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LoadStore Unit
Includes L1D Cache

• Key Structures 

• AGU + TLB
• Load Pipe
• LRQ (Load Replay Queue)
• RAR/RAW (Read-After-* 

Ordering) Buffers
• SAB + SDB (Store Addr & 

Data Buffers)
• Tag/Data Arbitration & 

RAMs
• RST (Recent Store Tags)
• MB (Merge Buffer)
• FB (Fill Buffer)
• L2 (Arb) Interface
• Snoop Interface
• Prefetcher
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LoadStore Unit
Includes L1D Cache

• Key Structures 

• AGU + TLB
• Load Pipe
• LRQ (Load Replay Queue)
• RAR/RAW (Read-After-* 

Ordering) Buffers
• SAB + SDB (Store Addr & 

Data Buffers)
• Tag/Data Arbitration & 

RAMs
• RST (Recent Store Tags)
• MB (Merge Buffer)
• FB (Fill Buffer)
• L2 (Arb) Interface
• Snoop Interface
• Prefetcher

* Store Path in BOLD
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LoadStore E2E Formal Testbench Architecture



Anti-Complexity Strategies

Over-Constraint 
based State 
Reduction

Structured Case 
SplittingAbstractions

Design Mutations



Memory-Tagging Extension (MTE)
Overview

Problem

• Memory-unsafe languages allow
• Unintended data corruption, or 
• Unauthorized access to sensitive data

• Bounds-Overflow
• References outside allocation bounds

• Use-After-Free
• Reallocating dangling memory references

Solution

• Support coloring of memory-allocation 
• Low-overhead
• Probabilistic 

• Algorithm
• Assign a color (“tag”) to each memory-allocation
• Store color in unused high bits of address pointer
• Match color for each reference to stored color

prior to access
• Reassign color when freeing allocation



Memory-Tagging Extension (MTE)
Key Architectural Rules

Location, Control and Maintenance

• All Checked Loads/Stores carry a Logical Address Tag (LAT)

• 4 bits of Physical Address Tag (PAT) per 16B granule of memory

• MTE-enable granularities (Exception-Level, Pages)

• For a checked access, LAT compared against PATs for all
overlapping granules in memory (cache)

• Separate instructions (LDGs and STGs) to read and write PATs

Tag-Checking for Checked Accesses
MTE Tag-Check Modes for Store Instructions :

• Precise Mode
• Requires Tag-Check success before merge
• Synchronous abort if Tag-Check fails 
• High perf-overhead

• software testing

• Imprecise Mode
• Execution not gated by Tag-Check success
• Asynchronous abort if Tag-Check fails
• Low perf-overhead

• production mode



MTE Verification Complexity 
Cache-Line/Page-
Crossing Ops span 

multiple RST entries

Checked/Unchecked
Accesses to 

Tagged/Untagged
Pages

Separate Non-Atomic 
Tag and Data Accesses 

Per Op

Checked Accesses and 
Tag Stores may span 

multiple Tag Granules 
(QWX)

Variable Tag-Check
Behavior (triggered by 

multiple events in 
Imprecise Mode, 

delays merge/ resolve 
in Precise Mode)

Variable Store-Buffer
and Merge-Buffer

Occupancy (32B vs. 
non-32B, MBX)



Project Intercept

MTE Implemented on Project X

• Novel, High-Complexity Feature

• Tacked onto existing µ-arch

• Predominant impact on Store-Path

• Pre-Release Bug-Rate High

State of LoadStore Formal Environment

• Bring-up complete with basic stimulus

• Loads + Stores + Snoop-Requests

• Read(Load)-Value Checker

• Only E2E Checker to cover Store-Path

• Longer path + high formal complexity 
• includes Store-to-Load-Forwarding path

• Expect insufficient proof-coverage



Checking Requirements

• Initial planning indicates 

• Multiple independent architectural/µ-arch checkers to verify Store Path

• Across different Tag-Check modes, MTE attributes, instruction-types, alignments etc.

• Significant overlap in tracking required across checkers

• Duplication of effort



Rationale for Hopscotch
Abstracting Execution Flows

What If?
We instead develop a Unified Framework

• span the entire lifecycle of a Store µop

• identify key events
• architectural & micro-architectural

• specify legal (or illegal) event orderings 
• for each flow

• mode, instruction-type, other attributes

• at an event occurrence
• invoke checks for both safety and progress
• key off other functional checks

Potential Advantages?

