
Get Ready for

UVM-SystemC

Martin Barnasconi - NXP Semiconductors

Presented by: Anupam Bakshi - Agnisys

© Accellera Systems Initiative 1

Outline

• A bit of history…

• Why UVM in SystemC?

• Main concepts of UVM

• Advantages of UVM-SystemC

• Work-in-Progress: Register Abstraction Layer

• Register Model examples

• Standardization in Accellera

• Next steps

• Summary and outlook

• UVM-SystemC tutorial at DVCon Europe

2

A bit of history…

• In the pre-UVM era, various EDA vendors offered a verification
methodology in SystemC
– OVM-SC (Cadence), AVM-SC (Mentor), VMM-SC (Synopsys)

• Unfortunately, consolidation towards UVM focused on a
SystemVerilog standardization and implementation only

• Non-standard methods and libraries exist to bridge the UVM
and SystemC world
– Cadence’s UVM Multi Language library: offers a ‘minimalistic’ UVM-SC

– Mentor’s UVM-Connect: Mainly TLM communication and configuration

• In 2011, a European consortium started building a UVM
standard compliant version based on SystemC / C++
– Initiators: NXP, Infineon, Fraunhofer, Magillem, Continental, and UPMC

3

Why UVM in SystemC?

• Elevate verification beyond block-level towards system-level
– System verification and Software-driven verification are executed by

teams not familiar with SystemVerilog and its simulation environment

– Trend: Tests coded in C or C++. System and SW engineers use an
(open source) tool-suite for embedded system design and SW dev.

• Structured ESL verification environment
– The verification environment to develop Virtual Platforms and Virtual

Prototypes is currently ad-hoc and not well architected

– Beneficial if the first system-level verification environment is UVM
compliant and can be reused later by the IC verification team

• Extendable, fully open source, and future proof
– Based on Accellera’s Open Source SystemC simulator

– As SystemC is C++, a rich set of C++ libraries can be integrated easily

4

Main concepts of UVM (1)

• Clear separation of test stimuli (sequences) and test bench
– Sequences are treated as ‘transient objects’ and thus independent

from the test bench construction and composition

– In this way, sequences can be developed and reused independently

• Introducing test bench abstraction levels
– Communication between test bench components based on

transaction level modeling (TLM)

– Register abstraction layer (RAL) using register model, adapters, and
predictors

• Reusable verification components based on standardized
interfaces and responsibilities
– Universal Verification Components (UVCs) offer sequencer, driver and

monitor functionality with clearly defined (TLM) interfaces

5

Main concepts of UVM (2)

• Non-intrusive test bench configuration and customization
– Hierarchy independent configuration and resource database to store

and retrieve properties everywhere in the environment

– Factory design pattern introduced to easily replace UVM components
or objects for specific tests

– User-defined callbacks to extend or customize UVC functionality

• Well defined execution and synchronization process
– Simulation based on phasing concept: build, connect, run, extract,

check and report. UVM offers additional refined run-time phases

– Objection and event mechanism to manage phase transitions

• Independent result checking
– Coverage collection, signal monitoring and independent result

checking in scoreboard are running autonomously

6

UVM Layered Architecture

• The top-level (e.g. sc_main) contains the
test(s), the DUT and its interfaces

• The DUT interfaces are stored in a
configuration database, so it can be used
by the UVCs to connect to the DUT

• The test bench contains the UVCs,
register model, adapter, scoreboard and
(virtual) sequencer to execute the stimuli
and check the result

• The test to be executed is either defined
by the test class instantiation or by the
member function run_test

7

top (sc_main)

Testbench (env)

…..
agent

UVC1 (env)

MonDrv

Sqr

agent

MonDrv

Sqrconf conf

config

scoreboard

Subscr
2

ref
model

Subscr
1

Test configregister

sequence

virtual
sequencer

Reg model

Adapter

rw

Interf1

UVC2 (env)

Interf2

DUT

Advantages of UVM-SystemC

• UVM-SystemC library features
– UVM components are SystemC modules

– TLM communication API based on SystemC

– Phases of elaboration and simulation aligned with
SystemC

– Packing / Unpacking using stream operators

– Template classes to assign RES/RSP types

– Standard C++ container classes for data storage
and retrieval

– Other C++ benefits (exception handling, constness,
multiple inheritance, etc.)

