<u>Functional Safety Verification for ISO 26262-</u> <u>Compliant Automotive Designs</u>

JM Forey ► Automotive ► D. TX1305013
- Synopsys Werner Kerscher - Synopsys Synopsys Silicon to Software

Agenda

- Emergence of self-driving cars
- ISO 26262 Primer for Semiconductor
- ISO 26262 Requirements Hardware Development
- Functional Safety Verification Flow, from FMEA to FMEDA

EMERGENCE OF THE SELF DRIVING CAR

Autonomous Vehicles Are Taking Over The World

SYSTEMS INITIATIVE

Levels of Automation in Cars

AUTOMATION LEVELS OF AUTONOMOUS CARS

LEVEL 0	LEVEL 1	LEVEL 2
There are no autonomous features.	These cars can handle one task at a time, like automatic braking.	These cars would have at least two automated functions.
LEVEL 3	LEVEL 4	LEVEL 5
	COLLO	
These cars handle "dynamic driving tasks" but might still need intervention.	These cars are officially driverless in certain environments.	These cars can operate entirely on their own without any driver presence.

SOURCE: SAE International

BUSINESS INSIDER

Roadmap of Autonomous Cars

Complex SOCs For ADAS

RC

Enabling Safe, Secure, Smarter Cars ...from Silicon to Software

= -1, a = a.substr(1)); return $f_{unction(c)}$ unction occurrences(a, b, c) { $a \neq 1$; $b \neq$

Software cybersecurity & quality

4\ 100f3\000f3ramu

nimit Val limit val = a;

Verify functional safety (ISO 26262)

Automotive-certified IP

#1111111_Val).a(a);

High-reliability IC design

ISO 26262-certified Test

Security

Quality

C

Safety

WARNING!

ISO 26262 PRIMER FOR SEMICONDUCTOR

What is Functional Safety?

- Functional Safety is the "Absence of unreasonable risk due to hazards caused by malfunctioning behavior of Electrical/Electronic systems" [ISO 26262]
- In a nutshell, functional safety is about ensuring the safe operation of systems even when they go wrong
- Functional safety is critical to many markets: Aerospace, Medical, Industrial, Automotive, etc.

V-Diagram: Automotive View of "Design"

Functional Safety Standards

- IEC 61508: Base functional safety standard
- ISO 26262: Automotive functional safety standard
 - Derived from IEC 61508, published 2011
 - Part 1: Vocabulary
 - Part 2: Management of Functional Safety
 - Part 3: Concept Phase
 - Part 4: Product Development: System Level
 - Part 5: Product Development: Hardware Level
 - Part 6: Product Development: Software Level
 - Part 7: Production and Operation
 - Part 8: Supporting Processes
 - Part 9: ASIL Orientated and Safety Oriented Analysis
 - Part 10: Guideline on ISO 26262
 - Part 11: Application of ISOS 26262 to Semiconductors (2nd Edition)

Safety Goals/Requirements

- Done at OEM / Tier 1 level
- Safety Goal
 - Top-level safety requirement
 - Derived from Hazard Analysis and Risk Assessment (HARA)
- Example(s)
 - Unintended activation of emergency brake must be prevented
 - Unintended inflation of airbags must be prevented.

Hazard Analysis and Risk Assessment (HARA)

• Determines the Automotive Safety Integrity Level (ASIL)

Safety Element out of Context

A Safety Element out of context (SEooC) is a safety-related element which is not developed for a specific item. This means it is not developed in the context of a particular system or vehicle.

See ISO 26262 Part 10 "Guideline on ISO 26262", Chapter 9 "Safety element out of context"

Chips and IPs are normally <u>Safety Elements out of Context</u>

Issue

No/little knowledge of the system in which the design is used

- Hazards
- Safety goals
- Architecture

Resolution

SEooC vendors need to specify Assumptions of Use (AoU)

- Safety requirements
- Expected integration environments and requirements SEooC vendors should aim at highest expected **ASIL**
- Fault avoidance
- Fault control
- Independent confirmation measures

What is Functional Safety?