• Flexible

• Modular

• Iterative

• Scalable



Store-Execution Flow as a Multigraph

• Nondeterministic Abstraction of all Legal Store-Executions 
• for a given Flow-Type (+Flow-Attributes)

• For a given Store-Execution Flow F

• Each Event in F ßà A visit to an Event-Node N
• on a set of Directed Flow-Graphs FG0, FG1,…FGR  for R Visit-Relations VR0 , VR1,…VRR 

• Each Directed Edge (Path) on a Flow-Graph captures a single Visit-Relation

• Each Event-Node is mapped to a Node-Type and Node-Attributes

• A subset of Event-Nodes can be grouped into a Rendezvous-Node
• Has Barrier semantics
• Used to define forward path-requirements from any Node.



Flow-Graph Illustration
*



Example Flow-Graph (Precise-Mode Store-Exclusive)
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Example Flow-Graph (Precise-Mode Store-Exclusive)
Path Inclusion 
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Hopscotch : Design Goals
• Clean separation between

• A user-defined/maintained layer of functional specification 
• express ordering requirements for abstracted design events using simple temporal operators

• A static, concise code-substrate operating on domain-agnostic, configurable, regular structures
• translate, store and execute the user-specification 
• enable auto-generation of checkers and coverage

• Ease of maintenance 
• Allow spec updates to be clearly captured and interactively tested (CEX-guided)
• Little impact on underlying codebase

• Ease of decomposition
• Supports automated case-splitting and path-decomposition
• Both key to mitigating formal complexity.



Sample Node Specification (Exclusive-Check Fail)



Hopscotch Implementation

Event Nodifier

Tracked-Txn State

Filtered DUT Events



Hopscotch-based STEXEC Checker

Event Nodifier

Tracked-Txn State

Flow Safety

Flow Progress 

Data & Tag 
Consistency

Tag-Check Safety

Filtered DUT Events



Flow-Safety Checkers

Node-State

Concurrence 
Safety

Path Safety

Hop Safety

Trace-State



Trace and Node State-Checkers
Invoked at each Event-Node visit against Trace-Graph

• Check that Trace-State never becomes ILLEGAL

• Check that Node-State does not become ILLEGAL

• Based on Node-Type and Trace-State

• Includes revisit-bounds.

Node-
State

Trace-
State



Hop and Concurrence Flow-Safety Checkers
Invoked for each of N nodes currently visited

• Check against M nodes visited last -> 
• all M x N node hops are LEGAL

• Check that no positive or negative concurrence relations are 
being violated 
• w.r.t. the remaining N-1 visited nodes

Hop Safety

Concurrence 
Safety



Path Flow-Safety Checkers
Invoked for all N nodes currently visited

• Check against all other nodes à

• No defined path-inclusion relations are violated

• No defined path-exclusion relations are violated
Path Safety



Hop & Concurrence Flow-Safety-Check Animation
*



Hop & Concurrence Flow-Safety Check Animation
*



Hop & Concurrence Flow-Safety Check Animation
*



Hop & Concurrence Flow-Safety Check Animation
*



Hop & Concurrence Flow-Safety Check Animation
*



Hop & Concurrence Flow-Safety Check Animation
*



Hop & Concurrence Flow-Safety Check Animation
*



Hop & Concurrence Flow-Safety Check Bug Animation
*



Hop & Concurrence Flow-Safety Check Bug Animation
*



Path Flow-Safety Check Animation
*



Path Flow-Safety Check Animation (Bug)
*



Flow-Progress Checkers (Assume-Guarantee based)

Rendezvous 
Progress

Stall-Clear Guarantee

Hop Progress



Hop Flow-Progress Checkers
Invoked for each of N non-leaf atomic nodes currently visited

Starting at a visit to node Ni ,unless escaped or aborted:

• Liveness Variants (require fairness):

• Will always eventually visit at least one atomic node Nj to which a hop is legally 
defined

• Bounded Safety Variant:

• Compare a predefined threshold against a count of cycles during which

• no legally defined internal stalls (assume bounded) or external waits defined for Ni are 
active, AND

• we have not legally hopped to another atomic node Nj

Hop Progress



Rendezvous Flow-Progress Checkers
Invoked for each of N non-leaf atomic or rendezvous nodes currently visited

• Rendezvous Nodes
• Composite nodes with barrier semantics (all visited, any visited etc.)

