2022 DESIGN AND VERIFICATION™ DVCDDN CONFERENCE AND EXHIBITION

### UNITED STATES

# Hierarchical UPF: Uniform UPF across FE & BE

Dipankar Narendra Arya

Balaji Vishwanath Krishnamurthy

Aditi Nigam

Tahir Ali





### Introduction

#### UPF Consumption across SoC

PoC on Hierarchical UPF

### Guidelines for SoC team

### Summary and Current Status





### Introduction

- Unified Power Format (UPF) 1801 IEEE Std. used for power intent specification
  - Tcl based
  - Verification and implementation of multi-well and power gating scenarios
- UPFs Styles
  - Hierarchical
  - Flat
  - Merged





### Introduction (contd.)

### • Hierarchical

create\_supply\_net VDD

create\_suppy\_port VDD

connect\_supply\_net VDD -ports VDD

create\_supply\_set ss\_VDD -function {power VDD} -ground {VSS}
create\_power\_domain PD -elements {.} -supply "primary ss\_VDD"

load\_upf child\_block.upf -scope child1 load\_upf child\_block.upf -scope child2

### • Flat

create\_supply\_net VNNAON

create suppy port VNNAON

connect\_supply\_net\_VNNAON -ports\_VNNAON

create\_supply\_set ss\_VNNAON -function {power VNNAON} -ground {VSS}

create\_power\_domain PD\_top -elements {.} -supply "primary
ss VNNAON"

create\_power\_domain PD\_child1 -elements {child1} -supply "primary
ss VDD"

create\_power\_domain PD\_child2 -elements {child2} -supply "primary ss\_VDD"



#### Top Block (VNNAON, VDD)

### Merged

create\_power\_domain PD\_child\_merged -elements {child1 child2} -supply "primary ss VDD"





# **UPF** Consumption across SoC







# UPF Consumption across SoC (Contd.)

- RTL/TB integration tool stiches IP level UPFs and generates block level UPF Hierarchical by default
- Back-end implementation can't consume hierarchical UPF files in past issues seen in implementation tools
  - Difficulty in understanding IP level UPFs
  - PST conflict because of IP level PSTs
  - Power domain explosions
  - PDOI routing b/w child blocks is buggy
  - Power intent of Eq. gated power domain were not realized properly in APR tools
- Merged UPF is used for ease of implementation
  - Generation is tedious script based too many configurations and manual interventions error prone
  - TAT for initial setup 7-8 weeks; 2-3 weeks for any subsequent updates
  - No industry standard tool available for generation
  - Can't be used for verification flows as stubbing not possible (selective enabling/disabling of blocks)
- Make sure Hierarchical UPF  $\,\approx\,$  Merged UPF
  - Formal Eq. (FEV) checking tool same RTL on both side- not full proof, bugs seen in the past.
  - Only Gate Level Simulation can confirm complete equivalence late in the design cycle, around code freeze.





# POC on Hierarchical UPF

- Consuming Hierarchical UPF for BE same power intent everywhere no additional overheads for validation – reduced TAT
- POC was done on a complex partition
  - Equivalent PSWs (would have already been merged in Merged UPF)
  - Isolation strategies parent as well self
  - ELS
  - Multiple SIPs and HIPs
- All major tools and flows from FE to BE were run
- Learnings and Guidelines published for the next project





# POC on Hierarchical UPF – Issues seen

- FE LP Static Checks no issues
- FE Handoff synthesis
  - Unable to insert ISO at parent location in last gen synth tool; not an issue in next gen synth tool
  - Missing CSNs for internal errors, as unable to derive the related voltage
- BE Handoff synthesis same as above
- APR
  - Flow crashes initially improper buffer/inverter placements
  - Additional option/attribute to merge eq. VA and PSW required







### POC on Hierarchical UPF – Issues seen (Contd.)

- BE LP static checks
  - Bug related to shared VA attribute used in APR fixed later
  - Many false violations related to PSW merging waived
- LVS Check
  - Output nets of PSWs (distinct for the tool) are not shorted by default
  - Single VA can have one net only logically connected to primary power but not physically connected – causing LVS opens
  - PSW supply nets need to be shorted in the UPF- use "set\_equivalence" or port out to top and short
- RV Checks no issues
- LP FEV
  - Expected power-grid violations related to PSW merging
  - Violations related to biasing









# Guidelines for SoC team

- Use Localized UPFs copy all child UPFs in a single dir. replace paths with normalized paths – ease of shipping
- Strict compliance to Intel-wide UPF 2.1 templates avoid mix-n-match of versions
- Well-biasing for supply sets in all the UPFs LP static tool can not detect- Synthesis will fail
- Value of attribute in "set\_design\_attribute" command should be consistent otherwise flow error
- Do not use legacy/deprecated constructs/switches "set\_domain\_supply\_net", "extra\_supplies\_#"
- Port out gated supplies to block level UPFs needed for eq. PSWs and SoC driven PSTs
- CSNs should be done for all the ports across the design LP lint will throw violation and Synthesis will fail
- Add protection around IP level PSTs and add\_power\_state commands- SoC driven PST to minimize conflicts
- Bring IP internal nets to block level to add fillers cells (if needed) during APR





## Summary and Current status

- Successful PoC no major hiccups/QoR degradation
- Decision taken to use hierarchical UPFs for the ongoing projects Guidelines for SoC team published
- Initial bring-up/integration in FE took some effort many legacy IPs were not as per guidelines
- Significant reduction in time and resource (as merged UPF generation/validation not required)
- TAT for UPF integration decreased by 60-70% saving of 8-10 weeks for initial bring up – 2-3 days for subsequent drops
- Compliance to basic principle of consuming same UPF across the flows





# Questions



