
Hopscotch : A Scalable Flow-Graph Based
Approach to Verify CPU Store Execution

Abhinav Sethi, Madhu Iyer, Sai Komaravelli, Vikram Khosa
Arm Austin Design Center

Outline

Background

• Design and Formal Environment

• Complexity Mitigation

• Memory-Tagging Extension (MTE)

Case-Study : MTE Store-Execution
• Verification Requirements

• Hopscotch: A Flow-Graph Framework

• Store-Execution Checker (STEXEC)
Implementation

• Results

• Conclusions

LoadStore Unit
Includes L1D Cache

• Key Structures

• AGU + TLB
• Load Pipe
• LRQ (Load Replay Queue)
• RAR/RAW (Read-After-*

Ordering) Buffers
• SAB + SDB (Store Addr &

Data Buffers)
• Tag/Data Arbitration &

RAMs
• RST (Recent Store Tags)
• MB (Merge Buffer)
• FB (Fill Buffer)
• L2 (Arb) Interface
• Snoop Interface
• Prefetcher

DATA
8-BANK
4-Way

DATA
8-BANK
4-Way

DATA
8-BANK
4-Way

DATA
8-BANK
4-Way

DATA
8-BANK
4-Way

DATA
8-BANK
4-Way

DATA
8-BANK
4-Way

VIPT TAG
4-BANK
4-Way

TLB
x2

AGU
x2

AGU
x2

LD
/S

T

LD
/S

T

IQ (LS0, LS1)

TLB
x2

V_Idx0
V_Idx1

VIPT TAG
4-BANK
4-Way

VIPT TAG
2-BANK
4-Way

TAG CMP
(x2)

w0 w1 w2 w3

DATA
8-BANK
4-Way

w0 w1 w2 w3

SIGN/ZERO EXT (x2)

FWD MUX (x2)

FORMAT (x2)

WAY MUX (x2)

16
B x2

WR TAG

BANK MUX

WR DATA

W
R

DA
TA

 to
 L2

PA (LS0/1)

SDB

SAB

RSTMB

2W

2C
 (S

TL
F)

ST
 D

AT
A0

 (8
B)

IQ (SX, MX, VX)

ST
 D

AT
A1

 (8
B)

FB

2X

LRQ

32
B

Re
ad

W
rite

L2
_B

AN
K0

_R
EQ

L2
_B

AN
K1

_R
EQ

L2
_F

ILL
_D

AT
A

32
B

Fil
l

RARRAW

W
R

DA
TA

ST
LF

16

B
x2

SNPQ

FAULT
CHK

2W 2C 2W 2C 2C2W

SN
OO

P
RE

Q

LS
_L

D_
RE

SU
LT

0 (
16

B)

LS
_L

D_
RE

SU
LT

1 (
16

B)

SN
OO

P
RS

P

2W 2R

HW
PREF

MEM
ORDER

CHK
CO

PY
BA

CK
 D

AT
A

(32
B)

V_IDX
(LS0/LS1)

PA
0

PA
1

VA
0

VA
1

WR
REQ

Tag
lookup

Ares Loadstore
Block Diagram

2R 4R

1W 1W

FIL
L/E

VI
CT

BANK MUX

I2

A1

A2

A3

D1

D2

D3

D4

LoadStore Unit
Includes L1D Cache

• Key Structures

• AGU + TLB
• Load Pipe
• LRQ (Load Replay Queue)
• RAR/RAW (Read-After-*

Ordering) Buffers
• SAB + SDB (Store Addr &

Data Buffers)
• Tag/Data Arbitration &

RAMs
• RST (Recent Store Tags)
• MB (Merge Buffer)
• FB (Fill Buffer)
• L2 (Arb) Interface
• Snoop Interface
• Prefetcher

* Store Path in BOLD

DATA
8-BANK
4-Way

DATA
8-BANK
4-Way

DATA
8-BANK
4-Way

DATA
8-BANK
4-Way

DATA
8-BANK
4-Way

DATA
8-BANK
4-Way

DATA
8-BANK
4-Way

VIPT TAG
4-BANK
4-Way

TLB
x2

AGU
x2

AGU
x2

LD
/S

T

LD
/S

T

IQ (LS0, LS1)

