
Fuzzing Firmware Running on
Intel® Simics® Virtual Platforms

Jakob Engblom, Intel, Sweden

Robert Guenzel, Intel, Germany

Virtual Platforms? Why and What?

• Technology
• Software model of hardware
• Run the same software as the

hardware
• In our case, fast transaction-based

models (TLM)

• Use case examples
• Explore system architecture
• Develop software early
• Continuous integration of

software and hardware
• Debug and test software

Virtual platform framework

Target virtual platform (simulated)

User-level application code

Host hardware

Host operating system

Operating system

RAMDisk

Core Core

PCIe Net Serial

Core USB

Boot loader

Firmware

Fuzzing is a test
technology

Core Core

Subsystem

Fuzzing? Why and What?

• Send “random” inputs to software
• Tests are typically small unit tests
• Observe software behavior – usually test

failures or crashes
• “Random”: A set (corpus) of inputs is

mutated according to various rules

• Coverage-guided fuzzing
• Improve fuzzing effectiveness
• Discern tested code
• Guide mutation rules towards exploring

new code/paths
• Can be done without source code!

• Find more errors than manually
written fixed tests
• Explore corner cases that developers did

not think about

Software

Fuzzing tool

Inputs

Code coverage (and other feedback)

Results/
failure

Coverage

Set of inputs

Typically applied
to user-level

software

Mutator

Note: Fuzzing Techniques and Tools

• Huge and active research field!
• Constant flow of new concepts,

heuristics, algorithms, …

• Our goal: enable standard fuzzer
tools to be used with a virtual
platform
• Reuse the fuzzer logic as-is

• Provide the execution platform

• In practice, done per-fuzzer

• Levels of insight into target
• Black-box

• Opaque target

• Grey-box
• Some feedback data

• No source code

• White-box
• Source code used

Why do Fuzzing on a Virtual Platform?

Shift-left software quality

• Fuzzing increases quality

• Software can run on VP in pre-
silicon, why wait for hardware?

Fuzzing “hidden” code

• Fuzz code that is hard to
interface with on real hardware

• VP provides access to the
platform internals

Fuzzing system-level code

• Possible to fuzz code that
interacts closely with hardware

• VP can roll back disk and
peripheral device state

• Key enabler: determinism, even
for multicore targets

Richer fuzzing environment

• VP can observe more types of
failures than hardware

• VPs can inject hardware stimuli

The VP exists anyway

• Additional value from existing
investment in model

• Avoid constructing complicated
setups based on a standard VMs

Fuzzing individual applications running inside a
standard software stack

Fuzzing low-level code, firmware, drivers, that run
directly on the hardwareBlack-box fuzzing at target system boundary

User-level software

Fuzz target

Typical Fuzzing Setups

User-level software

Operating system

Hardware

Fuzzing tool

Fuzz target

Operating system

Hardware

Fuzzing tool
App

Hardware

Fuzz target

Firmware/Boot/Operating

Fuzzing tool

(User-level software)

• VP use: replace hardware unit
with virtual hardware

• Same input/output, standard
real-world connections suffice

• Easy to do with standard tools
• VP use: when user-level software

uses new hardware (instruction
sets etc.) – run on VP

• Not doable with standard tools
• Requires support in the VP to

interface the fuzzer and the
software

• Focus of this presentation

Types of Software under Consideration

Target virtual platform (simulated)

User-level application code

Operating system

RAMDisk

Core Core

PCIe Net Serial

Core USB

Boot loader

Firmware

Core Core

Subsystem

Device driver

Feature support

Module (UEFI)

User-level software

Fuzz target (“executor”)

Operating system

Hardware

Fuzzing tool

App

Coverage

Instrumentation

Sanitizers

Inputs

in-software mechanisms

Control

Coverage (etc)

Results

Standard User-Level Guided Fuzzing

• Fuzzer and fuzzing target run
side-by-side on the host
• Fuzzer uses host operating-system

mechanisms to control and track
the target

• Application compiled with
instrumentation, coverage, and
sanitizers to provide feedback

