
Finding Hidden Bugs In Deep Cycles
Advanced Debug Methodologies for Software-first System Validation

Youcef Qassid & Andy Jolley

Tutorial Overview & Agenda

• With the complexity of today’s software the length of workloads to validate hardware and software has
increased to 100s of billions of cycles.

• As teams adopt a software-first validation strategy, modern emulation and prototyping platforms are needed
to enable the highest performance as well highly efficient debug technology.

• In this 2-part tutorial, we will use a multi-processor design case study to illustrate how the latest Emulation
and FPGA Prototyping Systems are both ideal platforms to achieve S/W first system validation

• Part 1 : Debug using ZeBu® Server emulation system
• Part 2 : Debug using HAPS®-100 FPGA prototyping

Why Software-First

System Validation using ZeBu Server emulation system

Evolution: HW testing to HW+SW testing
Software-First

CPU GPU

NOC

P1 Pn

ISP

Mem

Test

Low Level (Firmware – Drivers)

OS

Application

More Activity

X1 Xn

P1

Pn

X1

Xn

Identify Debug Window
Debug - High Level View

• Monitor and Checker

• Assertions

• Key Signals Waveforms

• Full Visibility Waveforms

Billions cycles

General Signals Monitoring – Unlimited Number of Cycles

Checkers/Monitor – 1st Level RTL Debug

RTL Debug through Waveform

Millions cycles

Thousands/Millions cycles

ZeBu Technologies

Running Emulation for days/weeks & Isolating Window of Debug
Monitors/Checkers and Stimuli

P1

Pn

X1

Xn

Low Level (Firmware – Drivers)

OS

Application

Non-determinism

…

Time

Stimuli Replay #N

Time N

DUT
State

Restore

Debug
Data

Dump

TimeFailure
Observed

Root Cause

Stimuli Recording #0 #N #M… … … …
Time N

DUT
State
Save

Time M

DUT
State
Save

Time 0

DUT
State
Save

… … …

Monitors/Checkers

Next generation tools for waveform-level debug

Faster Waveform Expansion and Debug with ZeBu and Verdi

High
Bandwidth I/F

Raw Debug
Signals

ZeBu Server 4 Verdi

High Performance
Parallel Expansion

High Performance
Interactive Expansion

Expanded
Debug Signals

Verdi

Scalable solution for complex billion gate SoC waveform-level debug with Verdi

2.5B Gates, 500k cycles
Each signal drop <1sec

Native
ZeBu

Format

Emulation Runtime & DUT Debug with Verdi
Emulation Runtime Sniffer Triggers SVA

Console

Watch Signals Values

RTL Source Code

Watch Primary Clocks

Waveform Capture

ZeBu Case Study

Emulation run setup
Multi RISC-V Full SOC

• zDPI

– High Speed Monitor

• Sniffer

– Saving SW Messages

N
O
C

Per. 1 X-or 1 SW

Per. 2 X-or 2 SW

Application

zDPISniffer

Full Visibility
Multi Risc-V Full SOC

• Fast Readback

N
O
C

Per. 1 X-or 1 SW

Per. 2 X-or 2 SW

Application

zDPISnifferFRB

Using highly efficient trackers/monitors to identify window for waveform level debug
System-level Debug Using Monitors

Billions cycles

Billion Cycle Run

Stimuli

Frame 0

HW
State

zDPI (Monitors) streaming

Stimuli

Frame N-1

HW
State

Verdi
DebugReplay & Waveform Capture

Stimuli

Frame 1

HW
State

Stimuli

Frame N

HW
State

Stimuli

Frame N-1

HW
State

Test Failure

Debug
Window

Precise window
based on
system logs

Offline or
Interactive
Expansion

Debug
Window

Full visibility
waveform capture

Phase 1 (Billions of Cycles) Phase 2 (Millions of Cycles)

Identifying Failure Window
Checking Monitors Logs

ZeBu debug enables failure window detection in single pass during regression

[929889629]isa: rv64imac
[930026067]mmu: sv39
[930082578]uarch: sifive,rocket0
[930142239]
[944518600]Starting dropbear sshd: OK
[979044339]
[979174634]Welcome to Buildroot
[979213892]buildroot login:

[929889629]isa: rv64imac
[930026067]mmu: sv39
[930082578]uarch: sifive,rocket0
[930142239]
[944518600]Starting dropbear sshd: OK
[979044339]
[979174634]Welcome to Buildroot
[979213892]buildroot login:

[929889629]isa: rv64imac
[930026067]mmu: sv39
[930082578]uarch: sifive,rocket0
[930142239]
[944518600]Starting dropbear sshd: OK
[979044339]
[979174634]Welcome to Buildroot
[979213892]buildroot login:

[929889629]isa: rv64imac
[930026067]mmu: sv39
[930082578]uarch: sifive,rocket0
[930142239]
[944518600]Starting dropbear sshd: OK
[979044339]
[979174634]Welcome to Buildroot
[979213892]buildroot login:

[929889629]isa: rv64imac
[930026067]mmu: sv39
[930082578]uarch: sifive,rocket0
[930142239]
[944518600]Starting dropbear sshd: OK
[979044339]
[979174634]Welcome to Buildroot
[979213892]buildroot login:

[2325304][0.000000] Zone ranges:
[2346727][0.000000] DMA32 [mem 0x0000000080200000-0x000000008fffffff]
[2380422][0.000000] Normal [mem 0x0000000090000000-0x000008ffffffffff]
[2409473][0.000000] Movable zone start for each node
[2431044][0.000000] Early memory node ranges
[2452482][0.000000] node 0: [mem 0x0000000080200000-0x000000008fffffff]
[2485469][0.000000] Initmem setup node 0 [mem 0x0000000080200000-0x000000008fffffff]

Linux Boot not progressing after cycle 2,485,469 in RISC-V instance #3

[75626479] pc=00802000ec op=fe010ce3 asm=BEQ x0, 1ff8(a2)
X2 = 0 X0 = 0

[75626480] pc=00802000e4 op=0005b103 asm=LD x2, x11, 00000000
X11 = 8102f810 X0 = 0
X2 <= 0000000000000000

[75626481] pc=00802000e8 op=00063203 asm=LD x4, x12, 00000000
X12 = 8102f850 X0 = 0
X4 <= 0000000000000000

...

[75626479] pc=00802000ec op=fe010ce3 asm=BEQ x0, 1ff8(a2)
X2 = 0 X0 = 0

[75626480] pc=00802000e4 op=0005b103 asm=LD x2, x11, 00000000
X11 = 8102f810 X0 = 0
X2 <= 0000000000000000

[75626481] pc=00802000e8 op=00063203 asm=LD x4, x12, 00000000
X12 = 8102f850 X0 = 0
X4 <= 0000000000000000

...

[75626479] pc=00802000ec op=fe010ce3 asm=BEQ x0, 1ff8(a2)
X2 = 0 X0 = 0

[75626480] pc=00802000e4 op=0005b103 asm=LD x2, x11, 00000000
X11 = 8102f810 X0 = 0
X2 <= 0000000000000000

[75626481] pc=00802000e8 op=00063203 asm=LD x4, x12, 00000000
X12 = 8102f850 X0 = 0
X4 <= 0000000000000000

...

...
[2519027] pc=e000c9d2d4 op=00e286b3 asm=unknown

X5 = ffffffe00fa80000 X14 = 380000
X13 <= ffffffe00fe00000

[2519028] pc=e000c9d2d8 op=0f877713 asm=ANDI x14, x14, 000000f8
X14 = 380000 X24 = ffffffe00fa80003
X14 <= 0000000000000000

[2519029] pc=e000c9d2dc op=0000cf11 asm=C.BNEZ x6, 018
X14 = 0 X0 = 0

RISC-V Core #3 hangs since
cycle 2_519_029

Waveform Capture & RTL Debug

TimeFailure
Observed

Stimuli Recording #N #N+1

Time N

DUT
State
Save

Time N+1

DUT
State
Save

Monitors/Checkers

#N-1

Time N-1

DUT
State
Save

Full Visibility Capture Time

#N #N+1

Time N

DUT
State
Save

ZTDB

Stimuli Replay

Debug Window

High Performance
Parallel Expansion

High Performance
Interactive
Expansion

Expanded
Debug Signals

Verdi

Debugging Waveforms in Verdi

Dumped: Captured in ZTDB

Computed: Simulated

Mixed: Bits having different Reason Codes

Constant: Optimized at 1 at compile

Optimized: Useless Reg. removed at compile

Loop: Simulated – X when oscillating, 0/1 when stable

Computed: Simulated – X coming from oscillating loop

Computed: Simulated – Gate is useless but still simulated
thanks to Graphs (model) defined before optimizations