TLB
x2

V_Idx0
V_Idx1

VIPT TAG
4-BANK
4-Way

VIPT TAG
2-BANK
4-Way

TAG CMP
(x2)

w0 w1 w2 w3

DATA
8-BANK
4-Way

w0 w1 w2 w3

SIGN/ZERO EXT (x2)

FWD MUX (x2)

FORMAT (x2)

WAY MUX (x2)

16
B x2

WR TAG

BANK MUX

WR DATA

W
R

DA
TA

 to
 L2

PA (LS0/1)

SDB

SAB

RSTMB

2W

2C
 (S

TL
F)

ST
 D

AT
A0

 (8
B)

IQ (SX, MX, VX)

ST
 D

AT
A1

 (8
B)

FB

2X

LRQ

32
B

Re
ad

W
rite

L2
_B

AN
K0

_R
EQ

L2
_B

AN
K1

_R
EQ

L2
_F

ILL
_D

AT
A

32
B

Fil
l

RARRAW

W
R

DA
TA

ST
LF

16

B
x2

SNPQ

FAULT
CHK

2W 2C 2W 2C 2C2W

SN
OO

P
RE

Q

LS
_L

D_
RE

SU
LT

0 (
16

B)

LS
_L

D_
RE

SU
LT

1 (
16

B)

SN
OO

P
RS

P

2W 2R

HW
PREF

MEM
ORDER

CHK
CO

PY
BA

CK
 D

AT
A

(32
B)

V_IDX
(LS0/LS1)

PA
0

PA
1

VA
0

VA
1

WR
REQ

Tag
lookup

Ares Loadstore
Block Diagram

2R 4R

1W 1W

FIL
L/E

VI
CT

BANK MUX

I2

A1

A2

A3

D1

D2

D3

D4

LoadStore E2E Formal Testbench Architecture

Anti-Complexity Strategies

Over-Constraint
based State
Reduction

Structured Case
SplittingAbstractions

Design Mutations

Memory-Tagging Extension (MTE)
Overview

Problem

• Memory-unsafe languages allow
• Unintended data corruption, or
• Unauthorized access to sensitive data

• Bounds-Overflow
• References outside allocation bounds

• Use-After-Free
• Reallocating dangling memory references

Solution

• Support coloring of memory-allocation
• Low-overhead
• Probabilistic

• Algorithm
• Assign a color (“tag”) to each memory-allocation
• Store color in unused high bits of address pointer
• Match color for each reference to stored color

prior to access
• Reassign color when freeing allocation

Memory-Tagging Extension (MTE)
Key Architectural Rules

Location, Control and Maintenance

• All Checked Loads/Stores carry a Logical Address Tag (LAT)

• 4 bits of Physical Address Tag (PAT) per 16B granule of memory

• MTE-enable granularities (Exception-Level, Pages)

• For a checked access, LAT compared against PATs for all
overlapping granules in memory (cache)

• Separate instructions (LDGs and STGs) to read and write PATs

Tag-Checking for Checked Accesses
MTE Tag-Check Modes for Store Instructions :

• Precise Mode
• Requires Tag-Check success before merge
• Synchronous abort if Tag-Check fails
• High perf-overhead

• software testing

• Imprecise Mode
• Execution not gated by Tag-Check success
• Asynchronous abort if Tag-Check fails
• Low perf-overhead

• production mode

MTE Verification Complexity
Cache-Line/Page-
Crossing Ops span

multiple RST entries

Checked/Unchecked
Accesses to

Tagged/Untagged
Pages

Separate Non-Atomic
Tag and Data Accesses

Per Op

Checked Accesses and
Tag Stores may span

multiple Tag Granules
(QWX)

Variable Tag-Check
Behavior (triggered by

multiple events in
Imprecise Mode,

delays merge/ resolve
in Precise Mode)

Variable Store-Buffer
and Merge-Buffer

Occupancy (32B vs.
non-32B, MBX)

