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Abstract-The objective of this paper is to present a Mixed-Signal Verification (MSV) flow to verify a PMIC designed 

for SSD applications.  The PMIC consists of analog-centric blocks such as buck converters, on-chip voltage regulator, 

high frequency oscillator, etc.  The challenges encountered during verification were three-fold, viz., (a) Simulation 

performance (runtime), (b) Checking the default values loaded onto the hundreds of register banks and (c) Achieving 

coverage that mandates writing onto register banks to verify the buck voltage regulation values.  The authors have 

framed a three faceted verification methodology to address these challenges.  Use of Real Number Modelling (RNM) using 

SystemVerilog (SV) “real” built-in nettype leveraging SV IEEE 1800-2009 features, automation of the default values 

check across registers using Python scripts, and randomization of register write from I2C to check the buck voltage 

regulation values.  The results obtained have been quantified to show a performance improvement of the order of 100-

1000x than schematic-based simulations. 

 

I. INTRODUCTION 

 

Power Management Integrated Circuits (PMICs) are becoming more pronounced these days owing to their 

inherent capabilities to perform DC-DC conversion as in Buck Converters, Dynamic Voltage Scaling (DVS) and 

ability to transition through various modes such as active, standby and sleep modes [1][2].  Depending on their end 

application, PMICs could be broadly classified as System-on-Chip (SoC) PMIC, Display PMIC, Memory PMIC or 

Interface PMIC, though there could be few other application-specific ones.  Each of these categories of PMIC comes 

with its own challenges, both during the design and the verification phases, owing to their complexity and 

constraints. 

 

A Memory PMIC, which is typically used for Solid State Drives (SSD) applications usually consists of one or 

more synchronous type buck converters, current limiting circuits, housekeeping blocks, and voltage level detectors 

inside the analog part of the chip.  In addition, they contain on-chip voltage regulators (LDO), High-Frequency 

Oscillators (HFO), POR and reference level detector, and ESD protection circuits.  There is also the core analog 

block that is responsible for generating the reference and bias voltages for all the other blocks.  The output voltage 

of each buck converter provides DVS, forced discharge mode, power good (PG) function, as well as power-off using 

I2C interface.  Additional features include default voltage setting mode, through which PMIC can support to change 

default voltage of each output up to four combinations during power on.  The PMIC has been designed to use very 

small size inductors with multilayer chip type.   

 

Main Features of the PMIC include: 

- Independent PMIC reset, viz., Making all buck converter channel outputs return to the default voltages 

according to the external address setting at the same time without PMIC power off/on 

- Control from I2C interface for a host of operations such as  

o Pull down mode to discharge all channels forcedly 

o Adjustable discharge resistance 

o DVS and disabling of each channel output 



 
 

- One Time Programmable Start up Delay Time, RSTO Delay Time and RSTO threshold 

- Fully integrated MOSFET switches 

- Thermal shutdown, over voltage (external/output) and over current protection capabilities 

 

A block diagram representation of the architecture of a Memory PMIC is shown below.  

 
Figure 1. Block diagram of a Memory PMIC architecture 

 

 

II. SEQUENCES AND MODES OF OPERATION 

 

When the external input voltage VCL,Vin supplied to the input of the current limiter exceeds its Under Voltage Lock 

Out (UVLO) level, the output of the current limiter VCL,Vout drives the 5 buck converter channels.  Power sequence 

starts after VCL,Vout exceeds the UVLO threshold, with a delay time of Tsys.  During this Tsys delay time, PMIC can 

forcedly work in discharge mode for all buck converter channels and keeps each channel at its default voltage value, 

which is set up by the mode balls (M0, M1).  After VCL,Vout reaches UVLO level, each channel enters soft-start mode 

after a start-up delay time, which is programmable by a One Time Programmable (OTP) unit.  When VCL,Vout 

reaches the target threshold voltage, RSTO (Power On Reset) should be high after TRSTO_POR_DELAY time without 

VCL,Vin falling below the UVLO level.  The TRSTO_POR_DELAY time is also programmable by OTP.  If PMIC receives a 

reset signal, RSTO should be high after TRSTO_PMRST_DELAY time, which is again programmable by OTP. 

