
Firmware Firmly under Control:
New Optimization and Verification Techniques

for Application Specific Electronic Systems

Daniel Große (Univ. Bremen / DFKI)

Manuel Strobel (Univ. of Stuttgart)

Daniel Mueller-Gritschneder (TU Munich)

Vladimir Herdt (Univ. of Bremen)

Tobias Ludwig (Univ. of Kaiserslautern)

© Accellera Systems Initiative 1

This contribution is funded as part of the CONFIRM project (project label 16ES0564-70) within the research program

ICT 2020 by the German Federal Ministry of Education and Research (BMBF) and supported by the industrial partners

Infineon Technologies AG, Robert Bosch GmbH, Intel Deutschland AG, and Mentor Graphics GmbH.

Outline

1. Motivation

2. Design-Time Optimization Techniques for
Low-Power Embedded Memory Subsystems

3. Automatic HW-SW-Interface Generation and
Optimization

4. RISC-V based Virtual Prototype for
Efficient Simulation of Firmware-based Designs

5. Properties-First Design: A New Design Methodology
for SoC Hardware and Low-Level Software

© Accellera Systems Initiative 2

Motivation

Application-specific adaptivity

Automotive

Smartphone

Power Control

Application-specific adaptivity  Firmware

© Accellera Systems Initiative 3

Focus
New methods for early, efficient and systematic firmware design taking the underlying

hardware architecture consisting of digital and analog components into account

Automotive

Smartphone

Power Control

© Accellera Systems Initiative 4

Action Chain: Sensor subsystem ↔ device

Application Specific
(Timing, Power)

Constraints

Sensor-/actuator-specific
(Timing) Constraints

Sensor

Firmware

Workloads from
Application

© Accellera Systems Initiative 5

Abstraction Levels in Firmware Design

Application code/
Use Cases (HW independent)

Hardware-dependent
data processing

Runtime environment

Driver

Firmware Levels

Edge Processing, Sensor Pre-processing,…

Bare-metal, Scheduler, RTOS, …

Device Driver, HAL, …

Workloads, Constraints, Platforms

© Accellera Systems Initiative 6

Abstraction Levels in Firmware Design

Application code/
Use Cases (HW independent)

Hardware-dependent
data processing

Runtime environment

Driver

Firmware Levels

Edge Processing, Sensor Pre-processing,…

Bare-metal, Scheduler, RTOS, …

Device Driver, HAL, …

Workloads, Constraints, Platforms

Specification Analysis

Optimization Verification

Generation

© Accellera Systems Initiative 7

Design-Time Optimization Techniques for
Low-Power Embedded Memory Subsystems

Manuel Strobel (Univ. of Stuttgart)

© Accellera Systems Initiative 8

Content

• Introduction
– Motivation

– Background

• Reduction of Dynamic Energy Consumption
– Optimization Concept

– Workflow

• Reduction of Static Energy Consumption
– Optimization Concept

– Workflow and Example

• Conclusion

© Accellera Systems Initiative 9

General Motivation

• Energy and power consumption of System-on-Chip (SoC) devices is of
vast importance in many application fields, e.g.:

© Accellera Systems Initiative 10

Mobile
communication

Internet of
Things (IoT)

Automotive
Industrial

automation

Reduce energy consumption

 Battery life

 Reliability

Control peak power [1]

 Packaging

 Heat dissipation

 Side effects in mixed-signal designs

SRAM Optimization Potential

• Memory subsystem consumes a large
part of the system energy budget

– In memory intensive applications up to 75%

– Promising target for optimization

• Saving potential of SRAM originates from

– Relation of memory size ⟷ energy consumption

– Low-power modes
• Light Sleep (LS) – Biasing techniques

• Deep Sleep (DS) – Power gating of periphery

• Shut Down (SD) – Power gating of periphery & array

© Accellera Systems Initiative 11

VSS Periphery VSS Array

VSS External

Memory Array
Memory

Periphery

VDD Periphery VDD Array

Integrated Power Gating

LS

DS

SD

Power Switch

Based on [3] Fig.2 and 4

[2]

[8]

Optimization Variables

• Heterogeneous memory subsystem (SRAM)

