
©

Functional Twin: A Framework for Reusability of
Virtual Realtime Systems

Sacha Loitz, Torsten Hermann, Martin Hruschka

©

Functional Twin:
A Framework for Reusability of Virtual Realtime Systems

▪ Introduction

▪ Comparison between L3 and L4

▪ Peripheral Wiring Adapter

▪ Proof of Concept

▪ Conclusion and Outlook

Agenda

©

Introduction
Virtualization Levels

| Source | ProSTEP iViP, White Paper “Smart Systems Engineering; Requirements for the Standardization of Virtual Electronic Control Units (V-ECUs)” https://www.ps-ent-2023.de/fileadmin/prod-download/WhitePaper_V-ECU_2020_05_04-EN.pdf |

Target Hardware

O

S MCAL

BSW

RTE

SWC SWC SWC

µC hardware

Level 4

O

S MCAL

BSW

RTE

SWC SWC SWC

Hardware emulation

Level 3

O

S MCAL

BSW

RTE

SWC SWC SWC

Level 2

O

S

BSW

RTE

SWC SWC SWC

Level 1

O

S

RTE

SWC SWC SWC

Level 0

SWC SWC SWC

Production code

▪ Full target binary

(production SW)

Simulated code

▪ None

▪ Hardware is

emulated

▪ (close to) real-time

behavior

Production code

▪ Application

▪ RTE + BSW

services

Simulated code

▪ MCAL drivers

▪ No µC Hardware

dependency

▪ Abstracted timing

behavior

Production code

▪ Application

Simulated code

▪ RTE + BSW

services

▪ Environment for

SWC / application-

level development

Production code

▪ Application

Simulated code

▪ RTE + some BSW

services

▪ Environment for

SWC / application-

level development

Production code

▪ None

Simulated code

▪ None

▪ SWC are tested on

model level only

▪ Focus on function

development

interpreted target compiledhost compiled

Production code

▪ Full target binary

(production SW)

Simulated code

▪ None

▪ Hardware is used

▪ full real-time

behavior

https://www.ps-ent-2023.de/fileadmin/prod-download/WhitePaper_V-ECU_2020_05_04-EN.pdf

©

Introduction
Classic AUTOSAR within a virtual automotive setup

Virtual Car

All ECUs of a car are simulated to run system and software
functions with their interactions including cloud connectivity

Virtual ECU-System

ECU-System simulation of several virtual ECUs (e.g. HPC &
Zone Control Units) with distributed software functions and
their interactions

Virtual ECU

ECU simulation of Classic AUTOSAR (e.g. Zone Control Units)
including application and middleware software with peripherals
in real-time

High Performance Computer Real-time ECU

peripheralscommunication

Real-time ECU

peripheralscommunication

*ECU = Electronic Control Unit, HPC = High-Performance Computer

©

Introduction
SDV Application implementation for I/O based ECUs

Hardware independent Function development Hardware designed Product / Platform development

SDV Development Approach – “from function (virtually) to hardware”

Function Validation

L1 Virtualization

M
SwC

Virtual System Validation

L3 / L4 Virtualization

SwC
M

Target System Validation

Target

SwC
M

Digital Twin

Simulation shall provide a functional representation of the HW for embedded SW integration testing

©

Introduction
Need of virtual peripherals – Function Validation

50% from 12V

0 – 15000 mA

0 – 15000 mA

Signal from sensor

SwC M

L1 Virtualization

signal

physical

Open with 50% speed

Motor consumes 0,25A

Motor consumes 0,5A

opened

Run motor with “6V“

250d (== 250mA)

500d (== 500mA)

1d (at upper end)

©

Introduction
Need of virtual peripherals – Target System Validation

peripheral plant modelµController with BSW

Open with 50% speed

Motor consumes 0,25A

Motor consumes 0,5A

opened

PWM duty cycle to 50 Run motor with “6V“

128d (== 2,5V)250d (== 250mA)

500d (== 500mA) 256d (== 5V)

1d (opened)1d (at upper end)

431 2

PWM toggling

Current sensing 2,5V

Current sensing 5V

Dig In = 0 from sensor with pullup

Target System Validation

Target

SwC

1
4

PCB
peripherals

3
2

M

©

Introduction
Need of virtual peripherals – Virtual System Validation

peripheral plant modelµController with BSW

With the implementation of virtual peripherals, a real “Digital Twin“ can be provided

Open with 50% speed

Motor consumes 0,25A

Motor consumes 0,5A

opened

PWM duty cycle to 50 Run motor with “6V“

128d (== 2,5V)250d (== 250mA)