Project Intercept

MTE Implemented on Project X

• Novel, High-Complexity Feature

• Tacked onto existing µ-arch

• Predominant impact on Store-Path

• Pre-Release Bug-Rate High

State of LoadStore Formal Environment

• Bring-up complete with basic stimulus

• Loads + Stores + Snoop-Requests

• Read(Load)-Value Checker

• Only E2E Checker to cover Store-Path

• Longer path + high formal complexity
• includes Store-to-Load-Forwarding path

• Expect insufficient proof-coverage

Checking Requirements

• Initial planning indicates

• Multiple independent architectural/µ-arch checkers to verify Store Path

• Across different Tag-Check modes, MTE attributes, instruction-types, alignments etc.

• Significant overlap in tracking required across checkers

• Duplication of effort

Rationale for Hopscotch
Abstracting Execution Flows

What If?
We instead develop a Unified Framework

• span the entire lifecycle of a Store µop

• identify key events
• architectural & micro-architectural

• specify legal (or illegal) event orderings
• for each flow

• mode, instruction-type, other attributes

• at an event occurrence
• invoke checks for both safety and progress
• key off other functional checks

Potential Advantages?

• Flexible

• Modular

• Iterative

• Scalable

Store-Execution Flow as a Multigraph

• Nondeterministic Abstraction of all Legal Store-Executions
• for a given Flow-Type (+Flow-Attributes)

• For a given Store-Execution Flow F

• Each Event in F ßà A visit to an Event-Node N
• on a set of Directed Flow-Graphs FG0, FG1,…FGR for R Visit-Relations VR0 , VR1,…VRR

• Each Directed Edge (Path) on a Flow-Graph captures a single Visit-Relation

• Each Event-Node is mapped to a Node-Type and Node-Attributes

• A subset of Event-Nodes can be grouped into a Rendezvous-Node
• Has Barrier semantics
• Used to define forward path-requirements from any Node.

Flow-Graph Illustration
*

Example Flow-Graph (Precise-Mode Store-Exclusive)
Legal Hop
Illegal Hop
Mutex

Op
Accept

ALLOC/
LNK SB

RST Tag
Lookup

PASS
TagChk

FAIL
TagChk

PASS
ExclChk

FAIL
ExclChk

SB->MB
Merge

L1D
Write

L1D Fill
Abort

Resolve
Clean

Resolve
Fault

ALLOC/
LNK MB

ExclChk
Result

Example Flow-Graph (Precise-Mode Store-Exclusive)
Path Inclusion
Path Exclusion

Op
Accept

ALLOC/
LNK SB

RST Tag
Lookup

PASS
TagChk

FAIL
TagChk

PASS
ExclChk

FAIL
ExclChk

SB->MB
Merge

L1D
Write

L1D Fill
Abort

Resolve
Clean

Resolve
Fault

ALLOC/
LNK MB

ExclChk
Result

Hopscotch : Design Goals
• Clean separation between

• A user-defined/maintained layer of functional specification
• express ordering requirements for abstracted design events using simple temporal operators

• A static, concise code-substrate operating on domain-agnostic, configurable, regular structures
• translate, store and execute the user-specification
• enable auto-generation of checkers and coverage

• Ease of maintenance
• Allow spec updates to be clearly captured and interactively tested (CEX-guided)
• Little impact on underlying codebase

• Ease of decomposition
• Supports automated case-splitting and path-decomposition
• Both key to mitigating formal complexity.

Sample Node Specification (Exclusive-Check Fail)

Hopscotch Implementation

Event Nodifier

Tracked-Txn State

Filtered DUT Events

Hopscotch-based STEXEC Checker

Event Nodifier

Tracked-Txn State

Flow Safety

Flow Progress

Data & Tag
Consistency

Tag-Check Safety

Filtered DUT Events

Flow-Safety Checkers

Node-State

Concurrence
Safety

Path Safety

Hop Safety

Trace-State

Trace and Node State-Checkers
Invoked at each Event-Node visit against Trace-Graph

• Check that Trace-State never becomes ILLEGAL

• Check that Node-State does not become ILLEGAL

• Based on Node-Type and Trace-State

• Includes revisit-bounds.