8

UVM components are SystemC modules

• The UVM component class (uvm_component) is derived from
the SystemC module class (sc_module)
– It inherits the execution semantics and all features from SystemC

– Parent-child relations automatically managed by uvm_component_name
(alias of sc_module_name); no need to pass ugly this-pointers

– Enables creation of spawned SystemC processes and introduce
concurrency (SC_FORK, SC_JOIN); beneficial to launch runtime phases

– No need for SV-like “virtual” interfaces; regular SystemC channels
(derived from sc_signal) between UVC and DUT can be applied

9

namespace uvm {

class uvm_component : public sc_core::sc_module,
public uvm_report_object

{ ... };

} // namespace uvm

class my_uvc : public uvm_env
{
public:
my_uvc(uvm_component_name name) : uvm_env(name)
{}
...

};

LRM definition Application

NOTE: UVM-SystemC API under review – subject to change

SystemC TLM communication (1)

• TLM-1 put/get/peek interface
– put/get/peek directly mapped on

SystemC methods

– UVM methods get_next_item and
try_next_item mapped on SystemC

– TLM-1 primarily used for
sequencer-driver communication

• TLM-1 analysis interface
– UVM analysis port, export and imp

using SystemC tlm_analysis_if

– Used for monitor-subscriber
(scoreboard) communication

– UVM method connect
mapped on SystemC bind

10

namespace uvm {

template <typename REQ, typename RSP = REQ>
class uvm_sqr_if_base
: public virtual sc_core::sc_interface
{
public:
virtual void get_next_item(REQ& req) = 0;
virtual bool try_next_item(REQ& req) = 0;
virtual void item_done(const RSP& item) = 0;
virtual void item_done() = 0;
virtual void put(const RSP& rsp) = 0;
virtual void get(REQ& req) = 0;
virtual void peek(REQ& req) = 0;
...

}; // class uvm_sqr_if_base

} // namespace uvm

LRM definition

namespace uvm {

template <typename T>
class uvm_analysis_port : public tlm::tlm_analysis_port<T>
{
public:
uvm_analysis_port();
uvm_analysis_port(const std::string& name);

virtual const std::string get_type_name();
virtual void connect(tlm::tlm_analysis_if<T>& _if);
...

LRM definition

NOTE: UVM-SystemC API under review – subject to change

SystemC TLM communication (2)

• As the UVM TLM2 definitions are inconsistent with the
SystemC TLM-2.0 standard, these are not implemented in
UVM-SystemC

• Furthermore, UVM only defines TLM2-like transport
interfaces, and does not support the Direct Memory Interface
(DMI) nor debug interface

• Therefore, a user is recommended to directly use the SystemC
TLM-2.0 interface classes in UVM-SystemC

• Hopefully, the UVM SystemVerilog Standardization Working
Group in IEEE (P1800.2) is willing to resolve this inconsistency
and align with SystemC (IEEE Std 1666-2011)

11

Phases of elaboration and simulation

12

• UVM-SystemC phases made consistent with SystemC phases
• UVM-SystemC supports the 9 common phases and the

(optional) refined runtime phases
• Objection mechanism supported to manage phase transitions
• Multiple domains can be created to facilitate execution of

different concurrent runtime phase schedules

run

reset

configure main shutdown

connect extract check report final

UVM runtime phases 



UVM common phases

build

end_of_elaboration

start_of_simulation

pre-reset post-reset

 = SystemC process(es)

        





= top-down execution

= bottom-up execution

Legend

Pre-run phases Runtime phases Post-run phases



(Un)packing using stream operators

• Thanks to C++, stream operators (<<, >>) can be overloaded to
enable elegant type-specific packing and unpacking

• Similar operator overloading technique also applied for
transaction comparison (using equality operator ==)

13

class packet : public uvm_sequence_item
{
public:
int a, b;

UVM_OBJECT_UTILS(packet);

packet(uvm_object_name name = "packet")
: uvm_sequence_item(name), a(0), b(0) {}

virtual void do_pack(uvm_packer& p) const
{

p.pack_field_int(a, 64);
p.pack_field_int(b, 64);

}

virtual void do_unpack(uvm_packer& p)
{

a = p.unpack_field_int(64);
b = p.unpack_field_int(64);

}
...

};

class packet : public uvm_sequence_item
{
public:
int a, b;

UVM_OBJECT_UTILS(packet);

packet(uvm_object_name name = "packet")
: uvm_sequence_item(name), a(0), b(0) {}

virtual void do_pack(uvm_packer& p) const
{

p << a << b;
}

virtual void do_unpack(uvm_packer& p)
{

p >> a >> b;
}
...