– Flat memory hierarchy

– No monolithic memory block

• Optimization variables

– Allocation (memories)

– Binding (application)

– Scheduling of low-power modes
(if available)

© Accellera Systems Initiative 12

Based on [4] Fig. 2

Optimization Input

© Accellera Systems Initiative 13

• Optimization based on profiling information

– Generated from instrumented instruction
set simulation (ISS)

– Provides memory access statistics

– Dependencies between address ranges

• Quality of optimization result depends on

– Profiling information

– Determinism

– Periodicity

Based on [6] Fig. 1

of application

Content

• Introduction
– Motivation

– Background

• Reduction of Dynamic Energy Consumption
– Optimization Concept

– Workflow

• Reduction of Static Energy Consumption
– Optimization Concept

– Workflow and Example

• Conclusion

© Accellera Systems Initiative 14

Optimization Concept

𝐸𝑚𝑒𝑚 = 𝐸𝑑𝑦𝑛 + 𝐸𝑠𝑡𝑎𝑡

𝐸𝑑𝑦𝑛 Dynamic energy consumption from read/write accesses

𝐸𝑠𝑡𝑎𝑡 = 𝑃𝑙𝑒𝑎𝑘 ∗ 𝑇 Static energy consumption due to leakage (period 𝑇)

• We proposed a mathematical model to perform the combined optimization of
memory instance allocation and binding of memory segments to instances [5]

– Minimizes total dynamic energy consumption over runtime

– Integer Linear Programming (ILP) ensures global optimum

© Accellera Systems Initiative 15

Identification of an optimal heterogeneous memory architecture (allocation)
and application binding based on profiling information of a periodic application.

Optimization Workflow

© Accellera Systems Initiative 16
Based on [5] Fig.3

• Considers 𝛼 and 𝛽

• Experiments

– Up to 8 memories

– IBM CPLEX ILP solver

• Results

– PPC405 platform

– Energy savings up to 82%

– Application-specific

Content

• Introduction
– Motivation

– Background

• Reduction of Dynamic Energy Consumption
– Optimization Concept

– Workflow

• Reduction of Static Energy Consumption
– Optimization Concept

– Workflow and Example

• Conclusion

© Accellera Systems Initiative 17

Modeling of Low-power Modes

• Advances in technology scaling lead to increasing relevance of leakage

• Expected to exceed 50% of the total system power consumption [2]

• Adding power states to the memory
subsystem model

• At each point in time, a memory is in

– State 𝐴𝐶𝑇, 𝐿𝑆, 𝐷𝑆, 𝑆𝐷

– Transition 𝐴𝐶𝑇 → 𝐿𝑆, 𝐿𝑆 → 𝐴𝐶𝑇,…

• Example (two memories)
𝐶 = 𝐴𝐶𝑇, 𝐴𝐶𝑇 , 𝐴𝐶𝑇, 𝐿𝑆 ,…

© Accellera Systems Initiative 18

Optimization Concept

𝐸𝑚𝑒𝑚 = 𝐸𝑑𝑦𝑛 + 𝐸𝑙𝑒𝑎𝑘 + 𝐸𝑚𝑜𝑑𝑒

𝐸𝑠𝑡𝑎𝑡

𝐸𝑙𝑒𝑎𝑘 Energy consumption due to leakage (depending on low-power mode)

𝐸𝑚𝑜𝑑𝑒 Energy penalty due to low-power mode changes

• Low-power modes allow the consideration of peak power constraints!

© Accellera Systems Initiative 19

Identification of a heterogeneous memory architecture (allocation), application binding,
and low-power mode scheduling based on profiling information of a periodic application.

