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Abstract - This paper describes Hopscotch, a novel flow-graph based scalable framework used to formally specify and 
verify a complex RTL implementation of Arm v8.5 Memory Tagging Extension (MTE) functionality on the Load-Store 
unit of a high-performance Arm CPU. 
 

GLOSSARY 
CPU: Central Processing Unit 
DUT: Design-Under-Test 
E2E: End-to-End 
GO: Globally Observed; the point at which the effects of a read or write operation become visible to all observers 
IVA: Initial-Value Abstraction 
LSU: Load-Store Unit in a CPU that manages all load and store operations 
MTE: Memory Tagging Extension (Arm v8-A Architecture) 
OC: Over-Constraint 
Store-Exclusive: A type of Store instruction in the Arm architecture used to obtain Exclusive access to a location in 
memory, paired with a Load-Exclusive instruction (and guarded by an Exclusive-Monitor) 
TB: Testbench 



I.   INTRODUCTION AND OVERVIEW  
 

A. Load-Store Unit  
 
The Load-Store Unit (LSU) is typically the most complex (by an order-of-magnitude) unit in a high-performance 

superscalar, out-of-order, cache-coherent CPU and presents unique challenges to verification. Formal verification is 
no exception.  

 
B.  Design and Formal Complexity 

In theory, formal techniques are well-suited to exploration of extreme corners that arise from the asynchronous 
nature of out-of-order issue of memory access of multiple types, attributes etc. as well as cache-coherence traffic.  

 
However, the sheer amount of logic and state dedicated to implementing this functionality in RTL as well as state-

tracking require to correctly constrain related interfaces also creates state-space explosion for formal tools (reflected 
by first-order measures of sequential complexity such as design and testbench flop-counts).  

 
For any high-level assertions written naively to verify end-to-end behavior, this complexity inevitably severely 

limits both stimulus coverage and the adequacy of proof bounds achievable. 
 

C.  Complexity Mitigation 
Well-known mitigation techniques e.g., case-splitting, deep abstractions, design-mutations, helper-invariants etc. 

can be quite effective in reducing this complexity even as they come with their own set of costs and tradeoffs.  
 
Nevertheless, achieving required proof-depth can still be a challenge for high-level checkers for key architectural 

and microarchitectural behaviors using state-of-the-art tools, even after applying these techniques. 
 

D.  A Fresh Approach 
To address this challenge, we have developed a unique framework called “Hopscotch”, which enables us to (A) 

formalize and abstract the specification of distinct execution-flows in a design in terms of execution events and their 
ordering relationships and (B) use this formalism to decompose the formal verification problem and increase its 
tractability.   

 
E.  Overview 

 
The rest of this paper is divided into 7 key sections: 
 

1. First, we introduce key architectural principles and components of the Load-Store formal testbench 
environment. 

2. Second, we provide more details of existing complexity-mitigation strategies deployed to achieve better 
formal coverage. 

3. Third, we present an overview of the Memory-Tagging Extension (MTE) of the Arm architecture, its 
microarchitectural implementation and its verification complexity, all in the context of our effort to 
formally verify this feature. 

4. Fourth, we describe the rationale behind (including the choice of graph-based implementation for) the 
Hopscotch framework used to rapidly create and easily maintain abstracted event-based specifications of 
design functionality as well as build and test a set of interlocking component checkers to verify the former. 

5. Fifth, we present a detailed description of our key contributions: Hopscotch as a structured methodology, 
which also addresses the scalability problem by allowing decomposition of scope for both specifications 
and checker along two additional axes: the set of distinct execution flows supported by the design and the 
set of required (or allowable) execution events along each execution flow. 



6. Sixth, we present a case-study of the application of Hopscotch methodology to verify the implementation 
of MTE functionality for Store-Execution in the Load-Store Unit of an Arm CPU. We also discuss results 
from this implementation, including a sample of representative design bugs found. 

7. Finally, we discuss the current limitations of and potential future improvements and extensions to the 
Hopscotch methodology. 

 
 

II.   EXISTING APPROACH TO END-TO-END CHECKING 
 

A. End-to-end Verification Principles, Primitives and Components 
 
The key design principles of the Load-Store E2E formal environment (see Figure 1 below) are (A) Separation of 

Concern: Each component implements a single clearly defined function. Interfaces across components are clean and 
well-defined. and (B) Hierarchical Information Flow: For a given formal trace, the set of choices/values non-
deterministically generated by oracles uniquely determine a specific Trace-Scope of Checker/DUT activity. The lower 
layers of the testbench pass an abstracted view within the Trace-Scope into the upper layers and filter out observations 
of DUT activity outside of it. 

 

 
 
Fig. 1. E2E Formal Testbench Architecture 

 

We provide formal definitions of the non-deterministic building-blocks of the Load-Store E2E environment below: 
 

• Choice-Variables represents one of A) the value of a DUT signal or bus directly visible to (controllable 
and/or observable by) the formal environment, B) active E2E formal checker selection (including case-split 
attributes) and C) abstraction behavior or policy selection.  

• An Oracle or a Free Variable can be used to generate arbitrary but legal (constrained) values for a Choice-
Variable. These provide a way to generalize the formal analysis, considering cases involving each possible 
value of the variable all at once. When the formal environment contains some level of symmetry to be 
exploited, these variables can significantly increase the efficiency of formal analysis [4]. A legal value 
delivered by an Oracle per invocation is called a Value-Binding.  

• A coherent grouping of such Oracles that generate mutually consistent Value-Bindings under a specified 
context via a network of constraints is known as a Compound Oracle. Its function is to filter design activity 



visible to, tracked by or checked by formal abstractions and/or checkers respectively. It is typically held 
stable across a given trace e.g., restricted to specific addresses/translations, ops, flows etc. 
 