Node-
State

Trace-
State

Hop and Concurrence Flow-Safety Checkers
Invoked for each of N nodes currently visited

• Check against M nodes visited last ->
• all M x N node hops are LEGAL

• Check that no positive or negative concurrence relations are
being violated
• w.r.t. the remaining N-1 visited nodes

Hop Safety

Concurrence
Safety

Path Flow-Safety Checkers
Invoked for all N nodes currently visited

• Check against all other nodes à

• No defined path-inclusion relations are violated

• No defined path-exclusion relations are violated
Path Safety

Hop & Concurrence Flow-Safety-Check Animation
*

Hop & Concurrence Flow-Safety Check Animation
*

Hop & Concurrence Flow-Safety Check Animation
*

Hop & Concurrence Flow-Safety Check Animation
*

Hop & Concurrence Flow-Safety Check Animation
*

Hop & Concurrence Flow-Safety Check Animation
*

Hop & Concurrence Flow-Safety Check Animation
*

Hop & Concurrence Flow-Safety Check Bug Animation
*

Hop & Concurrence Flow-Safety Check Bug Animation
*

Path Flow-Safety Check Animation
*

Path Flow-Safety Check Animation (Bug)
*

Flow-Progress Checkers (Assume-Guarantee based)

Rendezvous
Progress

Stall-Clear Guarantee

Hop Progress

Hop Flow-Progress Checkers
Invoked for each of N non-leaf atomic nodes currently visited

Starting at a visit to node Ni ,unless escaped or aborted:

• Liveness Variants (require fairness):

• Will always eventually visit at least one atomic node Nj to which a hop is legally
defined

• Bounded Safety Variant:

• Compare a predefined threshold against a count of cycles during which

• no legally defined internal stalls (assume bounded) or external waits defined for Ni are
active, AND

• we have not legally hopped to another atomic node Nj

Hop Progress

Rendezvous Flow-Progress Checkers
Invoked for each of N non-leaf atomic or rendezvous nodes currently visited

• Rendezvous Nodes
• Composite nodes with barrier semantics (all visited, any visited etc.)

• Starting at a visit to node Ni ,unless escaped or aborted:

• Liveness Variants (require fairness):

• will always eventually visit all required downstream rendezvous nodes (Ra, Rb,…)

• Bounded Safety Variant:

• Compare a predefined threshold against a count of cycles during which:

• no legally defined internal stalls (assume bounded) or external waits defined for Ni are
active, AND

• we have not legally hopped to each required downstream rendezvous nodes (Ra, Rb,…)

Rendezvous
Progress

Stall-Clear Guarantee Checkers
Invoked for each of N non-leaf atomic nodes currently visited

• Coupled (assumed) with Progress Checkers.

• For any internal-stalls assumed as bounded for a given node,
independently check (guarantee) that they will clear:

• Liveness variant: eventually, assuming fairness on external-wait
dependencies

• Bounded Safety variant : within a specified number of cycles

Stall-Clear
Guarantee

Hop Flow-Progress Check Animation
*

Hop Flow-Progress Check Animation
*

Hop Flow-Progress Check Animation
*

Hop Flow-Progress Check Animation
*

Hop Flow-Progress Check Animation
*

Hop Flow-Progress Check Animation
*

Hop Flow-Progress Check Animation
*

Rendezvous Flow-Progress Check Animation
*

Rendezvous Flow-Progress Check Animation
*

Rendezvous Flow-Progress Check Animation
*

Results
• Total of late bugs hit by STEXEC : 19

• 6 post-release

• 10 formal-only, 9 reproductions

0
1
2
3
4
5
6
7
8

MTE-Ta
g Check

Safe
ty

Data/P
AT I

ntegrit
y SEI

Forw
ard

-Progress

RTL Bugs found

RTL Issues

Sample Bugs Found by Flow-Safety Checkers

Safety Bug 1 (Node-State Check)

Each node in the flow-multigraph is
allowed to be visited only a specified
number of times.

Bug: RTL was writing Tracked STG op’s
PAT and DAT at different times
(writing the same PAT twice).