 

If Reset signal (PMRST or OTP_R) is received, PMIC makes all channels return to the default voltage which is 

set up by mode balls.  Each channel has fixed (Typ. ±5%) Enable Delay Time and Reset Delay Time when turn on 

by Reset signal.  Reset delay time can be programmable by OTP with a tolerance of ±10%.  If VCL,Vout goes down 

under UVLO level, all channels turn off after specified time (Off Delay Time) by OTP and the discharge function of 

channels that were enabled by OTP turns on until the possible level.  The Off delay time can be programmable by 

OTP with a tolerance of ±10%. 

 

 



 
 

Following are the scenarios under which the buck converter channels are disabled as each of these scenarios 

corresponds to a fault condition. 

 

 Over Load Protection (OLP): If the output voltage remains below about 80% of the target output voltage 

for more than specified delay 

 Short Circuit Protection (SCP): If the output voltage remains below about 33% of the target output voltage 

for more than specified delay   

 Over Voltage Protection (OVP): If the output voltage exceeds the over voltage protection (OVP) threshold 

 

To reactivate the channels, VCL,Vin should be recycled after the fault condition is removed. 

 

All buck converters will have a typical inductor ranging between 0.1 to 1 μH. The selected inductor has to be 

rated for its DC resistance and saturation current. An inductor with lowest DC resistance should be preferred for 

highest efficiency [1][5]. Following formula can be used to calculate the maximum inductor current under static load 

condition. The saturation current of the inductor should be rated higher than the maximum inductor current because 

during heavy load transient the inductor current will rise above the calculated value. 

 
Δ𝐈𝐋 = 𝐕𝐎𝐔𝐓∙(𝟏−𝐕𝐎𝐔𝐓/𝐕𝐈𝐍) / 𝐋∙𝐟𝐒𝐖 

 

𝐈𝐋𝐦𝐚𝐱 = 𝐈𝐋𝐎𝐀𝐃+ (Δ𝐈𝐋/𝟐) 
Where: 

fSW = switching frequency 

L = inductor value 

ΔIL = Peak to peak inductor ripple current 

ILmax = Maximum inductor current 

 

III. VERIFICATION CHALLENGES 

 

Some of the challenges in verifying a Memory PMIC such as the one shown above are: 

 

- Simulation performance (runtime) is a predominant factor when we realise these blocks at their transistor 

level (TL) abstractions.  One buck converter typically takes 1 to 1.5 days to simulate with commercial 

simulators available in the industry, and with the most optimum SPICE settings. 

- Verifying the default voltage regulation values of the buck converter channels by writing data to the huge 

set of register banks (typically hundreds) 

- Addition of appropriate assertions and checkers to check for various functionalities such as power-on and 

power-off behavior, single-byte and multi-byte write and read from I2C interface, enabling & disabling of 

various power modes, and testing the protection logic 

- Pin connectivity checks involving passing values between Analog and Digital (RTL), wherein the value 

supplied on one side is checked for propagation on the other side to ensure there are no pin mismatches 

(induced either due to improper spec or human-induced error during design) 

 

Though all the above challenges are of concern, the problem of simulation runtime has always been predominant 

in analog-centric ICs, leading to longer verification times.  One approach to handle this problem is to come up with 

Verilog-A behavioral models [3] for all the analog blocks and use them in lieu of their TL abstractions.  However, 

Verilog-A requires SPICE simulator and so the simulation is still time-step driven unlike logic simulators that are 

purely event-driven.  Also, the accuracy of the Verilog-A model to match it closely with the schematic depends on 

the person who is modelling.  Modelling with Verilog-A is also prone to issues such as discontinuities in the signal 

values, etc., which can lead to convergence issues during simulation [3][4].  Finally, depending on the modelling 

style, it might lead to performance deterioration instead of performance improvement if proper techniques such as 

transition filters, bound step, etc., are not implemented in the model. 



 
 

An alternative and better approach is to use Real Number Modelling (RNM), wherein the analog blocks are 

modelled using SystemVerilog “real” built-in nettype, that makes use of powerful SystemVerilog IEEE 1800-2009 

features such as real number variables, input/output real ports, assign statements to real variables, and 

SystemVerilog Assertions (SVA) including real variables [6][7][8]. 