- Functional Safety is the "Absence of unreasonable risk due to hazards caused by malfunctioning behavior of Electrical/Electronic systems" [ISO 26262]
- In a nutshell, functional safety is about ensuring the safe operation of systems even when they go wrong
- Functional safety is critical to many markets: Aerospace, Medical, Industrial, Automotive, etc.

What is Functional Safety?

- Functional Safety is the "Absence of unreasonable risk due to *hazards* caused by malfunctioning behavior of Electrical/Electronic systems" [ISO 26262]
- In a nutshell, functional safety is about ensuring the safe operation of systems even when they go wrong
- Functional safety is critical to many markets: Aerospace, Medical, Industrial, Automotive, etc.
- Safety is a mind set
- What can go wrong?
 - At any level, notably
 - Conception: hw, sw
 - Verification

- ...

- Manufacturing
- In operation, in a permanent or transient way

- And of course
 - Measuring, addressing, minimizing impact, documenting, ...

Found/covered by Functional Verification tools

- Faults are either
 - Systematic *****
 - Random 🛹

Assessed by Functional **Safety** Verification tools

ISO 26262 Requirements – Hardware Development

Show that design functionality is correct, works properly in the context of the system, and is safe

ESIGN AND VE

ISO 26262 Requirements – Hardware Development

Show that design functionality is correct, works properly in the context of the system, and is safe

Functional Verification is Essential Starting Point

Prevent / Eliminate Bugs

Avoid Systematic Faults – Design Bugs (Permanent Faults)

Verification & Validation: Use State of the Art Functional Verification methodology

Synopsys Functional Verification Technology Platform

- Many technologies must be used to ensure the highest functional verification quality
- Early software bring-up enables faster and more complete verification
- Verification quality analysis provides objective measure of functional verification effectiveness

Accelerate fault simulation campaign

- Most comprehensive solution for systematic and random faults testing
- Fastest simulation engines

Integrated with ISO 26262 flows

- Failure mode effects analysis
- Safety plan traceability and results

Proven

- TuV Certified Tools
- Deployed for Synopsys Certified IP development
- Adopted by market leaders

Functional Verification Qualification

In ISO 26262 context

- ISO 26262 part 8 Clause 11.2: "Risk of systematic faults [...] is minimized"
- Problem: test Infrastructures deliver pass/fail status
 - Do not directly address whether designs have bugs or not

- Reported failures are debugged (good) => there is always something to fix
- **BUT** False Negative are silent
 - Are there any? Where are they?
 - Traditional methods can't help here

Is your verification tool failing to report functional bugs?

Assessing Verification Effectiveness

Traditional methods

Code coverage measures activation, but **not** propagation nor detection

comprehensiveness of functional points is unknown

- Code/functional coverage are used to assess verification effectiveness ٠
 - BUT they deliver a very partial picture

Assessing Verification Effectiveness

- Mutation testing applies universally in verification
- Automatically inserts "artificial bugs" into the design
- Runs verification process on "broken" design

SYSTEMS INITIATIVE

 Measures the ability of the environment to exercise the fault, propagate and detect its effect

How Certitude Fault Injection Works?

• Modifies design code to insert faults/defects

o1 = f(i1)	→ o1 = 1'b0	// tie to constant
if (a) f1(); else f2();	<pre>→ if (TRUE) f1(); else f2();</pre>	<pre>// force execution // of "if" branch</pre>
a = b c	→ a = b & c	// change operator

- Pass the broken design to the verification
 - Does at least one test fail? Great!
 - Environment/Safety Mechanisms robust enough to detect the design is broken
 - Do all tests pass? Help!

```
\Rightarrow False Negative result => <u>VE is hiding bugs</u>
```

• Original and broken design looks ok for the verification

Easy Integration Within Existing Environments

© Accellera Systems Initiative

Formal Verification

Systematic Failures

Demonstrate Verification Flows are Robust

Evidence-based verification quality analysis for ISO 26262 Part 8-9 assessments

SYSTEMS INITIATIVE

ISO 26262 Requirements – Hardware Development

Show that design functionality is correct, works properly in the context of the system, and is safe