Also hit by Hop-Safety Check

Safety Bug 2 (Concurrence Check)

If node A is visited, then node B
should also get visited.

Bug: RTL was writing Tracked STGP
op’s PAT without writing its DAT.

Sample Bug Found by Flow-Progress Checkers
If node A is visited, then at least one hop-related node B and all required downstream
rendezvous nodes C (from A) should eventually always get visited.

• Bug:

• In Precise Mode, RTL executes a Tag-Check for a Store-Exclusive micro-op which fails due to hitting a
poisoned PAT.

• Since unarmed, it signals STREX complete (failure) but never arbitrates for broadcasting the failure
because the Merge-Buffer was never written due to the Tag-Check error above.

• Progress-Checker fails because a required Rendezvous Hop from STREX_FAIL to STREX_RESULT was never
taken (Progress-Counter saturation in the absence of transient stalls / external waits)

• Multiple variants hit

Key Observations

Hopscotch

• Accelerated overall Store-Execution bring-up
• Safety checks valuable for sanity testing

• Caught lots of otherwise-subtle TB issues quickly
• Debug productivity boost from visual logging of

node visits

• Performance of matrix implementation for
flow-multigraphs
• Sensitive to total number of nodes:
• Added nodes increase complexity + memory

requirements

Checkers
• Required variable level of white-boxing

• Limit to high-level events at first
• Model u-arch events as needed
• Tradeoff: checker precision vs. modeling effort

• Little payoff from liveness checkers
• Different source of complexity?

Looking Ahead

Enhancements/Extensions

Flowgraphs are naturally extendable to generate
lower-level coverage models (for signoff +/ DBH)

• Pairwise hop coverage

• Path coverage

• Per-node Stall coverage

Optimizations

• Reduce graph size/complexity
• Sparse matrix implementations

• New/improved traversal/check algorithms
used in safety and progress checkers

• Liveness checking

Conclusions

• Investments in complexity reduction à huge impact on baseline TB performance

• Focusing on the right problems with the right toolset critical to adding value with formal

• Time + effort in careful planning of both scope and implementation well-spent

• Hopscotch framework : speedy, flexible and scalable way to build and test E2E checkers

• Developed a mature formal environment for the LS Store-Path

• within a couple of months

• added confidence to RTL release quality

Questions?

Backup Slides

Key Compound Oracles

Oline

• Tracked Cache-
line Addresses
(VA including
VA-alias)

• Tracked
Translations
(PA, Memory
Type,
Cacheability
etc.)

• Context

Ouop

• (Instruction)
micro-op(s)

• Op-Type
• Size
• UID/STID
• Alignment
• Endianness
• Page-Attributes
• SVE predication

Odata

• Size and Byte-
Offsets of
Tracked Data
Granules within
Tracked Cache-
line Addresses
chosen by Oline

Oinit

• Initial-State
choices for IVAs
& Abstraction
Models bound
to the DUT

• Cache-State,
Way, Value
Tracked Data
Granule,
Exclusive
Monitor etc.

Ocheck

• Unique
enumerated
choice of
Checker to
activate from
among the set
of supported
Checkers

Ogatekeeper

• Non-
deterministic
choice of which
eligible event(s)
are picked
when to be
reported to
Checker

• Not Stable

Structured Case-Splitting
Precondition Conjugations

• Implemented in source for key, hard E2E Checkers

• Higher bounds and full proofs achieved for Extreme Case-Splits

• Concretized values for symmetrical or interesting oracle choices
• Pick bit 0 of byte 0 to check
• Pick only cacheable addresses to only 1 bank to check
• Pick only cases with hits to check (TLB, Tag-RAM abstraction-model policy oracle choices)
• Pick only one specific op-type to check

• Accelerated by helper assertions

• Appropriate to be included in smoke testing

• Each case-split (value) enables sensitivity analysis
• effect on proof-convergence & contribution to complexity

Structured
Case

Splitting

Compile-time Transaction-Limiting Profiles
Static Over-Constraint Recombining

• Create a reference set of OCs (Over-Constraints)
• Sources

• Interfaces
• Address-Space
• Checker Oracles
• Abstraction Oracles

• Types
• Disable types of stimulus
• Limit number of transactions of each type of enabled stimulus
• Narrowed/unique choice of oracle values

