Hierarchical UPF: Uniform UPF across FE & BE

Dipankar Narendra Arya
Balaji Vishwanath Krishnamurthy
Aditi Nigam
Tahir Ali
Agenda

1. Introduction
2. UPF Consumption across SoC
3. PoC on Hierarchical UPF
4. Guidelines for SoC team
5. Summary and Current Status
Introduction

• Unified Power Format (UPF) – 1801 IEEE Std. – used for power intent specification
 • Tcl based
 • Verification and implementation of multi-well and power gating scenarios

• UPFs Styles
 • Hierarchical
 • Flat
 • Merged
Introduction (contd.)

• Hierarchical

```
create_supply_net VDD
create_supply_port VDD
connect_supply_net VDD -ports VDD
create_supply_set ss_VDD -function (power VDD) -ground (VSS)
create_power_domain PD -elements {.} -supply "primary ss_VDD"

... load_upf child_block.upf -scope child1
load_upf child_block.upf -scope child2 ...
```

• Flat

```
create_supply_net VNNAON
create_supply_port VNNAON
connect_supply_net VNNAON -ports VNNAON
create_supply_set ss_VNNAON -function (power VNNAON) -ground (VSS)
create_power_domain PD_top -elements {.} -supply "primary ss_VNNAON"
create_power_domain PD_child1 -elements (child1) -supply "primary ss_VDd"
create_power_domain PD_child2 -elements (child2) -supply "primary ss_VDd"
```

• Merged

```
create_power_domain PD_child_merged -elements {child1 child2} -supply "primary ss_VDD"
```
UPF Consumption across SoC

Front End UPF FLOW VIEW

- Connectivity Info
- IP UPFs
- UPF Input+PST
- Hierarchical UPFs
- Validation
- Emulation
- Power Estimation
- Merge UPFs
- Merge UPF Eq. Check

- UPF GENERATOR
- Merge Specs
- Handoff to BE

- Synthesis
- UPF
- UPF'
- Verilog (Netlist)
- P&R
- UPF''
- Verilog (Netlist)

- Simulation, Static Checking
- Signoff, Rail Analysis
UPF Consumption across SoC (Contd.)

• RTL/TB integration tool stitches IP level UPFs and generates block level UPF – Hierarchical by default

• Back-end implementation can’t consume hierarchical UPF files in past – issues seen in implementation tools
 • Difficulty in understanding IP level UPFs
 • PST conflict because of IP level PSTs
 • Power domain explosions
 • PDOI routing b/w child blocks is buggy
 • Power intent of Eq. gated power domain were not realized properly in APR tools

• Merged UPF is used – for ease of implementation
 • Generation is tedious – script based - too many configurations and manual interventions – error prone
 • TAT for initial setup – 7-8 weeks; 2-3 weeks for any subsequent updates
 • No industry standard tool available for generation
 • Can’t be used for verification flows as stubbing not possible (selective enabling/disabling of blocks)

• Make sure Hierarchical UPF ≈ Merged UPF
 • Formal Eq. (FEV) checking tool – same RTL on both side- not full proof, bugs seen in the past.
 • Only Gate Level Simulation can confirm complete equivalence – late in the design cycle, around code freeze.
POC on Hierarchical UPF

• Consuming Hierarchical UPF for BE – same power intent everywhere – no additional overheads for validation – reduced TAT

• POC was done on a complex partition
 • Equivalent PSWs (would have already been merged in Merged UPF)
 • Isolation strategies – parent as well self
 • ELS
 • Multiple SIPs and HIPs

• All major tools and flows from FE to BE were run

• Learnings and Guidelines published for the next project
POC on Hierarchical UPF – Issues seen

• FE LP Static Checks – no issues
• FE Handoff synthesis
 • Unable to insert ISO at parent location in last gen synth tool; not an issue in next gen synth tool
 • Missing CSNs for internal – errors, as unable to derive the related voltage
• BE Handoff synthesis – same as above
• APR
 • Flow crashes initially – improper buffer/inverter placements
 • Additional option/attribute to merge eq. VA and PSW required
POC on Hierarchical UPF – Issues seen (Contd.)

• BE LP static checks
 • Bug related to shared VA attribute used in APR – fixed later
 • Many false violations related to PSW merging – waived

• LVS Check
 • Output nets of PSWs (distinct for the tool) are not shorted by default
 • Single VA can have one net only – logically connected to primary power but not physically connected – causing LVS opens
 • PSW supply nets need to be shorted in the UPF- use “set_equivalence” or port out to top and short

• RV Checks – no issues

• LP FEV
 • Expected power-grid violations related to PSW merging
 • Violations related to biasing
Guidelines for SoC team

• Use Localized UPFs – copy all child UPFs in a single dir. – replace paths with normalized paths – ease of shipping
• Strict compliance to Intel-wide UPF 2.1 templates – avoid mix-n-match of versions
• Well-biasing for supply sets in all the UPFs – LP static tool can not detect- Synthesis will fail
• Value of attribute in “set_design_attribute” command should be consistent – otherwise flow error
• Do not use legacy/deprecated constructs/switches – “set_domain_supply_net”, “extra_supplies_#”
• Port out gated supplies to block level UPFs – needed for eq. PSWs and SoC driven PSTs
• CSNs should be done for all the ports across the design – LP lint will throw violation and Synthesis will fail
• Add protection around IP level PSTs and add_power_state commands- SoC driven PST to minimize conflicts
• Bring IP internal nets to block level – to add fillers cells (if needed) during APR
Summary and Current status

• Successful PoC – no major hiccups/QoR degradation
• Decision taken to use hierarchical UPFs for the ongoing projects – Guidelines for SoC team published
• Initial bring-up/integration in FE took some effort – many legacy IPs were not as per guidelines
• Significant reduction in time and resource (as merged UPF generation/validation not required)
• TAT for UPF integration decreased by 60-70% - saving of 8-10 weeks for initial bring up – 2-3 days for subsequent drops
• Compliance to basic principle of consuming same UPF across the flows
Questions