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Development Challenges of Configurable IPs

Configurable IPs widely utilized in today’s SoCs

• Design flexibility and scalability

• Reduced development time

• Optimized resource utilization

However,

• Increased complexity in design and verification

• Time-consuming to ensure the correctness

• Hard to handle a large volume of configurations
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Automation is the solution



Automation Challenges

Jama

VerificationDesign

• Concept
• Construction of the Jama database

• Design
• Jama to Design

• Verification
• Jama to Verification 

• Regression 

• Verification to Jama



Automated Development Framework

• Concept

• Jama database is constructed using 
configurations through the web interface

• Design

• Design is generated automatically based on 
the configurations 

• Verification

• Automated Jama-to-Jama verification flow is 
implemented, using the same configuration



Jama Database Generation
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• A predefined superset of Hardware Requirements (HWRQs) and test 
cases is designed to cover all possible configurable options

• Based on the configurations provided by the customer, a tailored 
subset of HWRQs and corresponding test cases is dynamically selected



vPlan Generation
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• The Jama API is utilized to automatically generate the required XML file
• An in-house tool is employed to generate the vPlan without mapping 

patterns
• The vManager API is then used to programmatically add and finalize the 

mapping patterns to the vPlan



Verification Environment Generation

• Simulation-Based Verification

• Utilizes an in-house testbench generator to create the skeleton of the 
testbench

• The framework dynamically generates its own files to replace pre-
defined placeholder files, such as: Test sequence and Scoreboard files

• Formal Verification

• Primarily focuses on the automated generation of SVA files

• Additionally, generates the necessary TCL scripts to ensure seamless 
execution of the formal verification process



Regression and Reporting
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Framework Robustness

Verification

Framework

Testing

Configurations

Real

Configurations

• Robustness is crucial for fully automated flows
• Extensive testing configurations enhance 

robustness
• Thorough review of superset HWRQs and TCs
• Detailed waiver reviews



Results
Configurable Memory Subsystem IP
• Initial Setup: Requires a large one-time 

effort to establish the automation 
framework 

• Effort Reduction: Achieves a significant 
reduction in effort for subsequent 
configurations

• Impact: The effort per configuration is 
reduced dramatically, from 40 person-days 
(PD) to just 2 person-days (PD)
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Conclusion

• A push-button solution can be achieved for configurable IPs, 
streamlining the process from requirements to results.

• The framework serves as a wrapper, integrating multiple tools such as 
Jama/vMan-API and in-house tools.

• Although the initial effort for creating generators and supersets is 
substantial, it provides long-term efficiency and benefits for future 
configurations.
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