Fault Injection Testing – Z01X Manufacturing

Highest performance fault simulation solution

- Challenges
 - Stringent fault simulation is needed for highest fault coverage
 - Comprehensive fault model support is required
 - Performance and capacity demands are extreme
- Objective
 - Generate additional coverage and usefully grade patterns with acceptable TAT
- Results
 - RealTek described their results in SNUG Taiwan 2017
 - NovaTek described their results in SNUG Taiwan 2018
 - Qualcomm scheduled for SNUG Austin 2018

Z01X Concurrent Fault Simulation

2018

DESIGN AND VERIFICA

CONFERENCE AND EXHIBITION

EUROPE

Z01X Flow

If testability shows % coverage below required level. Do not fault simulate!

© Accellera Systems Initiative

ISO 26262 Requirements – Hardware Development

Show that design functionality is correct, works properly in the context of the system, and is safe

Verification Goal Comparison

Functional Verification Prevent / Eliminate Bugs

Validate functional correctness of design

Unified verification technologies with fastest engines

Development and manufacturing testing

Avoid Systematic Faults

Functional Safety Verification Control Failures

Confirm effectiveness of safety mechanisms

Confidence in tool chain

"In Operation" testing

Control of Random Faults

Verification Flow Alignment

- Alignment of requirements for functional and safety verification
 - Accelerate complete verification process
 - Requires solution for systematic and random fault testing
- Integrated with ISO 26262 Flows
 - Failure mode effects analysis
 - Metric reports
 - Safety requirements traceability

SYSTEMS INITIATIVE

Verification Goal Comparison

SGS

SAAR

Functional Verification Prevent / Eliminate Bugs

Unified verification technologies with fastest engines

'Shift-Left' for Faster Time-to-Market Manage Growing SoC Verification and System Validation Complexity and Cost

Functional Safety Verification Control Failures

Certified tool chain

	SGGS ESSERVE SEARCH STREAM STR
	LS09-AU01 LS09-A
	Textor DO 2002-0211 (Law 11.4 B and 11.4 B (Law
ASIL D READY Functional Safety www.sgs-tuev-saar.com	<section-header></section-header>

100 / J / 100 N N 100

Safety Fault Metrics for ISO 26262 ASIL Ratings

• Fault Injection Testing recommended for ASIL A & B and highly recommended for ASIL C & D

	Method	ASIL A	ASIL B	ASIL C	ASIL D
	Fault Injection Testing	+	+	+ +	+ +
Maximize de	tection of single point faults				
	Metric		ASIL B	ASIL C	ASIL D
	Single Point Fault Metric		≥ 90%	≥ 97 %	≥ 99 %
Maximize de	tection of multi-point latent fa	ults			
	Metric		ASIL B	ASIL C	ASIL D
	Latent Fault Metric		≥ 60%	≥ 80 %	≥ 90 %
	© Accellera Systems Initiative	37			

Functional Safety Process

Implement and Confirm Quality of Safety Mechanisms (SM)

- Identify Failure Mode and Effects Analysis (FMEA) for device
- Implement Safety Mechanisms to protect against failures
- Run fault injection to measure ISO 26262 metrics
- Generate FMEDA report, Safety manual

Unique Functional Safety Needs - Summary

ISO 26262 Work Products

- FMEA, FMEDA
 - F Failures of a given component Consider a component in a system
 - M Mode Look at one of the ways in which it can fail
 - E Effects Determine the effects this failure mode will cause to the system we are examining
 - D Diagnostic Determine the coverage
 - A Analysis Analyze how much impact the symptom will have on the environment/people/ the system itself

Source: https://about.brighton.ac.uk/cem/research/seminars/2011/fmea_pres.pdf

FMEA/FMEDA process flow

accellera

SYSTEMS INITIATIVE

FMEA Inputs example

• Design block level list and diagram.