• Methodology
• Map each OC into corresponding `define
• Concatenate `defines into a set of named, unique profiles
• Allow profiles to be specified at build time
• Omit out-of-focus (UNR) properties on a per-profile basis (“waiver” flow)

OC-based
State

Reduction

Runtime Transaction-Limiting Profiles
Dynamic Over-Constraint Recombining (Loc-K-Picker)

• Create a static pool of weighted, abstracted OCs (Over-Constraints) with
attributes and dependencies
• Inclusion
• Mutual-exclusion

• On each invocation, pick a random set of K concretized, mutually-
consistent Local Over-Constraints
• Solve the knapsack problem
• Dynamically applied on a per-task basis

• Each task/proof-thread gets a unique set of selected OCs
• Supported for both proof and DBH threads

OC-based
State

Reduction

Store-Execution Flow as a Multigraph

• Non-deterministic Abstraction of all Legal Store-Executions
• for a given Flow-Type (+Flow-Attributes)

• For a given Store-Execution Flow F

• Each Event in F ßà Visit to an Event-Node N on a set of Directed Flow-Graphs

• FG0, FG1,…FGR for R Visit-Relations VR0 , VR1,…VRR

• Each Directed Edge (Path) between Event-Nodes on a Flow-Graph FGi

• Captures a unique Direct (Transitive) Visit-Relation VRi

• Each Event-Node is mapped to a set of Node-Attributes

Atomic Node Types
CODE NAME DESCRIPTION

NONE Initialized Default

ASYNC Asynchronous No ordering relation w.r.t. any other node

ROOT Root First node(s) visited e.g., Tracked Txn accepted

FORK Perform Boolean Test Checker Invocation (PASS/FAIL)

IHOP Intermediate Hop Intermediate Event (neither root nor leaf)

FAIL Failure Tracked Txn Failure/Abort

ESCP Escape Cannot disambiguate Tracked Txn in future (aliasing event)

ENDP Endpoint Tracked Txn success; No outbound edges

Primitive and Composite Visit-Relations
Directed (A àB)

• ILLEGAL
• A can never be immediately

followed by B

• OPEN
• legal if A visited strictly before B

• CLOSED
• legal if A visited before or

concurrently with B

• NONE
• don’t care

Hop-Relation

Primitives:
• POSitive Implication

• A |-> B
• NEGative Implication

• A |-> ~B

Composites:
• MUTEX

• A and B never concurrent
• CONDITIONAL (One-Way)

• A implies B concurrent but
not vice-versa

• COUPLED
• A and B always concurrent

Primitives:

• NONE
• OPEN
• CLOSED
• NONHOP

Two Flavors:

• INCLUSION
• A visited on every path to B

• EXCLUSION
• A never visited on a path to B

Concurrence-Relation Path Relation

Rendezvous Nodes
Composite Nodes with “Barrier” semantics

Rendezvous Type

• ANY
• Reached once any member Node(s)

visited
• ONE
• Reached once exactly one member

Node visited (one-hot)
• ALL
• Reached once all member Nodes

visited
• NONE
• Don’t-care

Progress Checks

• Node-to-Rendezvous
• Define progress from a visited node

once all downstream rendezvous
nodes mapped are subsequently
visited

• Cross-Rendezvous
• Define progress from one

rendezvous node to another

Flow Multigraph Representation
• Implemented via enumerations and matrices (2-D arrays) in Verilog

• Represented as a set of:

• Event Node Declarations with Attributes and Membership
• Node-Type [Atomic | Rendezvous]
• Revisitability [NEVER |ONCE | UNLIMITED]
• Thread + Strand

• Flow-Graphs
• Hop-Relation and Concurrence Relations
• Path-Inclusion & Path-Exclusion Relations

• Threads and Strands
• Enable concise specification via support for node-affinity
• Initialize all Relations to Don’t-Care across nodes in different Threads/Strands

Store-Execution Trace Graph
• Concrete Trace

• Represents a single deterministic Store-Execution
• of a Tracked Store op to the Tracked Data Bit on the Tracked Cacheline