F. Oracle-based Event Filtering Approach 
 
Figure 2 below lists the key Compound Oracles that collectively determine the specific Trace Scope visible to a 

given check in the E2E environment. 
 

 
Fig. 2. Key Oracles 

 

G. E2E Testbench Components 
 
The E2E Event Monitor is a low-level, stateless, filtering component and has three functions: (A) Listener monitors 
various interfaces for events of interest (B) Filter selects only events that match the Value-Bindings selected to by the 
respective Compound Oracle and (C) Broadcaster bundles up filtered events into transactions and passes them to 
other components. 

 
The key E2E state-tracking components are (A) Scoreboard, which tracks filtered requests and their state e.g., loads, 
stores, snoops, barriers etc. (B) Model, which models Tracked Cache-line’s Coherence-State and Data (bit) and allows 
for valid State/Data IVA (bound to Oinit), It also models an Abstract Store-Buffer Model and Abstract Merge-Buffer 
Model for the Tracked Line & Data. (C) Abstraction Controller: enforces consistency required across Value Bindings 
in E2E Checkers, Abstraction Models and IVAs. It is implemented via an assume network, supported by a lightweight 
tracker. 
 
 

III.   PAST COMPLEXITY MITIGATION MEASURES 
 
These include the following interventions: 
 

• Formal Abstractions include abstraction models, initial-value abstractions as well as abstractions for 
prediction structures, counters and configuration registers. 

• Design Mutations include those for ID widths (shrinks both design size and interface trackers), buffer sizes, 
counter widths (watchdog timers, arbitration saturation counters). Multiple design configurations resulted 
in state-element count reduced by an order-of-magnitude (variable), including a 4-5X reduction in build 
time for smallest config. 

• Structured Case-Splitting is implemented for key, hard E2E checkers. Full proofs were achieved for 
extreme case-splits, further accelerated by a handcrafted suite of helper assertions. Each case-split variable 
enables sensitivity analysis by measuring its effect on proof-convergence and indirectly, its contribution 
to formal complexity. 



• Over-Constraint based Complexity Management is implemented using both static and dynamic 
approaches) (A) Static Transaction-Limiting Profiles: Create a reference set of OCs from a combination 
of stimulus at interfaces, checker-selection oracles, abstraction-policy oracles etc. Limiting include 
disabling specific types of stimuli, limiting number of transactions of each type of enabled stimulus, 
narrowed/unique choice of oracle values etc. Map each OC into corresponding `define, concatenate 
`defines into a set of named, unique “profiles”, which are allowed to be specified at build time (B) Dynamic 
OC-Recombining: Create a static pool of weighted, abstracted OCs with attributes, value distributions, and 
cross-dependencies (e.g., affinity, mutual-exclusion). On each invocation, the Loc-K-Picker tool picks a 
random set of a minimum number (“K”) of mutually consistent, concretized Local Over-Constraints, based 
on a solution to the Knapsack Problem. This can be dynamically (including interactively) applied on a per-
task basis such that each task/proof-thread gets a unique set of selected OCs. 

• Complexity Hotspot Detection and Mitigation: Several tool-specific techniques have been deployed to 
diagnose and remedy complexity bottlenecks (including dead-ends). Discussion of these techniques is 
outside the scope of this paper. 

 
 

IV.   ARM® MEMORY-TAGGING EXTENSION, DESIGN IMPLEMENTATION AND VERIFICATION 
COMPLEXITY 

 
A. Arm® Memory-Tagging Extension (MTE) Overview 
 

The Arm® Memory-Tagging Extension (MTE) [2,3] aims to increase the memory safety of code written in unsafe 
languages without requiring source changes or, in some cases, recompilation. Easily deployable detections of and 
mitigations against memory safety violations may prevent a large class of security vulnerabilities from being 
exploitable. 

 
Memory unsafe languages allow unintended data corruption or unauthorized access to sensitive data. Violations of 

memory safety fall into two main categories: spatial safety and temporal safety. MTE provides a mechanism to detect 
memory safety violations of both spatial safety (e.g., bounds overflow) and temporal safety (e.g., out-of-scope access 
to reallocated memory. 

 
MTE implements lock and key access to memory. Locks can be set on memory and keys provided during memory 

access. If the key matches the lock, the access is permitted. If it does not match, an error is reported. Memory locations 
are tagged by adding 4 bits of metadata to each 16 bytes of physical memory, which forms a Tag Granule. Tagging 
memory implements the Lock. Pointers, and therefore virtual addresses, are modified to contain the Key. MTE relies 
on the Lock and the Key being different to detect memory safety violations.  
 
Algorithm: (A) Assign a color (“tag”) to each memory allocation (B) Store color in unused high bits of address used 
to reference that location (pointer) (C) Match color for each reference against stored color prior to access (D) 
Reassign color when freeing allocation. 
 

B. MTE Nomenclature 
 
To disambiguate "Data" Address Tags in the L1 cache 
from Logical Allocation Tags and Physical Allocation Tags, we abbreviate the former to DAT and the latter to LAT 
/ PAT.  Checked and Unchecked accesses are abbreviated as CHK and UCHK respectively. We Abbreviate Precise 
and Imprecise LAT vs. PAT Checking Modes to PRC and IMP respectively. 
 
C. Architectural and Micro-architectural Rules 

 
All CHK Loads/Stores to memory carry the Lock as a Logical Address Tag (LAT). 4 bits of Key as Physical Address 

Tag (PAT) are stored per 16B granule of memory (Key). MTE enables are configurable at each Exception Level as 



well as at page granularity. LAT for Checked Loads/Stores are compared against PATs for all overlapping granules in 
memory (cache). There also exist separate instructions (LDG* and STG*) to read and write PATs. 