• Starting at a visit to node Ni ,unless escaped or aborted:

• Liveness Variants (require fairness):

• will always eventually visit all required downstream rendezvous nodes (Ra, Rb,…)

• Bounded Safety Variant:

• Compare a predefined threshold against a count of cycles during which:

• no legally defined internal stalls (assume bounded) or external waits defined for Ni are 
active, AND

• we have not legally hopped to each required downstream rendezvous nodes (Ra, Rb,…)

Rendezvous 
Progress



Stall-Clear Guarantee Checkers
Invoked for each of N non-leaf atomic nodes currently visited

• Coupled (assumed) with Progress Checkers.

• For any internal-stalls assumed as bounded for a given node, 
independently check (guarantee) that they will clear:

• Liveness variant: eventually, assuming fairness on external-wait
dependencies

• Bounded Safety variant : within a specified number of cycles

Stall-Clear 
Guarantee



Hop Flow-Progress Check Animation
*



Hop Flow-Progress Check Animation
*



Hop Flow-Progress Check Animation
*



Hop Flow-Progress Check Animation
*



Hop Flow-Progress Check Animation
*



Hop Flow-Progress Check Animation
*



Hop Flow-Progress Check Animation
*



Rendezvous Flow-Progress Check Animation
*



Rendezvous Flow-Progress Check Animation
*



Rendezvous Flow-Progress Check Animation
*



Results
• Total of late bugs hit by STEXEC : 19 

• 6 post-release

• 10 formal-only, 9 reproductions
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Sample Bugs Found by Flow-Safety Checkers

Safety Bug 1 (Node-State Check)

Each node in the flow-multigraph is 
allowed to be visited only a specified 
number of times. 

Bug: RTL was writing Tracked STG op’s 
PAT and DAT at different times 
(writing the same PAT twice).

Also hit by Hop-Safety Check

Safety Bug 2 (Concurrence Check)

If node A is visited, then node B
should also get visited. 

Bug: RTL was writing Tracked STGP
op’s PAT without writing its DAT.



Sample Bug Found by Flow-Progress Checkers
If node A is visited, then at least one hop-related node B and all required downstream 
rendezvous nodes C (from A) should eventually always get visited.

• Bug:

• In Precise Mode, RTL executes a Tag-Check for a Store-Exclusive micro-op which fails due to hitting a 
poisoned PAT. 

• Since unarmed, it signals STREX complete (failure) but never arbitrates for broadcasting the failure 
because the Merge-Buffer was never written due to the Tag-Check error above.

• Progress-Checker fails because a required Rendezvous Hop from STREX_FAIL to STREX_RESULT was never 
taken (Progress-Counter saturation in the absence of transient stalls / external waits)

• Multiple variants hit



Key Observations

Hopscotch

• Accelerated overall Store-Execution bring-up
• Safety checks valuable for sanity testing 

• Caught lots of otherwise-subtle TB issues quickly
• Debug productivity boost from visual logging of 

node visits 

• Performance of matrix implementation for
flow-multigraphs
• Sensitive to total number of nodes:
• Added nodes increase complexity + memory 

requirements

Checkers
• Required variable level of white-boxing

• Limit to high-level events at first
• Model u-arch events as needed
• Tradeoff: checker precision vs. modeling effort

• Little payoff from liveness checkers
• Different source of complexity?



Looking Ahead

Enhancements/Extensions

Flowgraphs are naturally extendable to generate 
lower-level coverage models (for signoff +/ DBH)

• Pairwise hop coverage 

• Path coverage

• Per-node Stall coverage

Optimizations

• Reduce graph size/complexity
• Sparse matrix implementations

• New/improved traversal/check algorithms 
used in safety and progress checkers 

• Liveness checking



Conclusions 

• Investments in complexity reduction à huge impact on baseline TB performance

• Focusing on the right problems with the right toolset critical to adding value with formal

• Time + effort in careful planning of both scope and implementation well-spent

• Hopscotch framework : speedy, flexible and scalable way to build and test E2E checkers

• Developed a mature formal environment for the LS Store-Path 

• within a couple of months

• added confidence to RTL release quality



Questions?



Backup Slides



Key Compound Oracles

Oline

• Tracked Cache-
line Addresses 
(VA including 
VA-alias)

• Tracked 
Translations 
(PA, Memory 
Type, 
Cacheability
etc.) 