 

IV. PROPOSED FLOW IMPLEMENTATION 

 

Considering the above aspects, the authors of this paper worked on creating a Mixed-Signal Verification (MSV) 

framework for the Memory PMIC as follows.  We started with the schematic of our PMIC Chip-top level, from 

which we created a mixed-signal configuration.  In this configuration, we bound the blocks of interest to “symbol” 

[12] view, so that we can use behavioral models for the time-consuming analog blocks.  We then extracted a 

Verilog-AMS netlist [4][6] of this configuration.  This Verilog-AMS netlist was post-processed to convert it to SV 

netlist so that we can avoid electrical disciplines as our intention is to keep the simulation purely event-driven and 

perform a Digital Mixed-Signal (DMS) simulation.  This SV netlist along with the RTL codes for the digital blocks 

and with the developed behavioral RNM models for analog blocks, were compiled and simulated using logic 

simulator that is purely event-driven [12][13].  As we were primarily interested in top-level integration checks, we 

were not in need of SPICE level accuracy.  Hence, we integrated the developed RNM models together and took care 

of the Real to Logic and Logic to Real conversions using appropriate connect rules [12][13].  

 

Creating analog behavioral models was by itself a multi-step task, which consisted of model creation, testbench 

creation, simulation and validation of models [7][8][12] against the corresponding schematic.  Models were 

developed as SystemVerilog RNM models with nettype “real” and with CDS_res_wrealsum as the resolution 

function [8][10][12][13].  The developed models were simulated and the results were compared with their respective 

schematic simulation results using common testbenches for both, thereby validating those models [13]. 

 

A diagrammatic representation of the adopted flow is shown below. 

 
Figure 2. Adopted flow for Mixed-Signal Verification for the Memory PMIC 

  



 
 

The above flow was implemented on an industrial design of a Memory PMIC that was used for SSD application.  

The results thus obtained have been quantified to show a performance improvement in the order of 100-1000x 

compared to schematic-based simulations. 

 

V. AUTOMATION AND COVERAGE 

 

Next task was to check the default values loaded onto the hundreds of register banks.  For this purpose, we 

developed a Python script that takes as its input the register map information provided by the designer. All the key 

data from the register map such as register name, range and the default (reset) value of the register are passed as 

inputs to the script.  The script would then create a SystemVerilog file that defines a module and declares local 

logical variables for each register name, and maps these variables to the actual register names in the design using 

$xm_mirror() [11] utility available in the logic simulator.  This is followed by SystemVerilog Assertions (SVA) in 

the module, wherein we compare the values of each field in the simulation against the default values coming from 

the register map.  If there are mismatches, assertion violation messages are printed. 

 
TABLE I 

REGISTER MAP INFORMATION  

Address Register Name Range Reset Value 

0x00 CH1_OUT [6:0] 0x01 

0x02 CH2_OUT [6:0] 0x02 

0x03 CH3_OUT [6:0] 0x03 

0x04 CH4_OUT [6:0] 0x04 

0x05 CH5_OUT [6:0] 0x05 

 

A pseudo code of the auto generated SV module from the script is shown below. 

 

//Declarations 

         logic  CH1_OUT; 

         logic  CH2_OUT; 

 

//Mirroring 

          If (reg_value_check=1)  

                mirror(`MAIN_CH1_OUT ->   CH1_OUT); 

                mirror(`MAIN_CH2_OUT ->   CH2_OUT); 

          end 

 

//Assertion 

           if  (CH1_OUT == 0x01)         true => Do nothing 

                                                            False => Display there is a mismatch 

           if  (CH2_OUT == 0x02)         true => Do nothing 

                                                            False => Display there is a mismatch 

 

Final task was to get a good coverage by checking the voltage regulation values of all the buck converter channels 

for different data byte written from I2C.  This was achieved by using the SystemVerilog randomize() method to 

write random values to the buck registers and checked the corresponding output voltages automatically using the 

formula based checker task.  We also covered the minimum, default and maximum output values using directed 

stimulus approach. 

 

Register description of the buck voltage register CH1_VOUT is taken and shown below for illustration. 

 



 
 

TABLE II 
CODE VS DATA MAPPING FOR CH1 REGISTER  

Function Address Code Value 

 

 
CH1_VOUT 

 

 
0x00 

0x00 1.2V 

0x01 1.19375V 

0x02 1.1875V 

… … 

0x40 0.8V 

0x70 0.5V 

 

To check the output voltage value corresponding to each random code for a given buck converter channel as shown 

above, below steps were followed by using the randomization technique. 