 
There are two supported MTE Tag-Check modes. In Precise Mode (enabled during software testing), each CHK 

load or store that fails Tag-Check requires a Synchronous Abort. A checked store requires a Tag-Check to succeed 
before it merges, incurring a high performance overhead. In Imprecise Mode (enabled in production), store execution 
is not gated by Tag-Check success. Stores that fail Tag-Check allow Asynchronous Aborts and incur low performance 
overhead. 

 
 

IV.   EVOLUTION TO A MORE SCALABLE APPROACH 
 

A. MTE verification planning 
 
MTE was a novel, high-complexity feature tacked onto an existing Load-Store micro-architecture. Its predominant 

impact lay on the Store Path in the Load-Store unit.  
 

The formal verification of MTE was scheduled, planned, and executed quite late in the project cycle, a few months 
before production release. At the time of planning, formal bring-up of the Load-Store formal environment for this 
CPU design only covered support for basic stimulus (loads, stores, and snoops).  A Load-Value Checker was the only 
E2E checker to cover any store-side checks. However, this checker had historically suffered from high formal 
complexity (predominantly via the store-to-load forwarding logic) and did not promise sufficient formal coverage, 
even with intensive application of complexity mitigation strategies described above. 

 

B. The path to Hopscotch 
 
Given that the Store-Path dominated the scope of design changes for the MTE implementation, the key target 

execution flow for verification was that for a CHK Store. The latency from issue of a Store µOp to the point of GO 
would already stretch the limits of a monolithic E2E checker. 
 
Initial planning indicated multiple independent architectural and microarchitectural checkers to verify Store Path 
execution across different tag-check modes, MTE attributes, op-types, alignments etc. This pointed to significant 
overlap in tracking required for each such checker and therefore, duplication of both solution space and effort. Given 
the late stage of formal deployment and the narrow window till release, this strategy did not meet schedule, resource, 
and quality requirements. 
 
Searching for a more cost-effective approach compelled us to envision a more systematic, integrative, preferably 
automatable solution, leading to the idea behind Hopscotch. The key motivation was to develop a conceptually unified 
framework, spanning the entire lifecycle of an arbitrary Store instruction.  
 
The methodology would (A) identify key events (architectural & micro-architectural) across multiple execution flows, 
(B) specify legal (or illegal) event orderings for each flow (mode, instruction-type, other attributes) and (C) at each 
event occurrence, trigger checks for both safety and liveness relative to predecessor or successor events respectively, 
as well as key off other function checks (tag-check correctness, data-consistency etc.) on a subset of eligible events. 
The resulting framework promised the advantages of being flexible, modular, iterative, scalable, and reusable. 
 
C. Design Goals  

 
The design-goals driving the architecture of Hopscotch were that it allows for 
	
• a clean separation between (A) a user-defined layer of functional specification expressed in terms of 

ordering requirements for abstracted design events using simple temporal operators, and (B) a static code-



substrate operating on domain-agnostic, configurable, regular structures, which translates, stores and 
executes the specification (both checking and coverage) 
 

• ease of maintenance: specification updates can be clearly captured and interactively tested 
(counterexample-guided) and have little impact on underlying executable codebase 
 

• ease of decomposition supports both structured case-splitting and path-decomposition, which are both key 
to mitigating formal complexity. 
 
 

D. Choice of Graph-based Implementation 
 
One of the more obvious solutions to tracking the lifetime of a Store is to design a conventional tracking structure 

akin to either a single FSM or a scoreboard which allows for each execution event to transition tracked state among a 
finite set of predefined states. A scoreboard may be considered a special case of FSM where the state-bits are typically 
stored in a decoded form across sets of Boolean flags, enumerations and/or counters and any updates to or 
checks/covers based on these state-bits are triggered inside closely coupled procedural code, usually written in an ad-
hoc (irregular) style.  

 
Any changes to design or the choice of events tracked will invariably perturb procedural code that performs next-

state computations of the tracked state and/or its correctness checking. Given a complex enough design/feature with 
enough inter-related events of interest, that complexity is invariably transferred to such an ad-hoc implementation of 
the tracker/checker, undermining its interpretability, maintainability, as well as flexibility, besides leaving it more 
vulnerable to human error. 

 
A possible improvement on this solution might be to distribute the aggregate state tracking of the design 

independently across each of the participating events in simple (often binary) terms of (A) whether a given event E 
has been reported or not (or in some cases, how often) and (B) its relative ordering vs. other events E’ reported (or 
not) across time (cycles). In a similar manner, checking of the tracked state could be performed against a specification 
of whether a given event E should have been reported (or not) in relation to other events E’ previously or concurrently 
reported (or not) at a given cycle. On closer inspection, this has the advantage of decomposing both the tracking and 
specification across a set of events for a given execution. 

 
On the other hand, both tracking-updates and checking-triggers in traditional FSM-based or scoreboard-based 

checkers operate under the influence of various qualifiers (related to either current state or inputs or other 
static/predetermined attributes of the event or the operands of the execution in question).  

 
This begs the question of how these qualifiers could be integrated into the distributed tracking solution suggested 

above. There are three possible sources (and points of integration) for such qualifiers that could be used to satisfy 
these requirements: A) maintain both simple global state as well as a per-event state (booleans and/or counters) which 
could be used to qualify any tracker updates to or any checks against the specification B) use event or execution flow 
attributes to cleave the specification space into separate per-flow/attribute checkers while leaving the tracking 
mechanism unqualified and C) embed the tracking qualifiers into primitives used to express ordering relation tracking 
updates or correctness requirements among the set of possible events. 

