
G-QED for Pre-Silicon Verification
Saranyu Chattopadhyay*, Keerthi Devarajegowda+, Mo Fadiheh*

Stanford University*, Siemens EDA+

Traditional Verification Still a Challenge

2022 Apple M series

Extreme Heterogeneity

Verify!

Verify!

Verify!

Verify!

Verify!

Verify!

Verify! Verify! Verify!
Verify!

Verify!

Verify!

Verify!

Verify!

Verify!

Verify!

Verify!

Verify!

Verify!

Verify! Verify!

Short design-to-deployment

Industry Breaking its Back

Verify

Design

>80% projects: Critical bugs missed
[Siemens Wilson Research 2022]

Generalized Quick Error Detection

Sound and Complete 9 New Critical Bugs + Rest

Any moderate-sized digital design:

• well-defined actions

• arch states observable

• can idle

(No gory implementation detail) Industrial flow G-QED

3 weeks

1 year

AI Hardware Accelerators

(production ready)

Agenda
1. What is Formal Verification?

2. G-QED for Designers

3. G-QED Checks Deep Dive

4. G-QED Demo

What is Formal Verification?

Formal Verification

Mathematical Model of
the Design

Design

Formal Verification Tool
//ast_full_empty_never_high_together
assert property (@(posedge clk) !(full && empty));

Property

✓ Property holds

Counterexample

Formal Verification Vs Simulation

Reset State

Bugs uncovered if a state is hit
containing erroneous behavior

Coverage item hit
per verification specChanging UVM random

sim seeds uncovers new
state space

Apply input stimulus,
Apply clock
Moves design to next state

But - Even after extensive simulation, significant state space remains uncovered

Formal Verification Vs Simulation

Formal starts with the desired state and works backward to create exhaustive
proof, verifying extensive state space in the process

❑ No thoroughness guarantees

❑ Time consuming

❑ Formal tools don’t scale well

Verification Challenges

❑ Heuristics for coverage metrics

❑ Miss corner-cases

❑ AI-assisted: coverage problems

Simulation Formal Verification

G-QED for Designers

Example Design Under Verification

Interface Interface

Input

Output
Accu

G-QED for Designers

Input
(Data, Action)

Output

Action Set Arch State Update Output

SetVal Accu = Data

MAC Accu = Accu+Data0×Data1

OutGen F(Accu)

No gory implementation detail

Accu

like Instructions like Software-visible states

Interface Interface

G-QED Harness
implements G-QED Checks

Formal Verification Tool

Action sequence failing G-QED checks

DUV RTLInterface
protocol

Action Set
Arch State

Upper bound: action
execution time TUB

G-QED for Designers

G-QED Checks: Sound & Complete

Functional
Consistency

Response
Bound

Single Action
Correctness

RB, SAC: routinely in industry

G-QED Checks: Sound & Complete

Functional
Consistency

Response
Bound

Single Action
Correctness

G-QED Checks Deep Dive

Functional Consistency (FC) Concept

Expected: Output consistent irrespective of context

Some state
arch state = A

Any state
same arch state = A

Input Output

same Input same Output

Check:

SetVal(4) MAC(2,2) OutGen()

8 4 4 8… …

F(8)

…

Arch State Accu:

Action:

Example Input Sequence

Output:

Formal Tool: Check for all input sequences exhaustively

OutGen()SetVal(8)

8

F(8)

Check: Output same

Same Arch State

FC Check on Action OutGen()

Easy and intuitive concept

same arch state
→ same Output

Hard to specify exact clock cycles t1 and t2

Difficult to implement FC this way

arch state @ t1 == arch state @ t2

→ same Output

FC Implementation Problem

Hard to Specify Exact Clock Cycles

OutGen
()

SetVal
(8)

OutGen
()

MAC
(2, 2)

8

SetVal
(3)

43

t1

t2

8

8

Gets Worse Generalizing for Any Design

Arch state elements read over multiple cycles

Same arch state element read multiple times

Read cycles non-contiguous

Solution: G-QED

INm
… INk IN0

…INk-1INk+1 …

IN0
…

IDLE for TUB

prev. inputs finish

Design

OUTk

Design

INk-1INk
…OUTk

… INk+1

==uses same arch state value

OUTi = ƒ(INi, arch state value used by INi)

Solution: G-QED

INm
… INk IN0

…INk-1INk+1 …

IN0
…

IDLE for TUB

prev. inputs finish

Design

OUTk

Design

INk-1
Save

arch state

Solution: G-QED

Save
arch state

Check: == → ==

INm
… INk IN0

…INk-1INk+1
…

IN0
…

IDLE for TUB

inputs finish

IN OUT

INk

Any sequence triggered bug Buggy

Clean

Design

OUTk

IN OUT OUTk

Design Replica

Design Replica

INk-1

state with saved
arch state

Fo
rm

al
 T

o
o

l

Response Bound

Design OUTk-1IN0INk
…INk-1 OUTkINk+1

produced within TUB since fedOUTk INk

OUTk-1IN0INk
…INk-1INk+1

not produced within TUBOUTk

INk+2INk+3INk+4INk+5 Design

Response Bound Bug

Single Action Correctness

Design
IN

(Action, Data)
OUT

Check: == Action(Data, Arch state)OUT

(done routinely in industry)