}; NOTE: UVM-SystemC API under review – subject to change

ApplicationApplication

Disadvantage: type-
specific methods

Elegant packing using
stream operators

C++ Template classes

• Template classes enable
elegant way to deal with
special types such as RES/RSP

• UVM-SystemC supports
template classes using
macros
UVM_COMPONENT_UTILS or
UVM_COMPONENT_PARAM_UTILS
(no difference)

• More advanced template
techniques using explicit
specialization or partial
specialization are possible

14

template <typename REQ>
class vip_driver : public uvm_driver<REQ>
{
public:
vip_if* vif;

vip_driver(uvm_component_name name)
: uvm_driver<REQ>(name), vif(NULL) {}

UVM_COMPONENT_PARAM_UTILS(vip_driver<REQ>);

void build_phase(uvm_phase& phase)
{

uvm_driver<REQ>::build_phase(phase);

if (!uvm_config_db<vip_if*>::get(this, "*", "vif", vif))
UVM_FATAL(this->get_name(),

"Interface not defined! Simulation aborted!");
}

void run_phase(uvm_phase& phase)
{

REQ req;

while(true) // execute all sequences
{

this->seq_item_port->get_next_item(req);
drive_transfer(req);
rsp.set_id_info(req);
this->seq_item_port->item_done();

}

void drive_transfer(const REQ& p)
{

vif->sig_data.write(p.data);
...

}
}; NOTE: UVM-SystemC API under review – subject to change

Application

UTILS macro supports
template arguments

Template class

Template argument
defines request type

Standard C++ container classes

• Standard C++ containers can be used for efficient data storage
using push/pop mechanisms and retrieval using iterators and
operators

• Examples: dynamic arrays (std::vector), queues (std::queue),
stacks (std::stack), heaps (std::priority_queue), linked lists
(std::list), trees (std::set), associative arrays (std::map)

• Therefore UVM-SystemC will not define uvm_queue nor uvm_pool

15

namespace uvm {

class uvm_object : public uvm_void {
public:
...
// Group: Packing
int pack(std::vector<bool>& bitstream, uvm_packer* packer = NULL);
int pack_bytes(std::vector<unsigned char>& bytestream, uvm_packer* packer = NULL);
int pack_ints(std::vector<unsigned int>& intstream, uvm_packer* packer = NULL);
...

} // namespace uvm

LRM definition

NOTE: UVM-SystemC API under review – subject to change

Other benefits

• Exception handling:
The standard C++ exception handler mechanism is beneficial
to catch serious runtime errors (which are not explicitly
managed or found using UVM_FATAL) and enables a graceful
exit of the simulation

• Constness:
Ability to specify explicitly that a variable, function argument,
method or class/object state cannot be altered

• Multiple inheritance:
Ability to derive a new class from two ‘origins’ or base classes.

• …and much more C++ features…

16

Work-in-Progress: Register Abstraction Layer

17

Register Abstraction Layer Status

Register model containing registers, fields, blocks, etc. testing

Register callbacks testing

Register adapter, predictor, sequences and
transaction items

testing

Register front-door access testing

Build-in register test sequencers development

Memory and memory allocation manager development

Virtual registers and fields development

Register back-door access (hdl_path) study

Randomization of registers study

Register Model example (1)

18

class reg_Ra : public uvm_reg
{
public:
uvm_reg_field* F1;
uvm_reg_field* F2;

UVM_OBJECT_UTILS(reg_Ra);

reg_Ra(uvm_object_name name = "Ra") : uvm_reg(name, 32, UVM_NO_COVERAGE) {}

void build()
{

F1 = uvm_reg_field::type_id::create("F1");
F1->configure(this, 8, 0, "RW", false, 0x0, true, false, true);
F2 = uvm_reg_field::type_id::create("F2");
F2->configure(this, 8, 16, "RO", false, 0x0, true, false, true);

}

}; // class reg_Ra NOTE: UVM-SystemC API under review – subject to change

UVM register class

Use of the UVM factory to
instantiate the register fields

Register field ‘F1’ configuration:
• Size: 8 bits
• LSB position in register: bit 0
• Access policy: Read/Write (RW)
• Volatile register: no (false)
• Reset value (if applicable): 0x0
• Reset possible: yes (true)
• Can be randomized: no (false)
• Is individually accessible: yes

(true)

Register “Ra” contains
two fields, F1 and F2

• Although the user can create a register model manually,
the recommended use model is to generate this register
model from an IP-XACT register description

Application

Register contains 32 bits and
contains no coverage model

F2 F1
031 16

Ra

Register Model example (2)