 
While considering candidate structures to implement this distributed solution in, it does not take a leap of 

imagination to arrive at a correspondence of such a specification to a set of graphs, where each graph could correspond 
to a unique combination of execution flow and/or attributes, each node of which could represent an execution event 
and the edges or paths between nodes represent ordering relations. Using additional state (stored for each such graph 
and/or its constituent nodes), we could also implement a tracker to implement updates based on event occurrences as 
node visits. 

 
More specifically for formal verification, this implementation has the inherent advantage of modularity and 

decomposition along the axes of both precondition case-splits and sequential depth. This will be discussed in more 
detail in the Contributions section below. 



Such was the chain of reasoning that led us to an execution-flow graph-based solution.  
 

V.   DESCRIPTION OF CONTRIBUTIONS 
 

A. Hopscotch Methodology Overview 
 

A summary of the Hopscotch methodology and framework follows:  
 
1. First step is to enumerate various execution flows within the desired scope along unique sets of attributes, e.g., 

instruction-type, memory type, alignment etc. Each execution flow typically corresponds to the lifetime of a 
single transaction e.g., a specific memory access tracked by the end-to-end checker. 
 

2. Next capture and categorize a set of key intermediate architectural/micro-architectural execution events 
(spatially or temporally separated across one or more pipelines), typically common across the set of related 
execution flows  

 
3. Specify a set of legal (or alternately illegal) ordering requirements among the set of execution events that 

describe each execution flow via a set of simple temporal primitives. This specification builds a unique static 
flow-multigraph, which represents an abstraction of all legal (non-deterministic) traces for a given execution 
flow. Each node in this graph corresponds to a unique execution event and various hop, concurrence and path, 
and concurrence visit-relations among a subset of these nodes constitute edges or paths in the respective 
directed flow-graphs. 
 

4. Model actual (non-deterministic) dynamic execution of each flow in a separate checkable trace-graph that 
overlays additional state on the flow-multigraph, updated both globally and for each node visited along the 
execution path. 

 
5. Each node-visit on the trace-graph triggers the appropriate set of correctness and forward-progress checks 

determined by the underlying flow-multigraph, the former being retrospective and the latter being prospective 
in nature. 

 
6. Forward-progress checks are implemented as both liveness checkers from a given node to a subset of visitable 

nodes for a given execution flow, as well as  assume-guarantee based bounded safety checkers for each eligible 
node : (A) progress-checks guard against saturation of finite-width progress-counters, qualified by a 
combination of external wait dependencies and internal stalls and (B) independent guarantee-checks for 
internal-stall conditions (that the progress checkers are contingent upon) to eventually clear 

 
7. Almost all component checkers are autogenerated by traversal of the underlying graph representation. Any 

counterexample traces can be logged or visualized in terms of a more intuitive sequence of node/event visits. 
 

The more readily apparent benefit (in terms of complexity reduction and proof-depth) of the decomposition inherent 
in this approach is that the distributed node-based checks are invoked with significantly narrowed preconditions at 
progressively deeper pipeline stages. In addition, this approach is flexible, modular and enables incremental 
development. 

 
B. Execution Events 
 
An Execution Event is one of the following types of architectural or micro-architectural events directly or indirectly 
either (A) triggered on behalf of the Tracked-Transaction being executed (or other transactions relative to it) in the 
DUT or (B) affecting the Tracked-Transaction’s future execution.  

 
Some examples include Issue, Acceptance, Speculation Updates, Associative Lookups (including memory), Buffer 

Allocations or Cross-Linkages, Replays, Data Reads or Writes, Resolutions, Faults and Aborts, Secondary (Miss) 



Requests, Silent Escapes (e.g., a non-faulting check fail causes conversion to NOP), Ambiguation / Aliasing Events 
(once it is no longer possible to distinguish the future side-effects of the tracked transaction from another from a 
checking point-of-view) 

 
D. Execution Flows and Flow-Attributes 
Each Execution Flow abstracts the complete set of non-deterministic legal executions of a specific type of 
transaction through the DUT, expressed as a set of Event-Ordering Rules, each operating on a tuple of Execution 
Events as its arguments. To avoid a proliferation of distinct Execution Flow specifications based only on minor 
variations in their respective attributes, we also allow a limited set of Flow-Attributes to be passed as arguments to 
each Execution Flow to qualify the Event-Ordering Rules with (in the form of external control-flow or as arguments 
passed directly to the primitives). 

 

E. Execution Flow as a Multigraph 
 

For a given Execution Flow F across N events based on a set R of m Event-Ordering Relations for Safety or 
Progress 

• Each Execution Event in F corresponds to an Atomic Event-Node on a set of (Directed) Execution-Flow 
Graphs FGR0, FGR1…FGRm, where {R0, R1…Rm} ∈ R 
 

• Each Directed Edge (Path) from Event-Node(s) Ea to Event-Node(s) Eb on each Directed Execution-Flow 
Graph FGRi captures a unique Direct (Transitive) Event-Ordering-Relation Ri between Ea and Eb 
 

• Each Atomic Event-Node Ei is mapped to a Node-Type and a set of Node-Attributes 
 

• Multiple Atomic Event-Nodes may be combined to form a (Composite) Rendezvous Event-Node of a 
specified Rendezvous-Type 
 

Figure 3 below illustrates an example execution-flow graph. 
 
 

 
Fig. 3. Conceptual Illustration of a Flow-Graph for a Binary Ordering-Relation (Blue and Red edges indicating Legal 

and Illegal Relations respectively); A Tree icon represents a Root Node, a Number icon represents an Intermediate-Hop 

Node, a Cross icon represents a Failure Node, an Open-Bars icon represents an Escape Node, and the Dartboard icon 

represents an Endpoint Node.   