ZeBu Emulation Scripts
my_dumpvars.v
module my_dumpvars();

initial begin: Full_Chip_VS
(* qiwc *) $dumpvars (0, my_top_level)

end
endmodule

my_vcs_script.csh
vlogan SRC/RTL/my_dumpvars.v
…
vcs my_top_level my_dumpvars

my_UTF_script.tcl
vcs_exec_command my_vcs_script.csh
architecture_file -filename .../zse_configuration.tcl
debug -all true
debug -offline_debug_params {INCL_XTORS=true}
debug –waveform_reconstruction_params {SIMZILLA=V2}

zRci main_run.tcl --zebu-work zebu.work

zdpiReport -f list_of_dpi_function -i dpi.ztdb/ -l ./my_fifo_monitor.so -z zebu.work |& tee run.log

zRci full_visibility.tcl --zebu-work zebu.work

zSimzilla --ztdb full_chip.ztdb --zwd full_chip_zwd

verdi –emulation --zebu-work zebu.work -ssf full_chip_zwd

full_visibility.tcl
config db_path main_emulation_run_db
sniffer –restore –at 2000000ns
set fid [dump -file full_chip.ztdb -qiwc]
dump -enable -fid $fid
replay 1000000ps
dump -close -fid $fid
finish

main_run.tcl
start_zebu main_emulation_run_db
sniffer -auto_create 2000s
ccall -dump_offline dpi.ztdb
run 10000000000ns
sniffer –stop
ccall –disable
finish

zCui –u my_UTF_script.tcl

HAPS Technologies

The Landscape for High Performance FPGA-Based Prototyping

Integral Part of IP and SoC verification
• From early RTL debugging to SoC performance modelling ….

and everything in between

Primary requirements for FPGA Prototyping
• High Performance

• Peta cycles for verification coverage

• High Capacity, Scalable and Flexible
• Growing IP and SoC sizes
• Expanded verification tasks

• Visibility Capabilities
• High capacity and at-speed debug
• Highest visibility
• Flexibility to locate the hardest to find bugs

The Widening Scope

RTL Development RTL Development

Architecture
Development
Architecture
Development

S/W DevelopmentS/W Development

S/W PlatformS/W Platform

Regression Testing Regression Testing

Performance ModellingPerformance Modelling

Hardware LevelHardware Level Software LevelSoftware Level

System Level System Level

Prototyping systems offer multiple
verification opportunities
• Real-world interfaces for interface

validation
• IP level of SoC level

• Links to software debuggers
• Software development

• High-speed transactor-based interfaces
• Hybrid Prototyping

• Speed adaptors for system validation

The Widening Scope

The Landscape for High Performance FPGA-Based Prototyping

System validation with Real-World IOSoftware Debug

System validation with Speed Adaptors

Ethernet, PCIe, USB,…

Software Debug with Hybrid Prototyping

Software-driven Power Validation

JTAG Daughtercard

Transactor Speed Adaptor

HAPS-100

Industries Highest Performance and Most Scalable Prototyping System
• Scalable to 1B+ gates at 10MHz

Built-In Debug for High Performance / Capacity Visibility
• Dedicated Debug Circuitry and Memory

– Minimal Intrusion to the DUT

High Performance Host Interfaces
• High-Capacity Data transfer using USB3 and QSFP Interfaces

Designed for Desktop or Data Center Installations
• Single Form Factor suits all scalable requirements

Highest Capacity and Prototyping Performance with HAPS-100

S
a
m

p
le

 L
e
n

g
th

 /

S

ig
n

a
l

C
o

u
n

t
System Frequency

GHz

MB

GB

Multiplex Groups, Depth Compression

On-Chip FPGA BRAM
Real Time

Debug

MHz

Deep-Trace Debug
Single / Multiple FPGA

Global Global
State

Visibility

On Board Memory

Host Server Storage

KHz

Multiple visibility options
• Performance, capacity and intrusion into the DUT
• Real-time, at-speed debugging, full state capture