19

class block_B : public uvm_reg_block
{
public:
reg_Ra* Ra;
reg_Rb* Rb;

UVM_OBJECT_UTILS(block_B);

block_B(uvm_object_name name = "B") : uvm_reg_block(name, UVM_NO_COVERAGE) {}

void build()
{

uvm_reg_addr_t base_addr = 0x0000;
unsigned int n_bytes = 4;

default_map = create_map("default_map", base_addr, n_bytes, UVM_BIG_ENDIAN);

Ra = reg_Ra::type_id::create("Ra");
Ra->configure(this, NULL);
Ra->build();
...
default_map->add_reg(Ra, 0x0, "RW");
default_map->add_reg(Rb, 0x100, "RW");
...

}
}; // class block_B NOTE: UVM-SystemC API under review – subject to change

UVM register
block class

Use of the UVM factory to
instantiate the registers

Create the
address map

Register block B contains
two registers: Ra and Rb

Add register to the register map,
specifying the offset and access rights

F2 F1Ra 0x0

F3F4 F1F2Rb 0x100
block_B

Application

Test Bench including Register Model (1)

20

class tb_env : public uvm_env
{
public:
UVM_COMPONENT_UTILS(tb_env);

block_B* regmodel;
reg_agent<dut>* bus;
uvm_reg_predictor<reg_rw>* predict;
reg2rw_adapter* reg2rw;

tb_env(uvm_component_name name = "tb_env")
: uvm_env(name), regmodel(NULL), bus(NULL),

predict(NULL), reg2rw(NULL) {}

void build_phase(uvm_phase& phase)
{

uvm_env::build_phase(phase);

bus = reg_agent<dut>::type_id::create("bus");

regmodel = block_B::type_id::create("regmodel");
regmodel->build();
regmodel->lock_model();

predict = uvm_reg_predictor<reg_rw>::type_id::create("predict");
}
...

The test bench (env)
contains the register

model, agent, adapter
and predictor

Instantiate
components
and build the
register map

Application Testbench (env)

Register Model

DUT

Reg Agent

MonDrv

Sqr

Adapter Predictor

NOTE: UVM-SystemC API under review – subject to change

Test Bench including Register Model (2)

21

...
void connect_phase(uvm_phase& phase)
{

reg2rw = reg2rw_adapter::type_id::create("reg2rw");

regmodel->default_map->set_sequencer(bus->sqr, reg2rw);
regmodel->default_map->set_auto_predict(false);

predict->map = regmodel->default_map;
predict->adapter = reg2rw;

bus->mon->ap.connect(predict->bus_in);
}

}; // class tb_env

Set the sequencer
and adapter

associated with
this map.

Associate
predictor with

the register map
and adapter

Connect monitor
analysis port with

predictor

Testbench (env)

Register Model

DUT

Reg Agent

MonDrv

Sqr

Adapter Predictor

NOTE: UVM-SystemC API under review – subject to change

Execute Build-in Register Test (1)

22

class test : public uvm_test
{
public:
tb_env* env;
uvm_reg_sequence<>* seq;

test(uvm_component_name name = "test")
: uvm_test(name), env(NULL), seq(NULL) {}

UVM_COMPONENT_UTILS(test);

void build_phase(uvm_phase& phase)
{

uvm_test::build_phase(phase);

env = tb_env::type_id::create("tb_env");
seq = uvm_reg_bit_bash_seq::type_id::create("seq");

}

void run_phase(uvm_phase& phase)
{

phase.raise_objection(this);
env->regmodel->reset();
seq->model = env->regmodel;
seq->start(env->bus->sqr);
seq->wait_for_sequence_state(UVM_FINISHED);
phase.drop_objection(this);

}
}; // class test

Instantiate the
test bench

Start the
register

sequence

NOTE: UVM-SystemC API under review – subject to change

Application Top

Testbench (env)

Register Model

DUT

Reg Agent

MonDrv

Sqr

Adapter Predictor

Test seq
register
sequence

Select the build-in “bit
bashing” sequence

// top-level
int sc_main(int, char*[])
{

... // instantiate DUT
and interfaces

run_test("test");
return 0;

}

Execute Build-in Register Test (2)

23

SystemC 2.3.1-Accellera --- Dec 29 2014 13:55:54
Copyright (c) 1996-2014 by all Contributors,
ALL RIGHTS RESERVED

Universal Verification Methodology in SystemC (UVM-SystemC)
Version: 1.0-alpha1 Build: 510 Date: 2015-09-01
Copyright (c) 2006 - 2015 by all Contributors
See NOTICE file for all Contributors