 

A. Write random code to register from I2C 

rand bit [7:0] i2c_wdata; //declared random variable 

repeat(itr) begin // more iteration (itr=10 for example) to hit different values 

i2c_wdata.randomize();  //method to generate random data 

`uvm_info(get_type_name(),$sformatf("rand data  i2c_wdata: 0x%x ",i2c_wdata),UVM_LOW) 

`WRITE_S (`SLAVE_ADDR, `CH1_VOUT,i2c_wdata);  //I2C write to the RTL design buck1 register 

 

Once the random data is written to the register, the expected buck voltage is calculated and compared 

against the actual buck voltage. 

 

dvs_output_compare ("BUCK1",i2c_wdata[6:0] ); 

task dvs_output_compare (input string str, input int dvs_code); 

  case (str) 

  "BUCK1" : begin 

   offset   = `BUCK1_OFFSET; 

 max_volt = `BUCK1_MAX; 

 min_volt = `BUCK1_MIN; 

   dvs_step = `BUCK1_STEP; 

 actual_vout = `BUCK1_ACT; 

  end 

  .. 

  endcase 

endtase 

 

B. Calculate the expected buck voltage by formula 

  if (offset >= max_volt) // for decreasing DVS 

    expected_vout = ((offset - (dvs_step*dvs_code)) < min_volt) ? min_volt:((offset - (dvs_step*dvs_code))> 

max_volt)? max_volt: (offset - (dvs_step*dvs_code)); 

  else  // for increasing DVS 

    expected_vout = ((offset + (dvs_step*dvs_code)) < min_volt) ? min_volt:((offset + 

(dvs_step*dvs_code))> max_volt)? max_volt: (offset + (dvs_step*dvs_code)); 

  compare_data (str, actual_vout,expected_vout);   

 

C. Compare the expected and actual buck voltage values 

task automatic compare_data(input string str, input real actual, input real expected); 

        if($sformatf("%0.6f",actual) != $sformatf("%0.6f",expected)) 

            `uvm_error("COMPARE_VOLTAGE",$sformatf("%s :: Actual value = %0.6f doesnot match with 

expected value = %0.6f",str,actual,expected)) 

        else 



 
 

            `uvm_info("COMPARE_VOLTAGE",$sformatf("%s :: Actual value = %0.6f match with expected 

value = %0.6f",str,actual,expected),UVM_LOW) 

   endtask 

 

With this randomization method, we could get good coverage on the buck converter channels to check if the PMIC 

generates proper voltages for any random code. 

 

VI. RESULTS AND CONCLUSION 

 We were able to complete the verification of the Memory PMIC with the above-mentioned approach thereby achieving the 

below metrics. Plot of some of the key test results are shown for illustration.    

         

       
 

               Figure 3. Key Test Results  

 

 68 test cases were completed on time with this approach spanning across various scenarios including below  

o Power-on and power-off 

o Write and read from I2C interface 

o Dynamic Voltage Scaling 

o Protection Logic 

o Standby mode entry & exit 

o Pin connectivity checks between analog and digital 

 25 SV-RNM models were developed and validated against the schematic 

 6 weeks TAT for the whole activity, ensuring first-pass silicon success 



 
 

 
               Figure 4. Verification Completion Timeline  

 

We thus created a true mixed-signal configuration of the Memory PMIC chip that consists of RTL for the digital 

and SV real (behavioural) models developed and validated against the schematic for the analog parts of the design.  

We were able to simulate this configuration using logic simulator which is event-driven, so we got a huge 

performance benefit compared to SPICE simulations with TL abstraction.  We also avoided potential issues such as 

non-convergence and finding right tolerance settings that come with a SPICE simulation that is time-step driven.  

We came up with register check scripts using Python for verifying the default values loaded onto the hundreds of 

registers.  We also enabled randomization to write data onto the register banks from I2C to check the corresponding 

buck default regulation values, thereby achieving coverage.  We could thus complete the verification activity on 

time with this methodology and ensure first-pass silicon success.  Future scope is to automate regression of the 

model validation activity.  Also the scope of moving from SystemVerilog real to SystemVerilog EEnet based 

modelling to account for voltage, current and impedance in the models are currently being explored. 
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