• On Linux, use “fork” to quickly
rewind fuzz target state

C
al

la
b

le
/R

u
n

n
ab

le

si
gn

at
u

re

Intel® Simics® Simulator

Virtual-Platform-Based Guided Fuzzing

Conceptual
test harness

C
al

la
b

le
/R

u
n

n
ab

le

si
gn

at
u

re

Test driver

Fuzzing tool

Fuzzing tool

Fuzzed
module/component

Firmware

Target virtual platform (simulated)

Test driver

Fuzzing
support
modules

• Concept: Make the virtual platform look like a user-level program
• Reuse existing fuzzers and their fuzzing logic as-is…
• … while facilitating access to the firmware using virtual-platform techniques

User-level software
function signature of

the fuzzing target

Fuzzed
module/component

C
al

la
b

le
/R

u
n

n
ab

le

si
gn

at
u

re

Intel® Simics® Simulator

Firmware

Target virtual platform (simulated)

Fuzz target

Input driver

Inputs

simulator mechanisms

in-software mechanisms

System monitor

Coverage collector

State manager

Fuzzing tool

Inputs

Control

Coverage (etc)

Results

Virtual-Platform-Based Guided Fuzzing: Details

Fuzzing support
modules

Test driver

Fuzzed
module/component

Main fuzzing loop

Fuzzing Flow using a Virtual Platform

Software boot
and setup

Save state

Restore state

Saved
(initial)
state

Initial
state for
fuzzing

Load input Run test case

Reset

Detect stop condition

Success

Failure

Simulator
startup

(Runs VP)

(Runs VP)
Create VP

Load software

Set up monitor breakpoints

Software setup scripting

Returns information to the
fuzzer

Fuzzer orders a
reset to start the

next iteration

Fuzzer provides
the input for the

next test

Coverage etc.

C
al

la
b

le
/R

u
n

n
ab

le

si
gn

at
u

re

Intel® Simics® Simulator

Test Driver and Input Driver

• Test driver (target software)
• (Calling into software from VP directly is

difficult and brittle)
• Depends on target and fuzzing setup

• Knows how to apply inputs from fuzzer

• Knows how to call into/activate the target

• Polling loop, using magic instructions to
talk to the input driver

• Input driver (simulator module)
• Implements the interface towards the

fuzzing tool – depends on how the
simulator and fuzzer communicate

• Passes data from the fuzzer to the test
driver software – dumb pipe

Firmware

Target virtual platform

Fuzz target

Fuzzed module/component

Test driver

Input driver

Inputs

Fuzzing tool

Inputs

Input driver

loop:
 loop until ready:
 ready=MAGIC()
 input=read(buffer)
 firmware(input)

Magic instruction
callback

RAM Core

Write memory
(buffer) Shared memory,

socket, file, …

Test driver

State Manager

• State manager functions:
• Reset the state of the fuzzing target
• Start the simulation

• Simulation state is restored using in-
memory snapshots
• Device state
• Memory and disk contents
• Excepting tools and simulator core
• (Standard Intel® Simics® Simulator feature)
• Critical for performance

• Minimize the virtual platform size
• Optimize the framework (WIP)

• Why not use forking?
• Linux fork does not work well with a threaded

simulator
Intel® Simics® Simulator

Most recent snapshotVirtual platform state

Device and processor
state (time, event queue,
registers, configuration,
…)

Memory diff

Disk diff

Memory diffs

Older snapshot

diff
Memory
starting point

diff

Disk diffs
diff

Disk starting
point

diff

Device and
processor state

Device and
processor state

Features and utilities state

Simulator core state

State manager

In-memory snapshots

System Monitor

• Wait for conditions that designate
errors in the system under fuzz
• Use VP mechanisms to watch the

execution – typically breakpoints
• Not visible to the software

• Specific conditions are set up by the
setup script
• List of conditions + messages
• Passed to the system monitor