500d (== 500mA) 256d (== 5V)

1d (opened)1d (at upper end)

431 2

PWM toggling

Current sensing 2,5V

Current sensing 5V

Dig In = 0 from sensor with pullup

Virtual System Validation

L3 / L4 Virtualization

SwC

1
4

virtual
peripherals

3
2

M

©

Comparison between L3 and L4
Characteristics

Aspect Level 3 (L3) Level 4 (L4)

Simulation fidelity High fidelity Very high fidelity

Software integration Replacement of MCU hardware drivers Binary compatible

Timing behavior Timing simulation of RTOS Precise timing & scheduling

Use cases Early integration testing Final validation & safety-critical testing

HW dependency Excludes MCU hardware drivers Simulates hardware interfaces

Complexity Moderate to high Very high

Toolchain requirements RTOS and simulation environment Full simulation stack

Validation scope Functional validation Full system validation

©

Comparison between L3 and L4
Challenges for Reuse of PCB peripherals

Aspect Challenges

Tool incompatibilities
Different simulation tools and environments available

→ Direct reuse is technically difficult or almost impossible

Standardization
No standard for model interfaces or timing semantics

→ inconsistencies in how models are structured and executed

Modeling objectives
L3 – speed and functional correctness
L4 – timing accuracy and hardware interaction

→ Significant differences in architecture and assumptions of the models

Performance tradeoffs
L4 often use TLM & loosely timed – brings overhead in L3

→ Using L4 models in an L3 context would slow down simulation
→ Using L3 models in an L4 context would lack the required fidelity

©

Comparison between L3 and L4
Applying towards the use case

virtual PCB

virtual µC

SwC

M
AUTOSAR and MCAL drivers
• L3 – abstracted
• L4 – target binary

Microcontroller internal peripherals
• L3 – abstracted together with the drivers
• L4 –

• register and register behavior accurately modelled
• Interface to core and externals by TLM
• Timing annotated but not accurate

SwC under test
• L3 and L4 – equivalent

Test tool
• plant models / test cases

should be (almost) common
for L3 and L4 with respect to
efforts and acceptance

PCB peripherals
• L3 and L4 – no accurate model required
• L3 and L4 – react on incoming transactions as expected by SwC
• Timing information is subordinate

• peripheral is on lower speed than µC
• exact observability hidden by communication protocol e.g. SPI

For embedded SW integration testing common peripheral modes are applicable

©

Comparison between L3 and L4
Requirements on the common interface for peripherals

• Virtual peripheral API
- All peripheral devices communicate via pins

- A pin has a unique name, a concrete signal type and its direction

- The API shall provide functions for data exchange and to trigger the data processing

• Wiring
- Use identic pins types for peripheral devices and microcontroller

- Support all representation options of a wire, like logical, PWM, SPI, …

- Connect compatible signal types in a directed, acyclic graph

- Provide signal-operations as a part of the configuration, e.g. IN = AND(OUT1, NOT(OUT2))

©

Peripheral Wiring Adapter
Wiring and interfacing concept

virtual µC

virtual PCB

&

virtual peripheral

Volt / Ampere
represented as floating point values

Serial Peripheral Interface (SPI)
Represented as message-based communication;
supports Daisy Chain setups

Pulse-Width-Modulation (PWM)
represented as duty-cycle

M

Logic gates
implements signal-operations which have a
functional impact on embedded SW

Voltage Divider / - Multiplier
implements HW circuit with functional impact
on software under test

config.
json

SwC

FMU / FMI & SIL Kit
Interfacing to test tools uses (quasi)
standardized interfaces

Digital Inputs and Outputs
logical signals – LOW, HIGH and HIGH-Z

Virtual peripherals
Encapsulated in common API

JSON file configuration
All virtual PCB features and wiring connections is
specified in a JSON file

©

Peripheral Wiring Adapter
Layered architecture and features

Virtualization
tool adapter
layer

vPCB
wiring

layer

Configuration
layer

Virtual
Peripheral

Core

Virtual
Peripheral

Core

• One core implementation per virtual
peripheral type, e.g. eFuse

• Implemented with unique API in C++

• Supports small HW circuits with functional
impact to embedded SW, like AND, OR,
Daisy Chain, …

• Configured at execution from file
• Virtual peripheral instantiation and

configuration with default values

config
.json

• Connects adapter with tool APIs
• Supports tool related programming

languages
• Generic layer implemented once per

tool and configured on use

This adapter design enables the integration of one peripheral core implementation into all virtualization tools

