SystemVerilog component can be used within a SystemVerilog testbench

• Get DPI component shared library for:
• Linux (.so) or Windows (.dll)

• Templates to influence component
• Sequential – sequential design, with registers

• Combinational – with no registers

• Different choices for port data types

Example – Sine Wave Generator (SWG)
The following steps are required to generate a SystemVerilog DPI component:

• Prepare a MATLAB function for code generation

• Create a MATLAB testbench file (optional)

• Define and set a configuration object (optional)

• Generate the component using dpigen

• Verify your component with a generated
testbench (optional)

Example (SWG) – Prepare Function
Before generating the component from MATLAB code ensure to:

• Initialize variables and define them on all execution paths

• Define static variables as persistent (states, registers)

• Avoid dynamic memory allocation for efficiency
• Rather use fixed-size arrays and variable-size arrays (size < threshold)

• To identify issues:
• Use %#codegen pragma to instruct the MATLAB Code

Analyzer to help with finding and fixing violations

• Run the Code Screener

Example (SWG) – MATLAB Testbench
A MATLAB testbench is an optional file. However, it helps with:

• Defining port
• data types,

• sizes, and

• complexity

• Testing and debugging
the MATLAB function

• Verifying the generated component

Example (SWG) – Configuration
• Create a svdpiConfiguration object

• The default configuration points to the templates for a
sequential module (component and testbench template)

• Change component and testbench name, and SystemVerilog port types

Example (SWG) – Component Generation
Use the dpigen function to generate the component artefacts. You can:

• Define the MATLAB function and optionally the MATLAB testbench

• Provide sample data for input arguments

• Set a configuration object or separately:
• Custom include files

• Compiler options

• SystemVerilog Port data types

• Component templates

• Generate and launch a code generation report

ML function ML testbench Double DT CfgObj

Example (SWG) – Package Required Files
With the packNGo function you can zip all the required Files.

• Easily share the generated artefacts

• Get only files necessary

.

.

.

packNGo(buildInfo)

Testbench Data

Shared Library

SystemVerilog Testbench

SystemVerilog Component

Example (SWG) – Verify Component
When generating the component including testbench
you can directly verify it with an HDL simulator

• A *_tb.sv file is generated together with
data files for stimuli and expected output

• tcl-scripts provided for compiling
and running the testbench in:
• ModelSimTM/QuestaSimTM

• Cadence® XceliumTM

• Synopsys® VCSTM

• AMD® VivadoTM

.

.

.

UVM Component Generation from MATLAB
In addition of generating a general SystemVerilog DPI component, further
template files enable also the generation of UVM components.

• Can integrate into a full UVM testbench

• Templates for component and testbench:
• Predictor

• Sequence

• Scoreboard

UVM – Predictor component
The predictor template generates a UVM predictor module that has:

• an export that inputs a predictor transaction, and

• an analysis port that outputs a scoreboard transaction.

• The predictor template includes these variables:
• ComponentTypeName

• TestBenchTypeName

• ComponentPackageTypeName

• InputTransTypeName

• OutputTransTypeName

UVM – Sequence component
The sequence template generates a UVM sequence module.

• It includes these variables:
• ComponentTypeName

• TestBenchTypeName

• ComponentPackageTypeName

• SequenceTransTypeName

• SequencerTypeName

• SequenceCount

• SequenceFlushCount

UVM – Scoreboard component
The scoreboard template generates a UVM scoreboard module that has two
exports that input a scoreboard transaction.

• The scoreboard template includes these variables:
• ComponentTypeName

• TestBenchTypeName

• ComponentPackageTypeName

• InputTransTypeName

• OutputTransTypeName

• ConfigObjTypeName

• Map ports to port groups by using
the addPortGroup object function.

Example – Sine Wave Check (SWC)
The following steps are required to generate a UVM component:

• Prepare a MATLAB scoreboard function

• Create a MATLAB testbench file (optional)

• Define a configuration object (required)

• Provide UVM settings to the cfgobj

• Specify which port belongs to which port group

• Generate the component using dpigen

• Verify your component with a generated
testbench (optional)

Example (SWC) – Scoreboard Function
Before generating the component from MATLAB code do the preparation
steps necessary for SystemVerilog DPI components.

