
How to Avoid the Pitfalls of Mixing How to Avoid the Pitfalls of Mixing How to Avoid the Pitfalls of Mixing How to Avoid the Pitfalls of Mixing

Formal and Simulation CoverageFormal and Simulation CoverageFormal and Simulation CoverageFormal and Simulation Coverage
Mark Eslinger, Siemens

Joseph V Hupcey III, Siemens

Nicolae Tusinschi, Siemens

Sound Familiar?

“I want to see coverage data from all

sources combined into a single report,

so we can see our progress at-a-glance.”

Introduction

• The goal: Use multiple verification strategies to ensure the Device Under
Test (DUT) behaves as specified

• The challenge: comparing and combining the results from each
verification strategy to the verification plan

• The most common request: merging simulation and formal coverage

• The most common problem(s): understanding what formal coverage is,
proper merging of formal and simulation coverage data

Re-Cap: Simulation Coverage

• Code coverage

• The % of RTL code that have been executed by test(s)

• “Dead” / “Unreachable” code could imply a bug

• Says nothing about DUT conformance to the specification

• Functional coverage

• Metric of how much design functionality has been exercised

• Spec./functional feature mapped to a “cover point”

• Goal is 100% coverage conformance to specification

Brief Digression:
Formal Results Are Valid for All Inputs & All Time

Analogy

Finding solutions to ax2 + bx + c = 0

• Constrained-random simulation approach:

Randomly plug-in numbers in the hope you eventually satisfy the equation

• Formal approach:

 The formal solution is valid for all inputs and all time  it is exhaustive

for all values of t

Formal Coverage

Reachability

• A sequence of input signals which can reach the coverage element

Observability

• All possible state space paths from a selected node to signals in an assertion

Structural Cone of Influence (COI)

• All logic from a specified node back to the primary inputs

Mutation

• Automatically inserted “mutations” in the DUT cause an assertion failure

Pitfalls of Merging Sim & Formal Coverage

• #1 Caveat: just because something is “covered” doesn’t mean it’s properly verified

• Simulation coverage only reflects specific forward paths the simulation has
traversed from the inputs through the state space, for a specific set of stimuli

• Some types of formal coverage also reflect a “forward traversal” from the inputs,
but often the amount of logic “covered” is greater than simulation

• Other types of formal coverage “works backwards” from an output

• Code coverage from simulation represents end-to-end cluster/SOC level testing,
while formal is typically run at the block level

Example 1: Basic Sim. Vs. Formal Code Coverage

INPUTS OUTPUTS

Sel A B C

00 0 0 0

01 1 0 0

10 0 1 0

11 0 0 1

Focusing on output B requirement:

B output is a pulse

Property: B => !B

Example 1: Basic Sim. Vs. Formal Code Coverage
Simulation Formal

Coverage includes

logic not related to

satisfying the

requirement

Coverage only

includes logic

related to

satisfying the

requirement

Example 2: Sim. Vs. Formal FSM Code Coverage

The following property was run in simulation and formal against a Verilog model of this state machine:

a_mout_mutex: assert property (@(posedge clk) $onehot0(mout));

Simulation was run with one value of the select signal used which exercised the output

The property passed in simulation and was proven in formal

Example 2: Sim. Vs. Formal FSM Code Coverage
Simulation Formal

Simulation run

with sel = 1,

uses 3 states of

the FSM and

more

Formal only

needs the final

logic for the full

proof, no FSM

needed

Example 3: Closing Code Coverage Holes
Simulation

Good news:

Only one coverage

hole remains after

simulation

Specification:

Outputs are mutex-based on

an encoding of the 3 inputs

Example 3: Let’s Quickly Close This …

a_bogus: assert property (@(posedge clk) in1 |-> n1);

Formal

Formal coverage

shows the first

two lines are

covered

Merge Formal + Sim

Merged formal +

sim is 100% Green!

Great news, right?

Example 3: Not so fast … Look at the Property

• This property is actually useless – it tests nothing

• It is not tied to a testplan, or to the verification of any design requirements

a_bogus: assert property (@(posedge clk) in1 |-> n1);

A better approach:

a_good: assert property (@(posedge clk) $onehot0({A,B,C}));

The design requires the 3 outputs to be mutex, thus a more

useful property which checks this requirement is:

Example 3: NOW the Requirement Is Proven
a_good: assert property (@(posedge clk) $onehot0({A,B,C}));

Formal

This formal coverage

result reflects

requirements and can

be merged with sim

Example 4: 100% Coverage – But There is Still a Bug!
Simulation Formal

Both sim AND formal

are 100% Green!

Great news, right?

Specification:

• Outputs are mutex-based --

check the ‘out1’, ‘out2’ signals

• The FSM to only be in state 2

for no more than 3 cycles

Example 4: Not So Fast …

All the code is traversed, BUT the functional behavior is incorrect!

Recall the key requirement:

“the FSM to only be in state 2 for no more than 3 cycles”

a_st2_3_max: assert property (@(posedge clk) disable iff (!rstn)

$rose(st2) |-> ##[1:3] !st2);

Solutions

A) Have the forethought to manually write and include the following assertion

B) Use automated Mutation coverage

Example 4: Using Mutation Coverage to Reveal

Bugs in 100% Covered DUTs

Mutation coverage

reveals the missing

requirement and related

test from the testplan

Mutation coverage

reveals the missing

requirement and related

test from the testplan

Mutation coverage

reveals the missing

requirement and related

test from the testplan

Mutation coverage

reveals the missing

requirement and related

test from the testplan

Mutation coverage

reveals the missing

requirement and related

test from the testplan

case (cstate)

…

ST1: if(sel)

nstate <= ST2;

…

modifymodify

nstate <= v; nstate <= v;

Detection
Coverage
Detection
Coverage

case (cstate)

…

ST1:

if (sel)

done_o <= 1

…
activeactive

Control
Coverage
Control

Coverage

nstate <= ST2

Summary of Formal vs. Sim Coverage Differences

Formal Code Coverage Simulation Code Coverage

Property based Vector based

Exact: Only logic used in proof is covered Generous: Whatever a vector hits, is covered

Covered logic only related to proof Covered logic may be unrelated to test

Only needed statements in a block covered All statements in block covered by default

Calculated from synthesized netlist Calculated from RTL (may include testbench)

Formal uses abstractions – impacts coverage No abstractions used

Qualify input constraints used in a proof Input constraints only impact reachability

Reachability analysis used for exclusions Reachability analysis used for exclusions, done

with formal (CoverCheck)

Recommendations
• Close code coverage for each verification engine separately

• Focus on improving testbench completeness and robustness in each domain

• In the formal domain run both proof core and mutation coverage to check testbench completeness

• Use test planning to assign which verification engine verifies which parts of the design
• When mixing formal and sim coverage, try to keep it to instance boundaries

• Have peer reviews of coverage to ensure short cuts are not being taken

• Know where your code coverage comes from: Formal vs. Simulation
• Keep code coverage data from each domain separate in the main coverage database

• The reporting must also make it clear where the coverage data came from

• Avoid adding targeted tests/properties to trivially get to 100% coverage
• Coverage holes point to an incomplete testplan, and ultimately an incomplete/weak testbench

• When adding properties to close code coverage holes, testplan design requirements is your guide!

Summary

• It is possible to combine the strengths of simulation and formal to
ensure that your DUT behaves as specified

• Understanding how sim and formal coverage metrics work in isolation –
and how they combine – provides a holistic picture of your verification

• Mutation analysis coverage is a powerful tool to make sure 100%
coverage doesn’t fool you into missing bugs in your testbench

Questions?