Optimization Workflow

© Accellera Systems Initiative 20

• Supported ISS Alternatives
– ARMv6-M ISS [6]
– SystemC ARMv6-M VP (TLM)

(www.soclib.fr)

– Multicore VP
(cooperation with RWTH Aachen)

• Clustering Alternatives
– Dynamic energy optimization

(see above)

– Graph partitioning
– Min-cut clustering
– Modularity clustering

• MIQP Solver
– Gurobi

Example

© Accellera Systems Initiative 21

• Experimental result for the blowfish benchmark from the MiBench Suite

Preparation
• Build application

• Run ISS (profiling)

• Results (JSON format)

[7]

Stage 1
• Determine 𝛼 and 𝛽

• 32nm node memories

• Modularity Clustering

 4 memories (cluster)
 Generate linker script

MEMORY
{

m1 (rwx) : ORIGIN = ..., LENGTH = 8K
m2 (rwx) : ORIGIN = ..., LENGTH = 8K
m3 (rwx) : ORIGIN = ..., LENGTH = 512K
m4 (rwx) : ORIGIN = ..., LENGTH = 8K

} …

• Reduction to 27.54%

Stage 2
• Determine 𝛾

• Solve MIQP

• Configurations
BF_cfb64_encrypt DADD
BF_encrypt DADD
BF_set_key DADD
Reset_Handler DAAD
exit DAAD
main DAAD
memcpy DADA
putchar DAAD
…

• Reduction to 26.66%

{
"profileId": 12,
"profileType": "c",
"profileName": "main",
"startAddr": "0x00000e24",
"endAddr": "0x00000f08",
"size": 228,
"dutyCycle": 7710544,
"numReads": 6751633,
"numWrites": 0,
"depsVector": ["p1": 0, "p2": 0,

"p3": 0, "p4": 0,
"p5": 7796, ...]

} …

Content

• Introduction
– Motivation

– Background

• Reduction of Dynamic Energy Consumption
– Optimization Concept

– Workflow

• Reduction of Static Energy Consumption
– Optimization Concept

– Workflow and Example

• Conclusion

© Accellera Systems Initiative 22

Conclusion

• Due to the large share of system power consumption that can be attributed
to the memory subsystem it is a promising target for optimizations.

• Profiling-based optimization of the memory subsystem allows savings of over 80%.

• Largest gain comes from the optimization of dynamic energy through
application-specific allocation and binding of memory segments to instances.

• Nevertheless, static power optimization through modeling of low-power
modes becomes increasingly important with technology scaling. Even more
because it enables the definition of peak power constraints.

© Accellera Systems Initiative 23

References
[1] S. P. Mohanty, N. Ranganathan, and S. K. Chappidi. 2006. ILP Models for Simultaneous Energy and Transient Power Minimization During
Behavioral Synthesis. ACM Transactions on Design Automation of Electronic Systems 11, 1 (2006), 186–212.
https://doi.org/10.1145/1124713.1124725

[2] F. Menichelli and M. Olivieri. 2009. Static Minimization of Total Energy Consumption in Memory Subsystem for Scratchpad- Based
Systems-on-Chips. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 17, 2 (2009), 161–171.
https://doi.org/10.1109/TVLSI.2008.2001940

[3] A. Mathur and L. Minwell. 2009. Memory Power Reduction in SoC Design Using PowerPro MG. (2009). https://www.design-
reuse.com/articles/21806/memory-power-reduction-soc-design.html Last visited on 12/05/2017.

[4] M. Loghi, O. Golubeva, E. Macii, and M. Poncino. 2010. Architectural Leakage Power Minimization of Scratchpad Memories by
Application-Driven Subbanking. IEEE Trans. Comput. 59, 7 (2010), 891–904. https://doi.org/10.1109/TC. 2010.43

[5] M. Strobel, M. Eggenberger, and M. Radetzki. 2016. Low power memory allocation and mapping for area-constrained systems- on-chips.
EURASIP Journal on Embedded Systems 2017, 1 (2016). https://doi.org/10.1186/s13639-016-0039-5

[6] M. Strobel and M. Radetzki. 2017. Hybrid instruction set simulation for fast and accurate memory access profiling. In Proc. of the 13th
Workshop on Intelligent Solutions in Embedded Systems (WISES). 23–28. https://doi.org/10.1109/WISES.2017.7986927

[7] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown. 2001. MiBench: A free, commercially representative
embedded benchmark suite. In Proc. of the 2001 IEEE International Workshop on Workload Characterization. IEEE.
https://doi.org/10.1109/WWC.2001.990739

[8] SL Coumeri, DE Thomas, in Proc. International Symposium on Low Power Electronics and Design (ISLPED). Memory modeling for system
synthesis (IEEE, Montery, CA, USA, 1998), pp. 179–184