• Write a scoreboard function that compares
• output of the DUT with

• output of a golden reference

• Inputs are from Monitor and Predictor. Configurations are inputs, too.

Example (SWC) – Configuration for UVM
• Create a svdpiConfiguration object and then change:

• Change the kind of the component, and

• Optionally the component name

• Check and optionally change
through the Template Dictionary
• Name of component package file

• Name of input/output transition

• Name of configuration object

• Specify which port belongs
to which port group

Example (SWC) – Generate and Verify
Use the dpigen function to generate the component artefacts.

Test the UVM component using the generated SystemVerilog testbench and
tcl-file.

ML function ML testbench Samples as Arrays with Double DT CfgObj

FPGA/ASIC/SoC Workflow Adoption

MATLAB
Floating-

point,

Unstructured

MATLAB
Fixed-point,

Unstructured

MATLAB & Simulink
Fixed-point,

Streaming IP

Architecture

MATLAB & Simulink
Fixed-point,

Streaming System

Architecture

SV Export, or

MATLAB

Cosim*

SV Export, or

MATLAB

Cosim*

SV Export,

or Simulink

Cosim*

SV Export,

or Simulink

Cosim*

MATLAB & Simulink
Model V&V in Simulink

Fixed-point

Streaming System

Architecture

Rapid

Prototype

on FPGA

HDL for

FPGA,

SoC, or

ASIC

SV Export,

or Simulink

Cosim*

HDL for

High

Integrity

FPGA and

ASIC

Modelling Adoption

EDA Verification Integration Adoption

Code Generation Adoption
* Cosim with EDA simulators (Siemens,

Cadence) or FPGA-in-the-Loop (FIL)

Questions

	Slide 1: How to leverage the power of MATLAB from Functional Verification Test Benches
	Slide 2: Agenda
	Slide 3: Verification Challenges
	Slide 4: Why MATLAB?
	Slide 5: Requirement Implementation and Testing
	Slide 6: Stimulus - Wireless Waveform Generator App
	Slide 7: Verification with MATLAB and Simulink
	Slide 8: Three ways to do Co-Simulation in MATLAB
	Slide 9: MATLAB on Top - Workflow
	Slide 10: Example – Verify a Viterbi Decoder (VVD)
	Slide 11: Example VVD – Reference Algorithm
	Slide 12: Example VVD – Refine Reference Algorithm
	Slide 13: Example VVD – Streaming Algorithm
	Slide 14: Example VVD – Integration Decision
	Slide 15: Example VVD – Prepare Co-Simulation
	Slide 16: Example VVD – Launch HDL Simulator
	Slide 17: Example VVD – Run Co-Simulation
	Slide 18: HDL Simulator on Top - Workflow
	Slide 19: Component vs. Testbench
	Slide 20: Example – MATLAB Filter Component (MFC)
	Slide 21: Example (MFC) – Cosimulation Wizard
	Slide 22: Example (MFC) – Callback Template
	Slide 23: Example (MFC) – Run Co-Simulation
	Slide 24: SystemVerilog – DPI Component Generation
	Slide 25: Example – Sine Wave Generator (SWG)
	Slide 26: Example (SWG) – Prepare Function
	Slide 27: Example (SWG) – MATLAB Testbench
	Slide 28: Example (SWG) – Configuration
	Slide 29: Example (SWG) – Component Generation
	Slide 30: Example (SWG) – Package Required Files
	Slide 31: Example (SWG) – Verify Component
	Slide 32: UVM Component Generation from MATLAB
	Slide 33: UVM – Predictor component
	Slide 34: UVM – Sequence component
	Slide 35: UVM – Scoreboard component
	Slide 36: Example – Sine Wave Check (SWC)
	Slide 37: Example (SWC) – Scoreboard Function
	Slide 38: Example (SWC) – Configuration for UVM
	Slide 39: Example (SWC) – Generate and Verify
	Slide 40: FPGA/ASIC/SoC Workflow Adoption
	Slide 41: Questions

