
© Accellera Systems Initiative

➢ Functional Safety :-

• Functional safety schemes for automobiles helps in identifying malfunctions (electric and

electronic) and specifies actions and techniques to be adopted to mitigate risks and damage

during instances of software or hardware failures.

➢ Functional Safety Verification ?:-

• All chip designers set out to develop chips without bugs, but the stakes are much higher for

those working on automotive designs. A cell phone crash may cause a reboot, but a bug in an

advanced driver assistance system(ADAS), such as lane keeping, may cause another kind of

crash – with much more serious consequences.

Problem Statement/Introduction

Implementation Details/Diagram

Proposed Methodology/Advantages

Implementation Details/Flow Chart

Functional Safety Verification Flow
General Safety Island with Key Safety Mechanisms

Marvell Technology

Onkar Bhuskute

Functional Safety Verification Methodology for ASIL-B

Automotive Designs

➢ ISO 26262-5:2018, Road vehicles — Functional safety — Part 5: Product development at the hardware level

➢ ISO 26262-9:2018, Road vehicles — Functional safety — Part 9: Automotive Safety Integrity Level (ASIL)-oriented and safety-oriented analyses

➢ Cadence Online Support Website and Document.

Results Table Conclusion

➢ Legacy UVM testbench used for functional verification is reused in Functional Safety Verification.

➢ The random faults are injected on Safety Critical Path and its effected are evaluated.

➢ ISO-26262 compliant output is evaluated on requirements for ASIL-B designs and iterations are done

until the optimum results are achieved.

FMEDA Results and SM Results(ISO-26262 Terminology)

REFERENCES

Proposed Methodology:-

Hardware Safety Goals
and Requirements

Analysis of Safety Goals
@ Sub-system VS Architectural

Develop Architectural FMEDA
• Top level Failure Mode distribution
• Feasibility of all Safety Mechanisms

Run the fault injection using Xcelium

All the faults are
dangerous detected?

Run Fault Injection Campaign in
Vmanager Safety Flow

Run the fault Campaign for Detailed FMEDA
using Safety Planner.

Analyze Architectural FMEDA and finalize the expected SPFM,
LPFM

• Prepare all the files required for Safety Planner Detailed FMEDA

• Preliminary Safety Architecture and expected values of LPFM,SPFM

Matrix
Evaluation

Final Safety Architecture with Expected
coverage of random Faults

Yes

No

Satisfactory results

Unsatisfactory results

• SPFM:- Single Point Fault Matrix
• LFM :- Latent Point Fault Matrix
• SM :- Safety Mechanisms
• FMEDA :- Failure modes, effects,

and diagnostic analysis

➢ Serial Fault Injection

➢ Concurrent Fault Injection

➢ Generating FMEDA sheet (ISO-26262 compliant)

➢ Functional Safety Verification Plan is created along with the Functional verification Plan.

➢ Analyzed Safety Goals(SG) and Hardware safety requirement(HSR) against the top level architecture

➢ Possible failure modes are developed and analyzed their effects on the design along with the

available Safety Mechanisms.

➢ Depending upon the failure mode and Safety Critical Path; the list of fault injection nodes is created.

➢ Launch the fault injection campaign

Advantages:-

➢ Used legacy UVM testbench for Fault injection with minimum effort.

➢ As per the result after fault injection on the Safety Critical Functionalities(paths); the Safety

Mechanisms can be enhanced or more number of Safety Mechanisms are added to mitigate the risk

of random failure.

➢ Random Fault injection is done to detect the random failures and its impact on Safety Mechanisms

Introduction:-:-

Problem Statement:-:-

Safety Island IOs

Timers

Watchdog
Trusted

bootROM

 System on CHIP Logic

Bus Interface

qSPI
Controller

On-chip Fabric

Registers

Dual Core Lock Step
CPU

TCM
(Tightly Coupled Memory)

I-Cache

External
SPI Flash

Interrupt
Controller

Clock

Reset

Power

Interface
Logic

Interrupt LogicMonitor Logic Watchdog & Timers Fault InjectionCorrection Logic

Chip IOs

Safety Island

BIST Logic