© Accellera Systems Initiative 24

Automatic HW-SW-Interface
Generation and Optimization

Daniel Mueller-Gritschneder (TU Munich)

© Accellera Systems Initiative 25

Main Goals:
• Automatic driver generation from

abstract description
• Optimized register bit-field layout

in MCU
• Low memory footprint of drivers

by generation & optimization
© Accellera Systems Initiative 26

HW
DesignHW

Developer

Driver
DevelopmenrtSW

Developer
(Expert)

Optimization and
generation

• High costs for driver development
• Expert knowledge for optimized

memory required

Motivation
HW Implementation

(.vhdl/.Verilog)

HW/SW Interface
with Register Layout

(.ipxact)

HW Driver Software
(.h/.c)

Optimization with Driver Model

© Accellera Systems Initiative 27

HW
DesignHW

Developer

Driver
Developmenrt

HW Implementation
(.vhdl/.Verilog)

I/O Parameters
(.dsl)

HW Driver Behavior
(.dsl)

HW/SW
Optimization

+ Code
Generation

SW
Developer

(Expert)

Optimized
HW/SW Interface

with Register Layout
(.ipxact)

Optimized
HW Driver Software

(.h/.c)

How to specify HW I/O

parameters and Driver

behavior?

How to optimize the HW/SW

interface?

Optimization with Driver Model

© Accellera Systems Initiative 28

HW
DesignHW

Developer

Driver
Developmenrt

HW Implementation
(.vhdl/.Verilog)

I/O Parameters
(.dsl)

HW Driver Behavior
(.dsl)

HW/SW
Optimization

+ Code
Generation

SW
Developer

(Expert)

Optimized
HW/SW Interface

with Register Layout
(.ipxact)

Optimized
HW Driver Software

(.h/.c)

How to specify HW I/O

parameters and Driver

behavior?

How to optimize the HW/SW

interface?

Driver Models and DSLs

• Devil[1], NDL[2], HAIL[3], Laddie[4]:
– Unintuitive to C programmers

– Fixed register bit-field layout

– More restricting description for the side effects

– Not focused on optimization of HW/SW interface

• [1] L. Reveillere and G. Muller, "Improving driver robustness: an evaluation of the Devil approach," 2001 International Conference on Dependable Systems
and Networks, Goteborg, Sweden, 2001, pp. 131-140.

• [2] Christopher L. Conway and Stephen A. Edwards. NDL: A Domain-Specific Language for Device Drivers. In the proceedings of the ACM Conference on
Languages, Compilers, and Tools for Embedded Systems (LCTES), Washington, DC, June 11-13, 2004

• [3] Sun, Jun, et al. "HAIL: a language for easy and correct device access." Proceedings of the 5th ACM international conference on Embedded software.
ACM, 2005.

• [4] Wittie, Lea. "Laddie: The Language for Automated Device Drivers (Ver 1) Bucknell Computer Science Technical Report# 08-2." (2008).

© Accellera Systems Initiative 29

Why not C for driver behavior?

• C-specifics:

– Fix layout for registers and bitfields disallows to modify HW/SW interface

– No bit-accurate types

– Endianness fixed by processor

– volatile keyword forbids most code optimizations (abstract automata of C model)

© Accellera Systems Initiative 30

// all HW accesses are volatile

set_chkT_i_1(1);
// *(volatile char*) 0x4007 = *(volatile char *)(0x4007) & 0x1

char var = get_seed_i();
// char var = *(volatile char *)(0x4000);

set_chkT_i_2(1);
// *(volatile char*) 0x4007 = *(volatile char *)(0x4007) & (0x1<<1);

S1

S1

S1

Own Driver Meta Model & DSL

• Based on C-Syntax with some extensions

• Definition of HW I/O Parameters (bfGroup)
– Similar to C-struct, but less restricted

– No fixed register bit-field layout

– Bit-accurate types with array support

– Detailed definition of HW side effects

– Hierarchical organization for reuse

• Definition of SW Parameters (swGroup)
– Without memory layout

– C-types + bit accurate types + endianness

– Hierarchically

• Interface FSM: Permitted API function calls in different states

© Accellera Systems Initiative 31

DSL Example: Definition of HW I/O Parameters

© Accellera Systems Initiative 32

bfGroup ledType{

bit en1;

bit en2;