• FC takes care of bugs related to sequence of instructions or inputs
• Single Action Correctness can be checked from a known reachable state

• From some reachable state (e.g., reset state)

Single Action Correctness

• Single Action Correctness is straightforward to apply

• However, writing SVA (properties) for complex operations can still be

challenging (ex: Floating Point Units)

Single Action Correctness for Floating Point Units

• Complex IEEE 754 floating-point
specification
• Arithmetic and comparison operations
• Bfloat16, half, single, and double precision
• Five rounding modes
• Five exception flags

• IEEE 754 design and verification experts
in short supply

• Simulation cannot guarantee compliance

Challenges

Only formal can prove compliance

Floating-point essential for advanced
artificial intelligence applications

FPU App

• Prove correctness with easy setup, without C++ model

• Supports broad array of FPU functionality
• Half/single/double, bfloat16 and custom precisions

• All 5 rounding modes and 5 exceptions flags

• ADD, SUB, MUL, DIV, FMA, ABS, NEG functions

• Conversion and comparison operations

• Parameters specify ambiguities in the standard

• Easy to model intended deviations from the

IEEE-754 standard

• Enables RISC-V configuration

HIGH-LEVEL DEBUG

FPU
(RTL)

Verification
Signoff

COVERAGE METRICS

IEEE 754 SVA MODEL

PROOF OPTIMIZATION

Configuration

• Precision
• Rounding Mode
• Latency
• Customization

Quick bug fix
iterations

Questa FPU
Ensure FPU designs meet expectations

Built-in template assertion

• All standard-derived information part of template
• User provides mapping of FPU DUT to SVA module

• Design specifics like encoding of operations, modes, and concrete
protocol added by user

• Extraction supported by numerous covers to extract timing and encoding

Template example

Can mix and match different precisions

Connect to the design via bind statement

IEEE flags definition

Built-in template assertion

Built-in template assertion

• All standard-derived information part of template
• User provides mapping of FPU DUT to SVA module

• Design specifics like encoding of operations, modes, and concrete
protocol added by user

• Extraction supported by numerous covers to extract timing and encoding

sum <= ieee_add(.a(op_a), .b(op_b), .rm(rm), .conf(conf));
property fp_add_p;

ieee_with_flags_t expected;
disable iff (~reset_n)
(start && fpu_op==2’b01, expected = ieee_add(.a(op_a), .b(op_b), .rm(rm), .conf(conf)))

|->
##3
result_valid && ieee_check_result(.expected(expected),

.actual(actual),

.supported_flags(supported_flags),

.conf(conf));
endproperty
fp_add_a : assert property (fp_add_p);

Assertions and cover properties

Built-in debugger

Questa FPU
Ensure FPU designs meet expectations

• FPU operations are tedious and difficult to verify using simulation

• Questa FPU solution has the building blocks to construct simple readable properties

• FPU App reduces verification from months down to days

• Provers and disprovers performance enables bug finding in minutes

• Full proof is possible on restricted cases

• Bounded proof is available for all cases

• FPU App provides comprehensive verification

• Fully compliant external reference model increases verification confidence

G-QED DEMO

FC Check

IN OUT

INm
…

INi IN0
…INi-1INi+1

…

copy 2

OUTi

copy 3

Save
ACC

IN0
…

IDLE 3 cycles
copy 1

INi-1

state with saved
ACC

B
M

C

Check: == → ==INkIN OUT OUTk

Questions

	Folie 1: G-QED for Pre-Silicon Verification
	Folie 2: Traditional Verification Still a Challenge
	Folie 3: Generalized Quick Error Detection
	Folie 4: Agenda
	Folie 5: What is Formal Verification?
	Folie 6: Formal Verification
	Folie 7: Formal Verification Vs Simulation
	Folie 8: Formal Verification Vs Simulation
	Folie 9: Verification Challenges
	Folie 10: G-QED for Designers
	Folie 11: Example Design Under Verification
	Folie 12: G-QED for Designers
	Folie 13: G-QED for Designers
	Folie 14: G-QED Checks: Sound & Complete
	Folie 15
	Folie 16: G-QED Checks Deep Dive
	Folie 17: Functional Consistency (FC) Concept
	Folie 18
	Folie 19
	Folie 20: Hard to Specify Exact Clock Cycles
	Folie 21: Gets Worse Generalizing for Any Design
	Folie 22: Solution: G-QED
	Folie 23: Solution: G-QED
	Folie 24: Solution: G-QED
	Folie 25: Response Bound
	Folie 26
	Folie 27: Single Action Correctness
	Folie 28: Single Action Correctness
	Folie 29: Single Action Correctness for Floating Point Units
	Folie 30
	Folie 31: Built-in template assertion
	Folie 32: Template example
	Folie 33: Built-in template assertion
	Folie 34: Assertions and cover properties
	Folie 35: Questa FPU Ensure FPU designs meet expectations
	Folie 36: G-QED DEMO
	Folie 37: FC Check
	Folie 38: Questions