Block Diagram of FIFO with Static Memory

Failure Mode Effect Analysis example

- Failure Mode 1:
 - Failure: Full signal is not raised when FIFO is full
 - Effect: Data will be overwritten or lost
 - Safety Mechanism: Redundant Control Logic
- Failure Mode 2:
 - Failure: Data in SRAM is corrupted
 - Effect: Invalid data
 - Safety Mechanism: ECC

Block Diagram of FIFO with Static Memory

Fault Classification Simplified

FMEA Work product example:

AA	В	с	D		E		F	G	н	1	J		К		L	М	N	
1								PRIM	ARY	SAFETY	MECH	AN	ISMS					
2																		
2																		
4																		
5																		_
6	Element	Unique ID	Safety Med	chanism	Diagnostic or	Avoidance?	Туре	Require ments ID	Periodicity	Execution Time	Error Res	sponse	Error Reporting Time	Equiva	lent ISO 26262 Diagnostic	ISO 26262 DC	Estimated DC	
7	Host	HOST_PSM_1	Host Safety 1	1	Avoida	ance H	W (internal)	C	ontinuous	Real-time	Intern	upt	1ms	hardw	are consistency monitoring	High	Medium	
8	Host	HOST_PSM_2	Host Safety 2	2	Diagn	ostic H	W (internal)	c	ontinuous	Real-time	Intern	upt	1ms	Processing ur	nits: Other sub-elements::Parity bit	Low	Medium	4
9	Host	HOST_PSM_3	Host Safety 3	3	Avoida	ance F	W (internal)	C (ontinuous	Real-time	Intern	upt	1ms	hardw	are consistency monitoring	High	Medium	4
10	Host	HOST_PSM_4	Host Safety 4	1	Diagn	ostic H	W (internal)	C	ontinuous	Real-time	Interr	upt	1ms	OV	er/under flow detection	Low	Medium	┛
11																		
12																		
	A B		С	D	E	F		G		н			1		J		К	
1										MAI	N FM	EA						
2										11.5								
3																		
5																		
						Potential Faults	Potenti	al Errors	Potential	Effect(s) of Failure	(visible to						Severity	R
		_					(as seen a	t top design	and the second	system)						NAMES OF TAXABLE		
6	Unique	ID Top Desig	gn Element	Element -1	Element -2	converte d ODU co	element	boundary)	Manager		ution	Sys	tem-Level Potential Effect	t Class	ISO 26262 Equivalent Fault/Er	rror/Failure	[Optional]	_
1	HOST FM	1 MEM CTRL	-			corrupted CPU co	m Memory con	ntent corruptio	Wrong cod	ng, wrong or no exec	ution	CPU/GPU	Unintended instruction(s)	flow executed	rocessing units. Other sub-elements	s.d.c. fault mode	5	_
0	HOST FM	2 MEM CTRL				corrupted CPU to	Memory con	ntent corruptio	Wrong codi	ng, wrong or no exec	ution	CPU/GPU	Unintended instruction(s)	flow executed	units: ALU - Data Path. Solt error in	nodel (for seque	5	-
10	HOST FM	4 MEM CTRL				corrupted CPU wri	Memory con	ntent corruptio	Wrong codi	ng, wrong or no exer	ution	CPU/GPI	I Unintended instruction(s)	flow executed	units: Al U - Data Path: Soft error n	nodel (for seque	5	
11	HOST FM	5 REG UNIT	-			incorrect registers	Memory con	ntent corruptio	Processor	architectural state/co	ntrol corrun	CPU/GPL	Unintended instruction(s)	flow executed	rocessing units: Other sub-element	s d c fault mode	5	
12	HOST FM	6 REG UNIT				incorrect registers	r Memory con	ntent corruptio	Processor a	architectural state/co	ntrol corrup	CPU/GPL	Unintended instruction(s)	flow executed	units: ALU - Data Path: Soft error n	nodel (for seque	5	
13	HOST FM	7 REG UNIT				incorrect registers	Memory con	ntent corruptio	Processor a	architectural state/co	ntrol corrup	CPU/GPL	J::Unintended instruction(s)	flow executed	rocessing units: Other sub-elements	s:d.c. fault mode	5	
14	HOST_FM	8 REG UNIT				incorrect registers	Memory con	ntent corruptio	Processor a	architectural state/co	ntrol corrup	CPU/GPU	U::Unintended instruction(s)	flow executed	units: ALU - Data Path::Soft error n	nodel (for seque	5	
15	2				1		1									100 C		