ALL RIGHTS RESERVED
http://www.verdi-fp7.eu/

Licensed under the Apache License, Version 2.0

UVM_INFO @ 0 s: reporter [RNTST] Running test 'test'...
UVM_INFO @ 0 s: reporter [STARTING_SEQ]
UVM_INFO @ 0 s: reporter [uvm_reg_bit_bash_seq] Verifying bits in register regmodel.Ra in map 'regmodel.default_map'...
UVM_INFO @ 0 s: reporter [uvm_reg_bit_bash_seq] ...Bashing RW bit #0
UVM_INFO @ 0 s: reporter [uvm_reg_map] Writing 0x0000000000000001 at address 0x0 via map 'regmodel.default_map'...
UVM_INFO @ 0 s: reporter [REG_PREDICT] Observed WRITE transaction to register regmodel.Ra: value = 0x1 : updated value = 0x1
UVM_INFO @ 0 s: reporter [uvm_reg_map] Wrote 0x0000000000000001 at address 0x0 via map 'regmodel.default_map': UVM_IS_OK...
UVM_INFO @ 0 s: reporter [RegModel] Wrote register via map regmodel.default_map: regmodel.Ra = 0x1
UVM_INFO @ 0 s: reporter [uvm_reg_map] Reading address 0x0 via map 'regmodel.default_map'...
UVM_INFO @ 0 s: reporter [REG_PREDICT] Observed READ transaction to register regmodel.Ra: value= 0x1
UVM_INFO @ 0 s: reporter [uvm_reg_map] Read 0x0000000000000001 at address 0x0 via map 'regmodel.default_map': UVM_IS_OK...
UVM_INFO @ 0 s: reporter [RegModel] Read register via map regmodel.default_map: regmodel.Ra = 0x1

:
:

--- UVM Report Summary ---
Quit count : 0 of 10
** Report counts by severity
UVM_INFO : 836
UVM_WARNING : 1
UVM_ERROR : 0
UVM_FATAL : 0
** Report counts by id
[RNTST] 1
[RegModel] 256
[STARTING_SEQ] 1
[TPRGED] 1
[uvm_reg_bit_bash_seq] 66
[uvm_reg_map] 512
UVM_INFO @ 0 s: reporter [FINISH] UVM-SystemC phasing completed; simulation finished

Standardization in Accellera
• Growing industry interest for UVM

in SystemC
• Standardization in SystemC

Verification WG ongoing
– Writing and review of UVM-SystemC

Language Reference Manual (LRM)
– Improving the UVM-SystemC Proof-

of-Concept (PoC) implementation
– Creation of a UVM-SystemC

regression suite

• Draft release of UVM-SystemC
planned for end 2015
– Both LRM and PoC made available

under the Apache 2.0 license
– Exact timing dependents on progress

(and issues we might find)

24

• Main focus this year:
– UVM-SystemC API documented in the Language Reference Manual

– Further mature and test the proof-of-concept implementation

– Extend the regression suite with unit tests and more complex
(application) examples

• Next year…
– Finalize upgrade to UVM 1.2 (upgrade to UVM 1.2 already started)

– Add constrained randomization capabilities (e.g. SCV, CRAVE)

– Introduction of assertions and functional coverage features

– Multi-language verification usage (UVM-SystemVerilog UVM-SystemC)

• …and beyond: IEEE standardization
– Alignment with IEEE P1800.2 (UVM-SystemVerilog) necessary

Next steps

25

• Good progress with UVM-SystemC standardization in Accellera
– UVM-SystemC foundation elements are implemented

– Register Abstraction Layer currently under development

– Review of Language Reference Manual and Proof-of-concept
implementation ongoing

– First draft release of UVM-SystemC planned for end 2015

• Next steps
– Make UVM-SystemC fully compliant with UVM 1.2

– Introduce new features: e.g. randomization, functional coverage

• How you can contribute
– Join Accellera and participate in this standardization initiative

– Development of unit tests, examples and applications

Summary and outlook

26

• DVCon Europe hosts a tutorial on UVM-SystemC:

“UVM Goes Universal - Introducing UVM in SystemC”

• Contents
– Introduction: Basics and key mechanisms of UVM

– Verification examples: demonstrating the applications of
UVM-SystemC

– Standardization perspective: Presents the ongoing development of
the proof-of-concept implementation and the language reference
manual

• Program and registration: www.dvcon-europe.org

UVM-SystemC at DVCon Europe

27

Questions

© Accellera Systems Initiative 28