 
 

 



E. Atomic Event-Node Types 
 

Code Name Description 

NONE Initialized Default 

ASNC Asynchronous No ordering relation w.r.t. any other Event-Node 

ROOT Root Atomic Event-Node visited first (allow multiple); no inbound edges 

FORK Boolean Test Check Invocation (Pass/Fail) 

IHOP Intermediate Hop Neither Root nor Leaf 

FAIL Failure Tracked-Transaction aborted (Leaf) 

ESCP Escape Cannot disambiguate Tracked Transaction for future hops (Leaf) due to an 
aliasing event 

ENDP Endpoint Tracked-Transaction success; No outbound edges (Leaf) 

 

Table 1. Node Types 

 

F. Event-Ordering Semantics (Safety) 
 

Event-Ordering semantics for safety are based on looking back at past or concurrent visits to same or different 
Event-Nodes, given a current visit to an Event-Node. These can be expressed in terms of Concurrence-Relations, 
Hop-Relations and Path-Relations (dual-polarity) below. 

 
Primitive Concurrence Relation Description Formula 

POS Positive 
Implication 

A |-> B 

NEG Negative 
Implication 

A |-> ~B 

 
Table 2. Primitive Concurrence Relation Types between Event-Nodes A and B 
 
 

Composite Concurrence Relation Description 

MUTEX A and B never concurrent 

CONDITIONAL (One-Way)  A implies B concurrent but not vice-versa 

COUPLED A and B always concurrent 

 
Table 3. Composite Concurrence Relation Types between Event-Nodes A and B 
 
 

Hop-Relation Description 
ILLEGAL  A can never be immediately followed by B 
OPEN legal if A visited strictly before B 
CLOSED legal if A visited before or concurrently with B 
NONE don’t care 

 
Table 4. Hop-Relation Types from Node-Event A to Node-Event B 
 



 
Path Relation Polarity Description 

INCLUSION A visited on every path to B 

EXCLUSION A never visited on a path to B 

 
Table 5. Path-Relation Polarities from Event A to Event B 
 
 

Path Relation Description 
NONE No path requirement between A and B (Don’t-care) 
CLOSED A is (never) either visited before (including direct hop to) 

or concurrently with B 
OPEN A is (never) visited before (including direct hop to) B 
NONHOP A is (never) visited strictly before any direct hop to B 

 
Table 6. Path-Relation Types from Node-Event A to Node-Event B (Negative Polarity in parentheses) 
 
Figure 4 above graphically illustrates a single Execution-Flow Graph based on a binary Ordering- Relation (Legal or Illegal) 

with the various nodes representing types from Table 1. 
 
 
G. Composite Event-Node Types (Progress)  
 
Rendezvous-Nodes are composite Event-Nodes with various “Barrier” semantics across a set of Atomic Event-Nodes 
 

Rendezvous-Node Description 
ANY* Reached once any member node(s) visited 
ONE* Reached once exactly one member node visited (one-hot) 
ALL Reached once all member nodes visited 
NONE Don’t-Care 

 
Table 7. Rendezvous Node Types for a set of Atomic Event-Nodes 
*: may not differ in implementation (except for subsequent safety checks) 
 
 
H. Event-Ordering Semantics (Safety) 
 
Event-Ordering semantics for progress is expressed in terms of Progress-Relations below. These are akin to Hop-
Relations & Path Relations across Event-Nodes, the key difference being that they are prospective (forward-looking) 
instead of retrospective (backward-looking). 
 

Progress-Relations Description 
Cross-Atomic Define progress from a visited Atomic Event-Node to a specified hop-related Atomic Event-Node when the latter 

is visited 
Atomic-to-Rendezvous Define progress from a visited Atomic Event-Node once all path-related Rendezvous Event-Nodes are 

subsequently visited  
Cross-Rendezvous Define progress across visits to two Rendezvous Event-Nodes 

Table 8. Progress-Relation Types across Atomic/Composite Nodes 

 

 

 



I. Other Event-Node Attributes (Threads/Strands and Revisitability) 
 

To simplify the specification process further, Hopscotch allows the user to identify subsets of Event-Nodes that 
represent execution of different parts of the overall Tracked Transaction. Within the member Event-Nodes of each 
such subset (assumed to have a stronger mutual affinity), Event-Ordering Relations are required to be defined in 
explicit terms, which in graph-theoretic terms translates to a strongly-connected directed subgraph. Conversely, this 
subset may be (relatively) weakly-connected with the rest of the Execution Flow-Graph. 

Threads and Strands together provide a 2-level subgraph identifier that allow the Event-Ordering Relations between 
any two Event-Nodes in an Execution Flow-Graph to be initialized with a “Don’t-Care” (or alternately, no 
connecting edge) if they don’t belong to the same Thread and Strand pair. 

This allows for a considerably more concise specification, where the user is expected to always explicitly specify 
(non-default) Event-Ordering Relations only between Event-Nodes belonging to each Thread/Strand ID pair, while 
still allowing for the defaults to be overridden across edges straddling these subgraphs (i.e., Event-Nodes belonging 
to different Thread/Strand IDs). 

In addition, an Event-Node may also be tagged with a Revisitability attribute, which indicates whether or how often 
that Event-Node may be legally revisited (never, once, more than once, or infinitely often). 

 
J. Graph Implementation 
One of the simplest implementations of flow-graphs in an HDL such as Verilog or SystemVerilog is a set of 
enumerations (types), bit-vectors and 2-D M x N matrices of bits or enumeration multibit-encodings. A more 
detailed example of an implementation will be provided in Section VI. 

 
K. Making Concrete Executions Checkable Via Trace-Graphs 
 
Once an Execution-Flow Multigraph specification as described above is in place, we are now faced with the 
problem of how to check the DUT’s execution of a specified Tracked-Transaction (with specified type, attributes 
etc.) against this specification.  
 