};

bfGroup confStatType {

uint3 f1;

uint4 f2;

uint3 f3[4];

};

bfGroup SoCType{

bfGroup confStatType confStat;

bfGroup ledType led[2];

uint1 wse(confStat)

wse(led) rst;

};

make_device(SoCType, soc);

soc

confStat

led_0 led_1

f1 f2 f3_0

f3_1 f3_2 f3_3

en2en1 en1 en2

rst

Write
side
effect

DSL Example: Driver Behavior Specification

© Accellera Systems Initiative 33

soc

confStat

led_0 led_1

f1 f2 f3_0

f3_1 f3_2 f3_3

en2en1 en1 en2

rst

void program_device()

{

soc->confStat.f1 = 0;

for(int i=0;i<4;i++)

{

soc->confStat.f3[i]=i;

}

soc->led[0].en2 = 1;

}

void blink_leds(

bfGroup ledType* led)

{

led->en2 = 1;

led->en1 = 0;

}

Optimization with Driver Model

© Accellera Systems Initiative 34

HW
DesignHW

Developer

Driver
Developmenrt

HW Implementation
(.vhdl/.Verilog)

I/O Parameters
(.dsl)

HW Driver Behavior
(.dsl)

HW/SW
Optimization

+ Code
Generation

SW
Developer

(Expert)

Optimized
HW/SW Interface

with Register Layout
(.ipxact)

Optimized
HW Driver Software

(.h/.c)

How to specify HW I/O

parameters and Driver

behavior?

How to optimize the HW/SW

interface?

Optimization of the HW/SW Interface

• Save number of Registers (saves MUXs)

© Accellera Systems Initiative 35

soc

stuff

led_0 led_1

f1 f2 f3_0

f3_1 f3_2 f3_3

en2en1 en1 en2

rst

REG1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Optimization of the HW/SW Interface

• Byte aligned layout
• Byte access here without shifts possible

© Accellera Systems Initiative 36

soc

stuff

led_0 led_1

f1 f2 f3_0

f3_1 f3_2 f3_3

en2en1 en1 en2

rst

REG1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

REG2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

void program_device()

{

soc->confStat.f1 = 0;

for(int i=0;i<4;i++)

{

soc->confStat.f3[i]=i;

}

soc->led[0].en2 = 1;

}

void blink_leds(

bfGroup ledType* led)

{

led->en2 = 1;

led->en1 = 0;

}

Static Code Analysis -> Access Regions

© Accellera Systems Initiative 37

soc

stuff

led_0 led_1

f1 f2 f3_0

f3_1 f3_2 f3_3

en2en1 en1 en2

rst
• Within regions

accesses can
be combined

• Regions will be
divided by data
dependencies

• Regions have
access
frequencies

Optimized Generation of the Driver Code

• Possible combination of consecutive HW
accesses on the same register

• Map often consecutive used bit-fields to
one register

© Accellera Systems Initiative 38

soc

confStat

led_0 led_1

f1 f2 f3_0

f3_1 f3_2 f3_3

en2en1 en1 en2

rst

void program_device()

{

set_soc_confStat_f1(0);

for(int i=0;i<4;i++)

{

set_soc_confStat_f3_i(i,i);

}

set_soc_confStat_f2(3);

set_soc_led_0_en2(1);

}

Optimized Generation of the Driver Code

• Possible combination of consecutive HW
accesses on the same register

• Map often consecutive used bitfields to
one register

© Accellera Systems Initiative 39

soc

stuff

led_0 led_1

f1 f2 f3_0

f3_1 f3_2 f3_3

en2en1 en1 en2

rst

void program_device()

{

set_soc_confStat_f1(0);

for(int i=0;i<4;i++)

{

set_soc_confStat_f3_i(i,i);

}

set_soc_confStat_f2(3);

set_soc_led_0_en2(1);

}

void program_device()

{

set_soc_confStat_f1_f2(0,3);

set_soc_confStat_f3(0,1,2,3);

set_soc_led_0_en2(1);