Failure Mode Effect & Diagnostic Analysis (FMEDA)

- A detailed analysis technique to obtain:
 - Design failure rates
 - Failure Modes diagnostic capability
- FMEDA is an extension of the FMEA analysis
 - Assessing the Safety Metrics for the given Failure Mode
- FMEDA Inputs:
 - Technology Information for Failure In Time (FIT)
 - Needed to compute Failure Rates
 - Design information
 - Digital logic and analog area, flop/latch, RAM/ROM counts
 - Needed to compute Failure Mode Distribution
 - Safety Mechanism (if exists) for the Failure Modes

ISO 26262 acceptable technology standards:

- IEC TR 62380
- SN 29500
- FIDES Guide

FMEDA Creation Flow

SP level Analysis – one FMEDA per one FMEA line

Administrator – per Project

Provide Design Data [Hierarchical data ion all SPs – digital area, RAM bits, FF, Latches etc]

Provide Technology Failure Rate [FIT per area unit, FIT per RAM bit etc.] User/IP owner – per Sub Part

Specify SM type [will provide initial Diagnostic coverage estimate]

Update Fsafe percentage [Fsafe is the portion of faults which go not violate the safety goal]

Associate a design element [If multiple FMEDAs on the same design element – use Scale Factor] Estimated ISO 26262 Metric

Failure Mode (FM) Distribution

- Each FMEDA needs to have a base Failure Rate assigned to it
- Possible distributions:
 - Uniform: Each FM has a failure rate equal to the overall failure rate divided by the number of failure modes
 - Reasonable assumption for initial analysis; assumes highly symmetrical design
 - Area: Each FM's failure rate depends on its relative portion of the design area
 - Similarly, it may depend on the number of gates/flops
 - Number of outputs affected
 - Considers their cone of influence

FMEDA Diagnostic Coverage Components

- Fault list a list of design locations with potential random failures
 - Based on FMEA potential cause of failure
 - Generated from block level or elementary sub parts
- Observation Points
 - Design points in which the effect of an injected fault should be observed
 - Normally –at the boundary of a block in which the fault is injected
- Diagnostic Points
 - Design points which are activated when the safety mechanism detects the injected fault
 - e.g.: safety_alarm IO pin, interrupt to interrupt controller etc.

FMEDA Diagnostic Coverage Components – cont.

• Workloads

- These are sets of tests which stimulate the area of the injected fault
- Types of workloads:
 - **Representative**: follow normal use cases, do not necessarily activate all signals in the relevant block
 - **Exhaustive**: provide 100% toggle coverage of the relevant block

ISO 26262 Fault Classification

FMEDA Creation Flow

SP level Analysis – one FMEDA per one FMEA line

Fault Injection Campaign

- Determine Diagnostic Coverage of the SM
 - inject faults in the design
 - checking if they are detected by the SM
- Fault simulators
 - Can use existing verification tests
 - Can run concurrently, handling many faults at a time
 - Stimulus may not be sufficient to cause all dangerous faults to propagate
- Formal tools
 - Can determine which faults are uncontrollable from the inputs
 - Can check for Observation points Cone Of Influence (COI) observability of faults

Fault Classification Through Simulation

Preparation for Fault Simulation

Unfavorable Simulation Results Analysis

- A fault which does not propagate to any observation point is either safe, or 'dangerous undetected'
- Use Formal tool to further classify faults
- Provide DUT and Fault list to VC-Formal
 - Fault proven to be not-controllable or not observable
 - Fault is Safe
 - Fault proven to be controllable and observable
 - Analyze scenario provided by VC-Formal and improve provided use case(s)
 ⇒ Productivity and safety increased
 - Inconclusive
 - Human analysis required