Hopscotch achieves this by following a Concrete Execution Trace of the Tracked Transaction to build (update state 
in) a Trace Graph and at each step (cycle), sensitize the corresponding Safety and Progress Checkers. A Trace 
Graph overlays the static Execution-Flow Multigraph with dynamic Trace State.  
 
For a set of Execution Event-Nodes reported in each cycle, we update the following:  
 

• Global-State [ IDLE | ACTIVE | ESCAPED | ABORTED | DONE | ILLEGAL] 
• a subset of Node-States [ IDLE | VISITED | REVISITED | ILLEGAL] 
• Last (Multi-) Hop (Set of Nodes Last Visited)  

 
This enables Checkers to be automatically triggered by Event-Nodes mapped in the Execution-Flow Multigraph: 
 

• Safety Checks (Retrospective) against Event Nodes that may have been visited (or not) so far, optionally 
including this cycle. 
 

• Progress Checks (Prospective) against Event Nodes that may be required to be visited in the future, 
optionally including this cycle. 
 
 
 



L. Graph-based Checkers 
 

The graph-based checkers fall into three categories: 
 
A. Trace-State Checking:  

 
 On any node-visit, check that neither the Trace-State nor the Node-State of visited Event-Node(s) becomes 
ILLEGAL. The next-state computation also factors in Node-Type and other Node-Attributes (e.g., Revisit Bound) 
for the visited Event-Node(s), in addition to current state. 
 

B. Safety Checking: 
 

o Hop/Path Checkers: For all N Event-Nodes visited in the current cycle: 
§ Check against each of the M Event-Nodes visited last (Last-Hop) that all M x N Event-Node 

Hops are LEGAL.  In other words, check against specified Hop-Relation across each of the M 
x N pairs of Event-Nodes. 

§ Check against all N Event-Nodes that with the M Event-Node visits, no ILLEGAL Event-Node 
Paths (Inclusion/Exclusion) are created. In other words, check against any specified Path-
Relations (Inclusion/Exclusion) for all N Event-Nodes 
. 

o Concurrence Checkers: For each of M Event-Nodes visited in the current cycle:  
§ Check that no Positive or Negative Concurrence-Relations specified are being violated with 

respect to the remaining M-1 Event-Nodes. 
 
Figures 4(a) and 4(b) below illustrate the sequence of hop-safety and concurrence-safety checks, each 
triggered on nodes visited in a legal and an illegal execution trace respectively.  

 
 
 

 
 

 
 

 

 
 
Fig. 4(a). Hop and Concurrent Safety Check Progression on a Legal Trace (from left to right, top 
to bottom); white nodes are unvisited and black nodes are visited; between nodes, a blue solid line 
represents a legal hop-relation, a red solid line represents an illegal hop-relation, a blue dashed 
line represents a coupled concurrence-relation and a red dashed=line represent a mutex 
concurrence relation 
 
 



 
 

 
 
Fig. 4(b). Hop and Concurrent Safety Check Progression on an Illegal Trace (from left to right): 
white nodes are unvisited and black nodes are visited; between nodes, a blue solid line represents a 
legal hop-relation, a red solid line represents an illegal hop-relation, a blue dashed line represents 
a coupled concurrence-relation and a red dashed=line represent a mutex concurrence relation 
 

Figures 5(a) and 5(b) below illustrate the sequence of path-inclusion and path-exclusion checks, each 
triggered on nodes visited in a legal and an illegal execution trace respectively.  

 

 
 
Fig. 5(a). left: Path Inclusion Check passes on a Legal Trace: Figure 5(b). right: Path Exclusion 
Check fails on an Illegal Trace: white nodes are unvisited and black nodes are visited; between 
nodes, a purple solid line represents a path-inclusion relation, while a maroon solid line represents 
a path-exclusion relation 

 
 
C. Forward-Progress Checking 

 
o Progress Checkers:  Starting at a given non-leaf Event-Node Ni being visited, unless escaped or 

aborted: 
 

§ Liveness Variants (require Fairness Constraints on External-Wait conditions) 
: 

§ Hop-Liveness: will always eventually visit at least one node Nj to which a LEGAL 
Hop-Relation is defined from Ni 
 

§ Rendezvous-Liveness: will always eventually visit all Rendezvous-Nodes (Ra, Rb…) 
with LEGAL Progress-Relations from Ni 

 
§ Bounded Safety Variant: 

 
§ Compare a predefined progress-threshold PTi for Ni against a Progress-Counter for 

Ni, whose value is incremented (starting at the current visit to Ni) on cycles during 
which 

§ No members of Si, the set of LEGALLY allowed Internal-Stalls (assume 
bounded) defined for Ni are active, and 

§  No members of Wi, the set of LEGALLY allowed External-Waits defined 
for Ni, are active, and 

§ we have not LEGALLY visited another hop-related Event-Node Nj visited 
(clear Progress-Counter once visited). 

 
o Stall-Clear Guarantee Checkers 

 



§ Currently coupled only with the Bounded-Safety Variant of the Progress Checkers. The 
soundness (or practicality) of placing Fairness Constraints directly on Internal-Stall 
conditions or even converting (proven) liveness checks on Internal-Stall conditions (using 
External-Wait fairness) into Fairness Constraints for Liveness Progress-Checkers to be used 
in an assume-guarantee paradigm is not clearly established in our understanding. 
 

§ For each internal design stall Si assumed as bounded at a given Event-Node, independently 
check (guarantee) that it will either clear: 

 
§ Liveness Variant: always eventually, assuming fairness on all External-Wait 

dependencies, or 
 

§ Bounded Safety Variant: within a predefined stall-duration threshold STi, by 
comparing it to the counter-value of a Stall-Clear Counter for Si, whose value is 
incremented (starting at the current stall Si being asserted) in the absence of 
External-Wait conditions and cleared when Si clears. 