©

L4 Simulation Tool

SystemC
 Layer

V
ir

tu
al

 A
d

ap
te

r

Proof of Concept
Setup Level 4 simulation environment

Tool Layer

virtual ECU

Test Tool

M
Ampere

C++ Variables

Volt

Ampere

Clamp 15

System
Variables

Volt

Ampere

Clamp 15

MCU
signals

tlm_ft_spi_bus

&

vµC

App

eFuse
driver

DIO SPI ADC

APP

PWM

C
+

+
La

ye
r

virtual peripheral

©

Proof of Concept
Setup Level 4 simulation environment

©

Proof of Concept
Setup Level 3 simulation environment

Wiring
cfg.json

L3 Simulation Tool

virtual µController

M
C

A
L

Test Tool

virtual PCB

&

eFuse

Signal

Switch

Application

eFuse
CDD

Mux

Volt

M
U

X

graph

Callback

Signal

Callback

Voltage
Divider

Callback

DIO SPI ADC

Signal

APP

PWM

Callback
Load

Meter

User Control

GUI

virtual ECU

connector

Clamp 15

Voltage 1

Voltage …
Voltage 8

Voltage

Ampere

Current

Volt

©

Proof of Concept
Setup Level 3 simulation environment

©

Conclusion and Outlook
Overall Setup

outlook

ECU Data

HW Block Diagram

Visio DrawIO

&

Virtual
Peripherals

Sourced
Peripherals

Simulation
Tools

generate

HW SW
Interface

json

PCB Info

json

support
auto config

Environment
Info

jsonvPeri Info

json

Virtual ECU
“Digital Twin”

FMU / FMI DLL / SiI-Kit

Embedded
Software

lib

Project / CI

virtual ECU Peripheral
Creator*

Support Multiple Simulation Tools in L3 and L4

public
API

collabcollab

import import

create

automated
setup

cfg

json

* Part of Continental’s virtual SDV Composer

©

Conclusion and Outlook
Streamlined development with virtualization support

Hardware independent Function development Hardware designed product / platform development

Virtual system validation

SDV development approach – “from function (virtually) to hardware”

Function validation

Digital Twin

SwC M SwC M

Target system validation

SwC MSwC M

Virtual peripherals and virtual wiring are required to enable I/O
based applications in virtual real-time ECUs. Virtual ECU Peripheral Creator provides a

“Digital Twin”
for different virtualization levels and tools.

L3 Virtualization L4 Virtualization

Support for streamlined development with benefits from all virtualization levels.

©

Questions

©

.

Thank You!

June 202522

Torsten Hermann
Senior Expert Virtualization
Torsten.Hermann@aumovio.com

Martin Hruschka
Software Architekt
Martin.Hruschka@aumovio.com

Sacha Loitz
Expert (IC Virtual Platforms)
Sacha.Loitz@aumovio.com

mailto:Torsten.Hermann@aumovio.com
mailto:Martin.Hruschka@aumovio.com
mailto:Sacha.Loitz@aumovio.com

	Slide 1: Functional Twin: A Framework for Reusability of Virtual Realtime Systems
	Slide 2: Functional Twin: A Framework for Reusability of Virtual Realtime Systems
	Slide 3: Introduction Virtualization Levels
	Slide 4: Introduction Classic AUTOSAR within a virtual automotive setup
	Slide 5: Introduction SDV Application implementation for I/O based ECUs
	Slide 6: Introduction Need of virtual peripherals – Function Validation
	Slide 7: Introduction Need of virtual peripherals – Target System Validation
	Slide 8: Introduction Need of virtual peripherals – Virtual System Validation
	Slide 9: Comparison between L3 and L4 Characteristics
	Slide 10: Comparison between L3 and L4 Challenges for Reuse of PCB peripherals
	Slide 11: Comparison between L3 and L4 Applying towards the use case
	Slide 12: Comparison between L3 and L4 Requirements on the common interface for peripherals
	Slide 13: Peripheral Wiring Adapter Wiring and interfacing concept
	Slide 14: Peripheral Wiring Adapter Layered architecture and features
	Slide 15: Proof of Concept Setup Level 4 simulation environment
	Slide 16: Proof of Concept Setup Level 4 simulation environment
	Slide 17: Proof of Concept Setup Level 3 simulation environment
	Slide 18: Proof of Concept Setup Level 3 simulation environment
	Slide 19: Conclusion and Outlook Overall Setup
	Slide 20: Conclusion and Outlook Streamlined development with virtualization support
	Slide 21: Questions
	Slide 22: Thank You!