Benefits of Formal Fault Filtering

- Simulation and constrained random tests help achieve high % of fault coverage quickly
- Eventually the benefits of simulation and manual directed tests diminish: progress plateau
- Formal filtering of faults can provide a boost to fault coverage %

Fault Injection Testing – Z01X Functional Safety

Highest performance fault simulation solution for ISO 26262 compliance requirements

- Challenges
 - Stringent fault simulation is needed for ISO 26262 compliance
 - Both permanent and transient fault model support is required
 - Performance demands are extreme
- Objective
 - Generate fault coverage metrics with acceptable TAT
- Results
 - MobilEye adopted Z01X for their EyeQ4 design when existing (competitive) solution was too slow
 - Z01X adoption WW is growing rapidly in automotive semiconductor and systems companies

Products with Design Solutins for ARM Cortex-R52

High speed Z01X and Certitude fault simulation help assure functional safety for automotive safety standards

Sep 19, 2016

FMEA/FMEDA Process Overview (ISO 26262)

CONFERENCE AND EXHIBITION

RF

© Accellera Systems Initiative

FMEDA Calculation & Report

	А	В	С	D	E	F	G	Н	1
1						MAIN FMEDA			
9									
10	Unique ID	Top Design Element	Element-1	Element-2	Potential Faults	Potential Errors (as seen at the top design element boundary)	Potential Effects of Failure (visible to the system)	System level potential effect class	Safety Related?
11 HOS	ST_FM_1	MEM_CTRL			corrupted CPU command	Memory content corruption	Wrong coding, wrong or no execution	CPU/GPU::Un	ii Yes
12 HOS	ST_FM_2	MEM_CTRL			corrupted CPU command	Memory content corruption	Wrong coding, wrong or no execution	CPU/GPU::Un	ii Yes
13 HOS	ST_FM_3	MEM_CTRL			corrupted CPU write data	Memory content corruption	Wrong coding, wrong or no execution	CPU/GPU::Un	i Yes
14 HOS	ST_FM_4	MEM_CTRL			corrupted CPU write data	Memory content corruption	Wrong coding, wrong or no execution	CPU/GPU::Un	i Yes
15 HOS	ST_FM_5	REG_UNIT			incorrect registers read	Memory content corruption	Processor architectural state/control corrupt	t CPU/GPU::Un	i Yes
16 HOS	ST FM 6	REG_UNIT			incorrect registers read	Memory content corruption	Processor architectural state/control corrupt	t CPU/GPU::Un	i Yes
17 HOS	ST FM 7	REG_UNIT			incorrect registers write	Memory content corruption	Processor architectural state/control corrupt	t CPU/GPU::Un	i Yes
18 HOS	ST FM 8	REG_UNIT			incorrect registers write	Memory content corruption	Processor architectural state/control corrupt	t CPU/GPU::Un	i Yes
1	A	L M N C	DPQR	S T U	V W X	Y Z AA AB	AC AD AE AF	AG	AH
9				Per	manent Fault Model				

9											Perma	inent ⊦au	lt Model											
						F.	E.						SoC built-in	built-in	SoC built-in	Application	Application	Application						
10	Unique ID	Deve	λ	λ	λ	Device	Application	F.	λ.	λ.	Faure	2000	Diagnostic	stic ID	Kaugas	Diagnostic	ID	Kausa	Kaura	λ	2)	.)
10	Olique ID	DFMi	Mintrinsic	n _{nSR}	ASR	Device	Application	' safe	Λs	n _{nS}	PVSG	/\pVSG	Diagnostic	SUCID	INFMC,RF	Diagnostic	10	NFMC,RF	INFMC,RF	ASPF	ARF	MPF, primary	MPF, secondary	AMPE
11	HOSI_FM_1	9.13%	5.81E+00	0.00E+00	5.81E+00	75%	0%	75%	4.36E+00	1.45E+00	41%	5.96E-01			30%			0%	30.0%	0.00E+00	4.17E-01	8.57E-01	1.79E-01	1.04E+00
12	HOST_FM_2																							
13	HOST_FM_3	3.91%	2.49E+00	0.00E+00	2.49E+00	96%	0%	96%	2.39E+00	9.96E-02	43%	4.28E-02	Host Safety 2	PSM_2	98%			0%	98.3%	0.00E+00	7.49E-04	5.68E-02	4.21E-02	9.89E-02
14	HOST FM 4																							
15	HOST_FM_5	77.33%	4.92E+01	0.00E+00	4.92E+01	79%	0%	79%	3.89E+01	1.03E+01	16%	1.65E+00)		30%			0%	30.0%	0.00E+00	1.16E+00	8.68E+00	4.96E-01	9.17E+00
16	HOST_FM_6																							
17	HOST_FM_7	9.63%	6.12E+00	0.00E+00	6.12E+00	68%	0%	68%	4.16E+00	1.96E+00	45%	8.82E-01	2,Host Safety	PSM_4	70%			0%	70.0%	0.00E+00	2.64E-01	1.08E+00	6.17E-01	1.69E+00
18	HOST_FM_8																							