Figures 6(a) and 6(b) below illustrate a sequence of hop-progress checks, triggered on nodes 
visited in a legal execution trace. 

 

 
 
Fig. 6(a). left: Hop-Progress Check and Stall-Clear Check triggered on a visit to a Root node with 
an internal stall: Fig. 6(b), right: Progress-Check and Stall-Clear check passes from Root Node if 
a hop to one of intermediate nodes 1 or 3 is always taken; on visits to nodes 1 and 3, new Hop-
Progress Checks are triggered to their respective legally-defined hops (3,5 and 4,7 respectively); 
white nodes are unvisited and black nodes are visited. The Pause icon indicates a Stall-Presence, 
and the Sun icon indicates a Stall-Absence. The Fast-Forward icon indicates a Progress Check 
being triggered along the corresponding edge. 
 
 

Figures 7(a), 7(b) and 7(c) below illustrate a sequence of node-to-rendezvous progress checks, 
triggered on nodes visited in a legal execution trace. 

 
 

 
 
Fig. 7(a)-7(c). Progression of a Rendezvous-Progress Check to a Rendezvous Node (type ALL, 
composed of nodes 6 and 10) is triggered on a visit to node 5 in Fig. 7(a); this check is still active 
once node 6 is visited in Fig. 7(b) and is satisfied only when downstream node 10 is also visited; 
white nodes are unvisited and black nodes are visited in Fig. 7(c). 
 

 



 
VI.   CASE STUDY: VERIFYING STORE-EXECUTION WITH MTE 

 
A. Overview 
We next describe a composite Hopscotch based Store-Execution Checker (STEXEC) developed to formally verify a 
complex RTL implementation of the Arm v8.5 Memory Tagging Extension (MTE) functionality on the Load-
Store unit of a next-generation A-class CPU designed at the Arm Austin Design Center.   
 

B. Store Execution Lifecycle Checker 
 

This checker spans the lifetime of a DAT/PAT Write to the Tracked Data Bit within the Tracked Cache-Line by 
a Tracked Store (Address + Data) µOp from the point of acceptance (roots) into Load-Store (following issue) 
through a set of intermediate hops, leading to either an abort, an escape, or an endpoint. 
 
The entire set of roots, hops, escapes, and endpoints is represented by nodes (vertices) in a static Store-Execution 
Flow Graph, its edges representing the specified set of non-deterministic legal transitions, where (A) the acceptance 
Event-Node (or other concurrent ones) represents root(s) (no inbound edges), (B) non-terminal Event-Nodes 
represent intermediate-hops (with at least one inbound edge and one outbound edge to a child Event-Node) and (C) 
aborts, escapes, and endpoints represent leaf Event-Nodes (no outbound edges) 
 
STEXEC is decomposable along two different directions: (A) partitioned into distinct Store-Execution Flow-Graphs 
for various types of Tracked Store µOps, cacheability attributes and MTE modes e.g., checked Precise-Mode Store, 
Checked Imprecise-Mode Store, Unchecked Cacheable Store, STG (Store-Tag). This can be further refined by 
passing minor attributes as arguments to the Flow-Graph to either support lightweight control-flow in the graph 
specification or tunneled as qualifier arguments to flow-graph macros and (B) decomposable along an arbitrary 
number of bidirectional paths on the Store Execution Flow Graph for both backward (safety) and forward (progress) 
checks.  
 

 
Fig. 8. Schematic of the STEXEC checker 

 
STEXEC instantiates the following structures, as depicted in Figure 8 above:  
 
• The Trace Graph described above, which is notified of events related to the Tracked Cache-Line and Tracked 

Store µOp (originally reported by the Event Monitor). 
• an intermediate Event "Nodifier" that maps events reported from the Event-Monitor to the corresponding Event-

Node(s) in the Store-Execution Graph. 
• a Safety Checker that contains/executes checker algorithm for hop, concurrence and path safety checks 

described above 
• a Progress Checker that contains/executes a generalized checker algorithm for forward-progress checks 

described above 
• a Hop-Predicate Checker that checks the correctness of both arguments and results of qualifications that 

determines the next hop for a subset of Event-Nodes e.g., Tag-Checks against other modeled state 
• a Stall-Clear Guarantee Checker that guarantees the (bounded) fairness of legal micro-architectural 

dependencies at each Event-Node (and models fairness of external dependencies). 



 

C. Store Execution-Flow Multigraph: Implementation  
 

The Store Execution-Flow Multigraph is specified via a set of macros, one per value of each relation-type (hops, 
paths, rendezvous etc.) or progress/stall-clear counter thresholds. It is implemented as a set of SystemVerilog 
enumerations, 1-D and 2-D arrays: 

• An enumeration of Atomic Event-Nodes, each mapped to the following Node-Attributes 
o Type (see Table 1) 
o Thread + Strand  
o Revisitability [NEVER |ONCE | UNLIMITED] 

• Hop-Relation, Concurrence-Relation, Path-Inclusion & Path-Exclusion Graphs 
• An enumeration of Rendezvous Event-Nodes, each mapped to a Rendezvous-Type 
• Rendezvous-Relation Graphs (Atomic à Rendezvous & Cross-Rendezvous) 

 
The utility of specifying Event-Node membership in Threads and Strands is to enable concise specification via 
support for node-affinity. We initialize all Ordering-Relations to Don’t-Care across Event-Nodes belonging to 
different Threads/Strands. 
 
Figure 9 below illustrates specification code for a STREX_FAIL Event-Node (Store-Exclusive Failure) with Hop-
Relations and Path-Relations defined with respect to other nodes. 