• Overlays static Flow-Multigraph with dynamic Trace-State
• Update for a set of Event-Nodes visited in a cycle:

• Global-State
• [IDLE | ACTIVE | ESCAPED | ABORTED | DONE | ILLEGAL]

• Node-States
• [IDLE | VISITED | REVISITED | ILLEGAL]

• Last (Multi-) Hop
• Set of Event-Nodes Last Visited

• Enables checks automatically triggered for one or more Event-Nodes defined in the Flow Multigraph
• Safety Checks (Retrospective)

• against Event-Nodes that (ought to) have been visited so far
• Liveness Checks (Progressive)

• against Event-Nodes (ought) to be visited in the future

Data & Allocation-Tag Consistency

DAT (Store Data)

• MTE-mode agnostic.

• For all Store-Types with Data:

• Check consistency of Tracked DAT Bit of
Tracked Store Op against

• merge-data at Merge

• write at L1$ or L2 interface

PAT (Allocation-Tag)

• For STGs (Stores to Allocation-Tag):

• Check consistency of Tracked PAT Bit
of Tracked Store Op against

• PAT written to L1 cache.

• PAT streamed to L2

Tag-Check Correctness
Predict Tag-Check Occurrence and Outcome

Precise Mode
• For a Tracked Checked Store op, check for:

• on a clean resolve, LAT must have matched the
latest PATs in memory for all spanned QW
granules

• If LAT doesn’t match the latest PATs in memory
for all spanned QW granules, we must resolve
with a u-arch abort (”nuke”)

• Consider all alignments and SBX/MBX cases.
• High-Level, triggered at merge/resolve time.

Imprecise Mode
• For a Tracked Checked Store op,

• Check correctness of Tag-Checks at different points
• triggered at RST-lookup, store-merge, fill.

• Allow for accumulation of older stores to the same
line towards Tag-Check result

• Special handling for CLX/PGX cases and poison/SEI

• Requires partial implementation-choice
modeling for precision.

Timeline

March:
Project Y
early
release

Q1-Q2:
LS formal
bring-up on
Project X ->
Project Y

Mid-
May:
STEXEC
planning

June:
STEXEC bring-
up on Project
Y

Early
July:
Hit Project Y
1st Bug

Event Logging for STEXEC Traces

Sample Bug From Imprecise-Mode Tag-Check Checker

• On cycle 11, we do a tag-lookup for the Tracked Store with QW=0 but set Tag-
Checked indicator even though QWs are not enabled

• On cycle 28, when the Tracked Store merges but following a line state transition
from EVICT to SHARED, we do another Tag-Check, which indicates a mismatch.

• However, we don’t flag the Tag-Check fail correctly because Tag-Checked indicator is
previously set

• We miss reporting the result of the Tag-Check the 2nd time around

Time-to-Cover (Raw Hop vs. Hop-Safety Checker
Witness)

0

5000

10000

15000

20000

25000

RE
SO
LV
E_
CL
EA
N

RE
SO
LV
E_
FA
UL
T

PA
SS_

LA
TC
HK
_O
WN

FA
IL_
LA
TC
HK
_O
WN

FA
IL_
EX
MO

NC
HK

SB
_R
ST
_A
LLO

C_
LN
K_
OW

N

RS
T_
TA
G_
LO
OK
UP
_O
WN

Precise-Mode TXN=16

MIN-BOUND T(RAW-NODE) T(PC)

0

2000

4000

6000

8000

10000

12000

14000

16000

RE
SO
LV
E_
CL
EA
N

RE
SO
LV
E_
FA
UL
T

PA
SS_

LA
TC
HK
_O
WN

FA
IL_
LA
TC
HK
_O
WN

FA
IL_
EX
MO

NC
HK

SB
_R
ST
_A
LLO

C_
LN
K_
OW

N

RS
T_
TA
G_
LO
OK
UP
_O
WN

SB
_M
B_
AL
LO
C_
LN
K_
OW

N

TS
B_
ME
RG
E

Imprecise-Mode TXN=16

T(RAW-NODE) T(PC)