	A	AP	AQ	AR	AS	AT	AU	AV	AW	AX	AY	AZ	BA	BB	BC	BD	BE	BF	BG	BH	BI	BJ	BK
1																							
9														Transient Fa	ult Model								
10	Unique ID	λ _{MPF,p}		D _{FMi}	λ _{intrinsic}	λ _{nSR}	λ _{sr}	F _{safe} Device	F _{safe} Application	Fsafe	λ5	λης	FPVSG	λ _{PVSG}	SoC built-in Diagnostic	SoC built-in Diagnostic ID	SoC built-in Diagnostic K _{FMC.RF}	Application Diagnostic	Application Diagnostic ID	Application Diagnostic K _{FMC.RF}	K _{FMC.RF}	λspf	λ _{rf}
11	HOST_FM_1	8.94E-01																					
12	HOST_FM_2			9.13%	3.88E-01	0.000	0.388	32%	0%	32%	1.24E-01	2.64E-01	92%	2.43E-01	Host Safety 2	_2	98%			0%	97.8%	0.000	0.00
13	HOST_FM_3	4.64E-05																					
14	HOST_FM_4			3.91%	1.66E-01	0.000	0.166	57%	0%	57%	9.48E-02	7.15E-02	15%	1.07E-02	Phost Safety 4	_4	97%			0%	97.4%	0.000	0.00
15	HOST_FM_5	7.02E+00																					
16	HOST_FM_6			77.33%	3.29E+00	0.000	3.287	73%	0%	73%	2.40E+00	8.87E-01	82%	7.28E-01	Host Safety 4	_4	97%			0%	96.7%	0.000	0.024
17	HOST_FM_7	1.69E-01																					
18	HOST_FM_8			9.63%	4.09E-01	0.000	0.409	61%	0%	61%	2.50E-01	1.60E-01	45%	7.18E-02	2 Host Safety 4	_4	90%			0%	90.0%	0.000	0.007

ISO 26262 Metric Report

- Probabilistic Metric for random Hardware Failures (PMHF)
- Single-point fault metric (SPFM)
- Latent-fault metric (LFM)

D	E	F	G	Н
ME	ETRIC	S DASH	BOAF	RD 🛛
	Permanent	Transient	Total	
PMHF (Failures per 10^9 hours	1.84E+00	3.69E-02	1.88E+00	
SPFM	97.1%	99.1%	97.2%	
	Permanent			
LFM	88.8%			
Part	(P&T combin	ned)		
HOST	0.9	72356059		>= 90%
				< 90%

Synopsys' Unique Position for Automotive Verification

- Deep R&D collaboration with leading automotive semiconductor suppliers
- Automotive supply chain relationships with Tier1 and OEMs
- Fastest verification engines: Static, Formal, Simulation, Emulation, FPGA prototyping
- Early SW development platform with hybrid emulation and Verdi HW/SW debug
- Unique technologies: Certitude, Z01X, FMEDA automation, virtual prototyping and models
- ISO26262 technical expertise and experience

Questions?

Contact: jmforey@synopsys.com

Thank You

