
Fully Automated Verification Framework for
Configurable IPs: From Requirements to Results

Shuhang Zhang, Jelena Radulovic, Thorsten Dworzak 

Infineon Technologies AG



Outline

• Development Challenges of Configurable IPs

• Automation Challenges

• Automated Development Framework
• Automated Verification Framework

• Results

• Conclusion



Development Challenges of Configurable IPs

Configurable IPs widely utilized in today’s SoCs

• Design flexibility and scalability

• Reduced development time

• Optimized resource utilization

However,

• Increased complexity in design and verification

• Time-consuming to ensure the correctness

• Hard to handle a large volume of configurations

Configurable IP

RTL

Configuration

Automation is the solution



Automation Challenges

Jama

VerificationDesign

• Concept
• Construction of the Jama database

• Design
• Jama to Design

• Verification
• Jama to Verification 

• Regression 

• Verification to Jama



Automated Development Framework

• Concept

• Jama database is constructed using 
configurations through the web interface

• Design

• Design is generated automatically based on 
the configurations 

• Verification

• Automated Jama-to-Jama verification flow is 
implemented, using the same configuration



Jama Database Generation

Concept json

Superset testcase 

in Jama

Superset HWRQs in 

Jama

Jama DB

Subset HWRQs in 

Jama

Subset testcase in 

Jama

Ver. json
SelectSelect

• A predefined superset of Hardware Requirements (HWRQs) and test 
cases is designed to cover all possible configurable options

• Based on the configurations provided by the customer, a tailored 
subset of HWRQs and corresponding test cases is dynamically selected



vPlan Generation

Jama DB ipvs.xml
vPlan

w/o mapping

vPlan

w/ mapping

traceability vMan

API

• The Jama API is utilized to automatically generate the required XML file
• An in-house tool is employed to generate the vPlan without mapping 

patterns
• The vManager API is then used to programmatically add and finalize the 

mapping patterns to the vPlan



Verification Environment Generation

• Simulation-Based Verification

• Utilizes an in-house testbench generator to create the skeleton of the 
testbench

• The framework dynamically generates its own files to replace pre-
defined placeholder files, such as: Test sequence and Scoreboard files

• Formal Verification

• Primarily focuses on the automated generation of SVA files

• Additionally, generates the necessary TCL scripts to ensure seamless 
execution of the formal verification process



Regression and Reporting

Sim/Formal Testbench

Sim/Formal Setup

RTL Files

vMan Regression

Refinements

vPlan

vPlan Report (*.html)

Jama Report (*.xml)

Report Archive

Jama DB

Post-processing for links



Framework Robustness

Verification

Framework

Testing

Configurations

Real

Configurations

• Robustness is crucial for fully automated flows
• Extensive testing configurations enhance 

robustness
• Thorough review of superset HWRQs and TCs
• Detailed waiver reviews



Results
Configurable Memory Subsystem IP
• Initial Setup: Requires a large one-time 

effort to establish the automation 
framework 

• Effort Reduction: Achieves a significant 
reduction in effort for subsequent 
configurations

• Impact: The effort per configuration is 
reduced dramatically, from 40 person-days 
(PD) to just 2 person-days (PD)

MSS

LMW

PMW

Memory Tower

1 k
1 k

2 k
2 k

8 k
8 k

Glue

Logic
Pctrl

power

EDC/ECC + test-bypass

AHB-interface

access

access



Conclusion

• A push-button solution can be achieved for configurable IPs, 
streamlining the process from requirements to results.

• The framework serves as a wrapper, integrating multiple tools such as 
Jama/vMan-API and in-house tools.

• Although the initial effort for creating generators and supersets is 
substantial, it provides long-term efficiency and benefits for future 
configurations.



Questions