• If a condition is hit:
• Stop the current run
• Return to fuzzer, with message

• Example conditions:
• Running outside of allowed memory
• Accesses outside of allowed memory
• Undefined instructions
• Processor resets and triple faults
• … whatever makes sense …

System monitor

Intel® Simics® Simulator

Target virtual platform

Firmware

Core
System monitor

Breakpoints (and
other events)RAM Devices

Monitor breakpoints
from setup script:

(breakpoint,
explanation)

Intel® Simics® Simulator

Coverage Collector

• Coverage is key to guided fuzzing
• Reflect how well the test cases explore the

behavior of the code

• Current solution: Branch (edge) coverage
• Coverage data looks like it came from code

instrumentation compiled into user code
• Cover all executed code

• Hashing approach = unlimited reach
• Test driver code is small and does not hurt

• Using the standard Intel® Simics® Simulator
instrumentation API to get reports about all
branches

• “Grey-box” fuzzing
• No source code needed
• No compiled-in instrumentation
• … but still looking at the code flow

• Branch coverage details
• Get the address branched to
• Combine with the previous destination (i.e.,

current basic block)
• Hash the result and increment counter

• Reusable and generic as long as the data
produced makes sense to the fuzzer

Target virtual platform

Firmware

Core

Coverage
collector

Instrumentation callback on
branch instructions

Other tools

Coverage
collector

Instrumentation callback on * instruction

Portability, Summary

Component Firmware dependent? Target dependent?

Test driver (target software) Yes Yes (registers, magic, …)

Input driver (simulator module) No (test driver has to adapt) No

State manager (simulator module) No No

System monitor (simulator module) No No

System monitor configuration (script) Yes (reflect error conditions) Yes

Coverage collector (simulator module) No Yes (ID branch instructions)

Note that porting to a new fuzzer tool
will likely require updates to all the

modules

Possible Future Extensions

• Fuzzing with hardware inputs
• Current effort mostly using libAFL

= built for software fuzzing

• VP-side this is not very hard

• Adding sanitizers into firmware
• Compilers generally support it

• Requires a custom output library
(have seen that done)

Get the Intel® Simics® Simulator
https://developer.intel.com/simics-simulator

Try the TSFFS fuzzing setup (close to what was presented here)
https://github.com/intel/tsffs/

https://developer.intel.com/simics-simulator
https://github.com/intel/tsffs/

Legal Disclaimers

• Intel technologies’ features and benefits depend on system configuration and may require
enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or
retailer.

• No computer system can be absolutely secure.

• Tests document performance of components on a particular test, in specific systems. Differences
in hardware, software, or configuration will affect actual performance. Consult other sources of
information to evaluate performance as you consider your purchase. For more complete
http://www.intel.com/performance.

• © Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Other names and brands may be claimed as the property of
others.

• *Other names and brands may be claimed as the property of others.

http://www.intel.com/performance

The End

	Default Section
	Slide 1: Fuzzing Firmware Running on Intel® Simics® Virtual Platforms

	Intro
	Slide 2: Virtual Platforms? Why and What?
	Slide 3: Fuzzing? Why and What?
	Slide 4: Note: Fuzzing Techniques and Tools
	Slide 5: Why do Fuzzing on a Virtual Platform?
	Slide 6: Typical Fuzzing Setups
	Slide 7: Types of Software under Consideration
	Slide 8: Standard User-Level Guided Fuzzing
	Slide 9: Virtual-Platform-Based Guided Fuzzing
	Slide 10: Virtual-Platform-Based Guided Fuzzing: Details
	Slide 11: Fuzzing Flow using a Virtual Platform
	Slide 12: Test Driver and Input Driver
	Slide 13: State Manager
	Slide 14: System Monitor
	Slide 15: Coverage Collector
	Slide 16: Portability, Summary
	Slide 17: Possible Future Extensions
	Slide 18

	End
	Slide 19: Legal Disclaimers

	END
	Slide 20: The End