• Context

Ouop

• (Instruction) 
micro-op(s)

• Op-Type
• Size
• UID/STID
• Alignment
• Endianness
• Page-Attributes
• SVE predication

Odata

• Size and Byte-
Offsets of 
Tracked Data 
Granules within 
Tracked Cache-
line Addresses 
chosen by Oline

Oinit

• Initial-State 
choices for IVAs
& Abstraction 
Models bound 
to the DUT

• Cache-State, 
Way, Value 
Tracked Data 
Granule, 
Exclusive 
Monitor etc.

Ocheck

• Unique 
enumerated 
choice of 
Checker to
activate from 
among the set 
of supported 
Checkers

Ogatekeeper

• Non-
deterministic 
choice of which 
eligible event(s) 
are picked 
when to be 
reported to 
Checker

• Not Stable



Structured Case-Splitting
Precondition Conjugations

• Implemented in source for key, hard E2E Checkers 

• Higher bounds and full proofs achieved for Extreme Case-Splits

• Concretized values for symmetrical or interesting oracle choices 
• Pick bit 0 of byte 0 to check 
• Pick only cacheable addresses to only 1 bank to check
• Pick only cases with hits to check (TLB, Tag-RAM abstraction-model policy oracle choices)
• Pick only one specific op-type to check

• Accelerated by helper assertions

• Appropriate to be included in smoke testing

• Each case-split (value) enables sensitivity analysis 
• effect on proof-convergence & contribution to complexity

Structured 
Case 

Splitting



Compile-time Transaction-Limiting Profiles
Static Over-Constraint Recombining

• Create a reference set of OCs (Over-Constraints) 
• Sources 

• Interfaces 
• Address-Space
• Checker Oracles
• Abstraction Oracles 

• Types
• Disable types of stimulus
• Limit number of transactions of each type of enabled stimulus
• Narrowed/unique choice of oracle values

• Methodology
• Map each OC into corresponding `define
• Concatenate `defines into a set of named, unique profiles
• Allow profiles to be specified at build time
• Omit out-of-focus (UNR) properties on a per-profile basis (“waiver” flow)

OC-based 
State 

Reduction



Runtime Transaction-Limiting Profiles
Dynamic Over-Constraint Recombining (Loc-K-Picker)

• Create a static pool of weighted, abstracted OCs (Over-Constraints) with 
attributes and dependencies
• Inclusion
• Mutual-exclusion 

• On each invocation, pick a random set of K concretized, mutually-
consistent Local Over-Constraints
• Solve the knapsack problem
• Dynamically applied on a per-task basis

• Each task/proof-thread gets a unique set of selected OCs
• Supported for both proof and DBH threads

OC-based 
State 

Reduction



Store-Execution Flow as a Multigraph

• Non-deterministic Abstraction of all Legal Store-Executions 
• for a given Flow-Type (+Flow-Attributes)

• For a given Store-Execution Flow F

• Each Event in F ßà Visit to an Event-Node N on a set of Directed Flow-Graphs 

• FG0, FG1,…FGR  for R Visit-Relations VR0 , VR1,…VRR 

• Each Directed Edge (Path) between Event-Nodes on a Flow-Graph FGi

• Captures a unique Direct (Transitive) Visit-Relation VRi

• Each Event-Node is mapped to a set of Node-Attributes



Atomic Node Types
CODE NAME DESCRIPTION

NONE Initialized Default

ASYNC Asynchronous No ordering relation w.r.t. any other node

ROOT Root First node(s) visited e.g., Tracked Txn accepted

FORK Perform Boolean Test Checker Invocation (PASS/FAIL)

IHOP Intermediate Hop Intermediate Event (neither root nor leaf)

FAIL Failure Tracked Txn Failure/Abort

ESCP Escape Cannot disambiguate Tracked Txn in future (aliasing event)

ENDP Endpoint Tracked Txn success; No outbound edges



Primitive and Composite Visit-Relations
Directed (A àB)

• ILLEGAL
• A can never be immediately 

followed by B

• OPEN
• legal if A visited strictly before B

• CLOSED
• legal if A visited before or 

concurrently with B

• NONE
• don’t care

Hop-Relation

Primitives:
• POSitive Implication

• A |-> B
• NEGative Implication 

• A |-> ~B

Composites:
• MUTEX

• A and B never concurrent
• CONDITIONAL (One-Way) 

• A implies B concurrent  but 
not vice-versa

• COUPLED
• A and B always concurrent

Primitives:

• NONE
• OPEN 
• CLOSED 
• NONHOP

Two Flavors:

• INCLUSION 
• A visited on every path to B

• EXCLUSION
• A never visited on a path to B

Concurrence-Relation Path Relation



Rendezvous Nodes
Composite Nodes with “Barrier” semantics

Rendezvous Type

• ANY
• Reached once any member Node(s) 

visited
• ONE
• Reached once exactly one member 

Node visited (one-hot)
• ALL
• Reached once all member Nodes 

visited
• NONE
• Don’t-care

Progress Checks

• Node-to-Rendezvous
• Define progress from a visited node 

once all downstream rendezvous 
nodes mapped are subsequently 
visited 

• Cross-Rendezvous
• Define progress from one 

rendezvous node to another



Flow Multigraph Representation
• Implemented via enumerations and matrices (2-D arrays) in Verilog

• Represented as a set of:

• Event Node Declarations with Attributes and Membership
• Node-Type      [ Atomic | Rendezvous ]
• Revisitability   [ NEVER |ONCE | UNLIMITED ]
• Thread + Strand

• Flow-Graphs
• Hop-Relation and Concurrence Relations
• Path-Inclusion & Path-Exclusion Relations

• Threads and Strands
• Enable concise specification via support for node-affinity
• Initialize all Relations to Don’t-Care across nodes in different Threads/Strands



Store-Execution Trace Graph
• Concrete Trace

• Represents a single deterministic Store-Execution
• of a Tracked Store op to the Tracked Data Bit on the Tracked Cacheline

• Overlays static Flow-Multigraph with dynamic Trace-State 
• Update for a set of Event-Nodes visited in a cycle: 

• Global-State
• [ IDLE | ACTIVE | ESCAPED | ABORTED | DONE | ILLEGAL ]

• Node-States
• [ IDLE | VISITED | REVISITED | ILLEGAL]

• Last (Multi-) Hop
• Set of Event-Nodes Last Visited 

• Enables checks automatically triggered for one or more Event-Nodes defined in the Flow Multigraph
• Safety Checks (Retrospective)

• against Event-Nodes that (ought to) have been visited so far
• Liveness Checks (Progressive)

• against Event-Nodes (ought) to be visited in the future 



Data & Allocation-Tag Consistency

DAT (Store Data)

• MTE-mode agnostic.

• For all Store-Types with Data:

• Check consistency of Tracked DAT Bit of 
Tracked Store Op against 

• merge-data at Merge

• write at L1$ or L2 interface

PAT (Allocation-Tag)

• For STGs (Stores to Allocation-Tag):

• Check consistency of Tracked PAT Bit 
of Tracked Store Op against 

• PAT written to L1 cache.

• PAT streamed to L2



Tag-Check Correctness
Predict Tag-Check Occurrence and Outcome

Precise Mode
• For a Tracked Checked Store op, check for:

• on a clean resolve, LAT must have matched the 
latest PATs in memory for all spanned QW 
granules

• If LAT doesn’t match the latest PATs in memory 
for all spanned QW granules, we must resolve 
with a u-arch abort (”nuke”)

• Consider all alignments and SBX/MBX cases.
• High-Level, triggered at merge/resolve time.

Imprecise Mode
• For a Tracked Checked Store op,

• Check correctness of Tag-Checks at different points
• triggered at RST-lookup, store-merge, fill.

• Allow for accumulation of older stores to the same 
line towards Tag-Check result

• Special handling for CLX/PGX cases and poison/SEI

• Requires partial implementation-choice 
modeling for precision.



Timeline

March:
Project Y 
early 
release  

Q1-Q2:
LS formal 
bring-up on 
Project X -> 
Project Y

Mid-
May:
STEXEC
planning

June: 
STEXEC bring-
up on Project 
Y

Early 
July: 
Hit Project Y 
1st Bug



Event Logging for STEXEC Traces



Sample Bug From Imprecise-Mode Tag-Check Checker

• On cycle 11, we do a tag-lookup for the Tracked Store with QW=0 but set Tag-
Checked indicator even though QWs are not enabled

• On cycle 28, when the Tracked Store merges but following a line state transition 
from EVICT to SHARED, we do another Tag-Check, which indicates a mismatch. 

• However, we don’t flag the Tag-Check fail correctly because Tag-Checked indicator is 
previously set

• We miss reporting the result of the Tag-Check the 2nd time around
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