}

Ongoing Work

• Evaluation of costs for different
HW/SW Interfaces and generated
Driver Codes

• Implementation of optimization
heuristic

• Apply method to optimize a Pulpino
RISC-V SoC

© Accellera Systems Initiative 40

Single

Bit-field

Register

Shared Bit-field

Register

Read single BF Cio Cio + 2 Cinstr

Write single BF Cio 2 Cio + 3 Cinstr

Read whole

Register

Cio Cio + (2n-1) Cinstr

Write whole

Register

Cio Cio + (2n-2) Cinstr

Read n BFs n Cio Cio + 2n Cinstr

Write n BFs n Cio 2 Cio + (2n+1)

Cinstr

Conclusions

• Our driver DSL supports:

– Compact and hierarchical description of I/O parameters and driver behavior

– optimized generation of the register layout

– to minimize hardware access number of firmware by combining accesses

• DSL avoids

– the strict volatile accesses in C, but considering side effects

– a fixed bitfield layout (and the effort of developing it)

© Accellera Systems Initiative 41

RISC-V based Virtual Prototype for
Efficient Simulation of Firmware-based Designs

Vladimir Herdt (Univ. of Bremen)

© Accellera Systems Initiative 42

Early Simulation of Firmware-based Designs
• Detect errors early in the design flow

• Enables early SW/FW development

• Functional Verification

• Non-Functional Verification
– Performance / Timing
– Energy Consumption

• SystemC-based Virtual Prototypes

© Accellera Systems Initiative 43

www.systemc.org

inputs
wrong
result

SW / FW

VP

RISC-V (1)

• Completely open ISA that is freely available

• No license costs involved

• Efficient and versatile design

• High-performance to small embedded devices

• Widely adopted

© Accellera Systems Initiative 44

RISC-V (2)

RV32IMAFD = RV32G

• Mandatory Integer
Instruction Set “I” (~47 instrs.)

– 32/64/128 Bit

• + Optional Extensions

– “M”, “A”, “F”, “D”, etc.

• Control and Status Registers (CSRs) and Environment Interaction

© Accellera Systems Initiative 45

VP Overview (1)

• RV32IM(A) + Machine Mode CSRs

• Implemented in SystemC/C++

– TLM-2.0 compliant

– approx. 3000 LOC (w/o comments, blanks)

• Open Source

– https://github.com/agra-uni-bremen/riscv-vp

– MIT license

• Overview paper at FDL 2018

– http://www.informatik.uni-bremen.de/agra/doc/konf/2018FDL_RISCV_VP.pdf

© Accellera Systems Initiative 46

https://github.com/agra-uni-bremen/riscv-vp
http://www.informatik.uni-bremen.de/agra/doc/konf/2018FDL_RISCV_VP.pdf

VP Overview (2)

• Components:

– Core, Bus, Memory,

– Interrupt Controller,

– Peripherals (Sensor, Timer, DMA, Terminal)

• Supports:

– Interrupts, Syscalls, CLIB, GCOV

– Recently: GDB, FreeRTOS, FAT, basic ethernet

© Accellera Systems Initiative 47

VP-based Simulation for RISC-V

© Accellera Systems Initiative 48

GNU (/ LLVM)
based

Toolchain

RISC-V
ELF32

ASM / C / C++
Source Files

FreeRTOS C Library Bare-Metal
_start:

li t0, 65

lui t1, 0x80000

sb t0, (t1)0

li a7, 93

li a0, 0

ecall

Write char ‘A’ to address

0x8000000

Stop simulation

1. Setup
Architecture

2. Load
ELF into
Memory

3. Perform
Execution

RISC-V VP

4. Report
Results

VP Architecture

ISS (Core) Bus

Memory

Terminal

PLIC

CLINT

DMA

Sensor

Mem-IF

PortMapping:

start=0x0,

end=0x800000

interruptprioritize “external” interrupts

“core local” timer interrupts

T

T

T

T

Regfile

PC

CSRs
T

RV32IM(A)

configurable /

extendable

© Accellera Systems Initiative 49

Timing Model

• Simple Instruction Accurate

– Fixed execution times for each instruction

– Easy to configure

• TLM blocking transactions

– b_transport(tlm::generic_payload &payload, sc_core::sc_time &delay)