 

 

Fig. 9. Example of an Event-Node Specification using macros for Event-Ordering Relations 

 

G. Additional MTE Checkers 
The following additional checkers were also implemented as part of the STEXEC suite, but are only indirectly 
dependent on the Hopscotch methodology, and hence not discussed here: 

• MTE Tag-Check Correctness (triggered at multiple Event-Nodes) 
• Data/Allocation-Tag Consistency (check against Value-Binding of Tracked DAT/PAT Bit) 

 

 



VII.   RESULTS, LIMITATIONS, CHALLENGES AND FUTURE WORK 
 
A. Summary of Results 

 
1. Significantly accelerated bring-up of the STEXEC suite supporting the complex MTE feature-set in the Load-

Store formal environment. It took 5 weeks from scratch till first late RTL bug was found with this checker. 
2. Significant improvement in functional coverage and proof-depth achieved by graph-based checkers. 
3. Found 19 unique late RTL bugs, some with multiple variants and helped rapidly qualify MTE-related bug-

fixes in RTL close to release. 
4. Increased debug productivity across the board based on event-based logging.  
5. Capability to easily explore and understand micro-architectural flows. 

 
B. Illustrative Design Bugs Hit with STEXEC 

 
• Bug A (Node-State Checker): Each Event-Node in the Store-Execution Flow-Graph is allowed to be visited 

only a specified number of times.  Bug: RTL was writing Tracked STGP op’s PAT and DAT at different times 
(writing the same PAT twice). This violates a subtle MTE architectural requirement.  

 
• Bug B (Concurrence Checker): If Event-Node A is visited, then Event-Node B should also get visited 

concurrently (in the same cycle). Bug: RTL was writing Tracked STGP op’s PAT to cache without also 
writing its DAT. 
 

• Bug C (Progress Checker): If Event-Node A is visited, then at least one hop-related Event-Node B should 
eventually get visited. Bug: In MTE Precise Mode, RTL executes a Tag-Check for a Tracked Store-Exclusive 
op, which fails due to hitting a poisoned PAT in L1D cache. Since the Exclusive-Monitor was not armed, it 
correctly signals STREX completed (failed) but never arbitrates for and broadcasts the FAIL result because 
the Merge Buffer was never written to because of the Tag-Check error, resulting in a hang. A Progress-
Checker fails here because a required hop to a downstream Rendezvous node (STREX_RESULT) was never 
taken. Progress Counter at the STREX_FAIL node saturated after discounting any transient stalls and external 
waits.  

 

C. Impact on Scalability 
 
This is harder to measure directly since it would require comparison against a conventional checking approach, 

which was never implemented. However, as a proxy, we compare times required to hit raw nodes (directly from the 
Event Monitor) vs. times required to hit the witness cover for the corresponding hop-safety checker (see Figures 10(a) 
and 10(b) below). These results are based on 8-hour runs for both cover groups using an identical set of single-property 
formal engines. 



 
Fig. 10(a) and 10(b) Time-to-Cover (Raw-Node) vs. Time-to-Cover (Hop-Safety Checker Witness) 

 
D. Direct Impact of Hopscotch 

 
Flow-graph framework accelerated overall STEXEC bring-up. Safety checkers proved valuable for sanity testing. 

Automatic loop-iteration over set of nodes led to concise, low-maintenance code. It also caught lots of otherwise-
subtle TB issues quickly. Debug productivity boost from visual logging of node visits and allowed speedy triage of 
failure traces 

 
E. Challenges and Failures 
 
• Identifying and reporting suitable node-events required variable level of white-boxing. The strategy was to limit to high-

level events at first and next model low-level micro-architectural implementation details/decisions as required. The key 
tradeoff here was checker precision/decomposition vs. modeling effort involved.  
 

• There was little payoff from liveness checkers. This likely points to a different undiagnosed source of formal complexity. 
Recent experiments pointed to a potential source being counters instantiated outside the COI of these properties (once 
cut/abstracted, started producing counterexamples). This needs to be further investigated. 

 
• Unintentional OCs / Behavior-Removal in E2E realm (especially within abstractions) were a constant obstruction to hitting 

bugs. These are a silent menace and undermine confidence in formal environment, besides being challenging and expensive 
to both detect and debug. To address this, we have implemented a transaction attribute coverage model for tracked 
transactions in the E2E realm. 

 
 
F. Limitations of Hopscotch 

	
Graph implementation overhead includes that of both memory and computation. Performance of matrix 
implementation for flow-graphs sensitive to total number of nodes. Additional nodes increase combinational 
complexity as well as memory requirements and may also lower sequential complexity. This requires further 
experimentation and analysis. 
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G. Future Work (Enhancements, Extensions and Optimizations) 

 
• Coverage: Flow-graphs are naturally extendable to generate lower-level coverage models (for both sign-off 

+/ DBH) e.g., pairwise hop-coverage, path coverage, per-Event-Node stall coverage 
• More efficient graph implementations to reduce graph size/complexity. We need to investigate the 

feasibility of sparse matrix implementations. 
• Improved (more efficient) traversal/check algorithms used in safety and progress checkers  
• Richer set of more powerful Event-Ordering primitives. May allow for more qualified/nuanced 

specifications and checkers, increasing both expressivity and conciseness. 
 

VIII.   CONCLUSIONS 
 

Investments in complexity reduction has had a huge impact on baseline formal TB performance. Focusing on the 
right problems with the right toolset is critical to adding value with formal. Time and effort invested in careful planning 
of both scope and implementation was well-spent. The Hopscotch framework provided a rapid, flexible, and scalable 
way to specify, build and test E2E checkers, allowing us to develop a mature formal environment for the LS Store-
path within a couple of months and to add confidence in RTL release quality. 
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