– Peripherals increment the delay parameter

• More precise models can be integrated

© Accellera Systems Initiative 50

GDB Integration

VP

(server)

GDB

(client)

request (REQ)

response (RSP)

REQ: $m111c4,4#f7

RSP: +$05000000#85

main.elf
1: int main() {

2: int a = 4;

3: a++;

4: return a;

5: }

> file main.elf

> target remote :5005

> b main.c:4

> c

> print(a)

main.c

text-based TCP communication

RSP Interface

© Accellera Systems Initiative 51

Example: FreeRTOS + Eclipse GDB

https://github.com/agra-uni-bremen/riscv-freertos

© Accellera Systems Initiative 52

https://github.com/agra-uni-bremen/riscv-freertos

Performance Optimization

• DMI for main memory access
(core concept: char* access to memory)

– DMI for instruction fetching

– DMI for data access

• Temporal decoupling in CPU core

– Evaluate different local time quantums

© Accellera Systems Initiative 53

Performance Evaluation

• Simulation time in seconds (T.O. set to 4 hours)
• VP ~15-20 million instructions per second (AMD 2.8GHz)

© Accellera Systems Initiative 54

Benchmark RTL Sim VP Sim +i_dmi +d_dmi +q10 +q100

mergesort/s 56.70 0.39 0.35 0.35 0.32 0.29

primes/s 823.11 1.73 1.01 0.96 0.59 0.49

qsort/s 64.50 0.40 0.35 0.34 0.31 0.30

sha512/s 1307.23 3.23 1.87 1.57 0.90 0.71

mergesort T.O. 197.32 107.89 86.48 41.17 27.77

primes T.O. 2400.32 1214.71 1089.36 542.46 387.09

qsort T.O. 1204.98 698.50 510.70 262.93 116.73

sha512 T.O. 2773.60 1556.02 1302.75 616.10 432.52

VP (ISS) Testing

• RISC-V ISA tests from Berkeley: passed
(57 tests, RV32IMA)

© Accellera Systems Initiative 55

Our VP

Reference
(Spike +
others)

Testcase
(RISC-V

program)

Signature

Signature

=

Random Test
Generator
(Torture)

Register values
and selected

memory contenthttps://github.com/ucb-bar/riscv-torture

https://github.com/riscv/riscv-tests

RV32IMA:
10000 tests

(~12h runtime)

Conclusions

• RISC-V based Virtual Prototype for efficient simulation of firmware-based designs

• Future work:
– 64 Bit Support and ISA Extensions (e.g. compressed instructions)

– Verification
• RISC-V VP Model:

Symbolic simulation using SISSI [1]
UVM / CRAVE [2]

• SW running on RISC-V VP:
Symbolic execution to check user assertions

– Enhanced performance and power estimation

• Our open source RISC-V projects: www.systemc-verification.org/riscv-vp

[1] Verifying SystemC using Intermediate Verification Language and Stateful Symbolic Simulation (TCAD 2018)

[2] CRAVE: An Advanced Constrained RAndom Verification Environment for SystemC (SoC 2012)

© Accellera Systems Initiative 56

http://www.systemc-verification.org/riscv-vp

Properties-First Design: A New Design Methodology
for SoC Hardware and Low-Level Software

Tobias Ludwig (Univ. of Kaiserslautern)

© Accellera Systems Initiative 57

Status of Formal Verification

58

white box

verification

(property

checking)

black box

verification

(simulation)

The biggest hurdle

Property Checking:

More like design than like

verification !

“Stimulus, response!
Stimulus, response! Don‘t you

ever think?”

Vision
Formal RTL verification should:

– do more than bug hunting

– help to emancipate ESL models from prototypes to golden
design models

– support new abstraction principles between electronic system
level models (ESL) and low-level implementations (RTL)

59

Abstraction from RTL to ESL
Establish a sound relationship between ESL and RTL:

– System-level behavior is described in terms of a PPA

– Each operation of the ESL is related to objects of the RTL by

formal properties

– “Operation properties” are proven on the RTL

– If all properties hold then the RTL is a sound refinement of

the ESL.

60

Soundness

Theorem shown for LTL properties (in J. Urdahl, D. Stoffel, W. Kunz: "Pathredicate

Abstraction for Sound System-Level Models of RT-Level Circuit Designs", IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Vol. 33, No. 2, Feb. 2014, pp. 291-
304.)

Soundness implies that:
– Verification results obtained at ESL translate to the RTL
– Global verification tasks can be moved from the RTL to the

ESL
– Significantly less chip-level simulation is required

61

„Soundness“:

Any property fulfilled by the ESL design is guaranteed to hold also on the RTL.

Property Driven Development

• System model as formal spec:

– Designable/implementable subset of
SystemC (SystemC-PPA)

– Generate complete set of properties
from system-level model

• Refine generated properties
(templates) during design process

• Prove properties on final
implementation

62

Basic Idea

encode

rst

encode

output

unlock

needData

needData

done

loading

JPEG encoder

SystemC-PPA to PPA

63

SC_MODULE(example){

SC_CTOR(example){ … }

int data;

void fsm(){

//some code …

port→read(data)

//data operations

port →write(data)

//some code

}

}

data operations

wait

wait

Operation properties

64

property my_operation;

assume:

at t: astart(S); // starting imp. state

at t: a0(X); // trigger…

prove:

at t+n: c1(X,Y);

at t+n: cn(X,Y);

at t+n: cend(S); // ending imp. state

endproperty;

S: state variables, X: inputs, Y: outputs

n cycles

Operations start and end in

important states and have finite

length

Important states subsume

millions of concrete states

Benefit
• What is the promise?

– Correct-by-construction design refinements

– Support for aggressive optimization techniques

– Increased design productivity

– Improved closure w.r.t. non-functional design goals

• Power
• Safety

65

Program Netlist Model
Formal analysis is
interleaved with unrolling
• Path pruning

• Path merging

• Unrolling loops

Program Netlist

• combinational circuit
• compactly represents all

execution paths

66

HW-dependent software model

• PNs include explicit information for a given program
on:

– all possible execution paths (unlike traditional symbolic
execution)

– the address spaces reached by every instruction

– all possible input/output access sequences to peripheral
hardware components and to shared memory

– all possible effects of the program on the program-visible
hardware registers

67

Tooling
• The tool SCAM (“SystemC Abstract Model”):

– Analyses a given SystemC model for compliance
with the designable subset

– Supports by refining the model into a SystemC-PPA

– Automatically generates the properties

– Manual explaining PDD from a practical point of
view

Available on GitHub: github.com/ludwig247/SCAM

68

Contribution
• Instruction set simulator (ISS) as a designable SystemC-PPA

• Two RTL implementations, (1) sequential and (2) pipelined:

• Implementations are sound refinements of the same ESL

Available on GitHub: github.com/ludwig247/SCAM

69

ISS

Sequential

PipelinedProperties
generate

refine

Results ESL
• Work effort for implementation:

– Sequential: 2 Weeks

– Pipelined: 4 Weeks

• Work effort for refining the properties:

– Sequential: 3 person days

– Pipeliend: 6 person weeks

70

Results RTL

71

Program ISS RTL seq. RTL pipl.

Prime numbers 5s 55s 83s

Fibonacci 1s 109s 135s

Bubble sort 8s 133s 208s

Design Inp./Out. FFs LoC

Sequential 39/70 1881 1000

Pipelined 39/70 2500 2000

RTL implementation results

RTL simulation results

Industrial Case Study

72

Work effort: bottom-up: 2 PMs | top-down PDD: 1 PM

Conclusion
• Property Driven Development (PDD):

– Enables a top-down hardware development

– Results in a formally sound correct-by-construction design

– No formal verification knowledge required

• In practice, PDD is based on:

– The provided open-source tool SCAM

– State-of-the-art property checking

– Specific methods for refining the properties

73

→ Shifting global design and verifications to the ESL!

Specification Analysis

Optimization Verification

Generation

Tutorial Conclusion

• Application-specific adaptivity by firmware

• Four firmware levels

• Four solutions

– Optimization of memory subsystem

– HW-SW Interface Generation

– RISC-V based VP Simulation

– Properties-First Design

© Accellera Systems Initiative 74