Increased visibility capacity and flexibility
• Greater event detection and capture resolution
• Eliminate re-spins to capture the necessary scope

Different technologies combine to great effect
• First event detection at full speed
• Higher capacity visibility at reduced speeds
• Complete state capture at controlled speeds

Get to the debug window of interest and provide database for Verdi debug

Debug Capabilities for Deep-Cycle Visibility

Verdi

HAPS

HAPS Case Study

DUT Architecture

• RISC-V Architecture with 4-Core Processor

Software content

• Linux Boot ~ 1 Billon Cycles

Prototyping Requirements
• Single RISC-V In Single Xilinx VU19PFPGA

• RAM to be replaced with external DDR4
• Maximum system performance for 1B cycles

• Stand Alone DUT
• Self stimulating from Boot Code
• Monitor UART : Real World or Transactor Based
• Enable debug to detect and capture activity

Case Study : RISC-V Based Processor SoC
Architecture Overview

Boot
Code

~1B cycles

Rocket
Tile 0

L1 Cache

Rocket
Tile 1

Rocket
Tile 2

Rocket
Tile 3

Memory Bus / System Bus

AXI4 Interconnect

RAM

UART

L1 Cache L1 Cache L1 Cache

FPGA Prototyping Infrastructure

• Addition of modules for standalone prototyping
• AXI Interconnect and DDR Memory Controller

• To replace DUT RAM
• AXI Transactors for Boot Code Upload

• “Backdoor” Load Approach
• GPIO Transactor for DUT Control

• Clocks, Reset and Monitor
• Cycle counter to track when error occurs

• Addition of HAPS Daughter Boards
• DDR for Boot Code Store
• GPIO for UART to Host PC

DUT Clocked @ 100MHz

Rocket
Tile 0

L1 Cache

Rocket
Tile 1

Rocket
Tile 2

Rocket
Tile 3

Memory Bus / System Bus

UART

L1 Cache L1 Cache L1 Cache

AXI Interconnect
Module

DDR Memory
Controller

AXI Master
Transactor

DUT

Prototyping
Infrastructure

HAPS DDR Daughter
Board

GPIO Board

UMRbus

Prototyping Preparation : Stand-Alone DUT @ 100MHz

GPIO
Transactor

DUT Control +
Cycle Counter

Prototyping Preparation : Debug Enablement

Enable multiple Debug Capabilities
• BRAM and DTD based Debug to monitor AXI Transactions

– On-Chip BRAM for AXI Traffic between DUT and DDR3 Memory

– Off-Chip DTD for all AXI Traffic between XTORs, DUT and DDR3 Memory

– Debug capacity available to maximize visibility

RTL $dumpvars used to select debug signals S
a
m

p
le

 L
e

n
g
th

 /

S

ig
n

a
l

C
o

u
n

t

System Frequency GHz

MB

GB

On-Chip FPGA BRAM

MHz

Deep-Trace Debug
Single / Multiple FPGA

Global
State

Visibility

On Board Memory

Host Server Storage

KHzDefine BRAM and DTD configuration

Check Resource Usage and Sample Rates
from Implementation Logs

Prototyping Preparation : Debug Enablement

Enable multiple Debug Capabilities
• Global State Visibility (GSV) – Synchronous Mode

– Platform is run at speed until an event is detected
– Event can come from multiple sources to initiate the capture

– DUT is stopped, registered state is read, stepped and repeated over scope
– Can capture 100k cycles in 1 hour
– Database written for Verdi debug analysis

– Requires Insertion of Clock Control Module

– Automated via simple scripting in ProtoCompiler Flow

S
a
m

p
le

 L
e

n
g
th

 /

S

ig
n

a
l

C
o

u
n

t

System Frequency GHz

MB

GB

On-Chip FPGA BRAM

MHz

Deep-Trace Debug
Single / Multiple FPGA

Global
State

Visibility

On Board Memory

Host Server Storage

KHz

Reset to Event Detection

Run from Reset State at full speed

Read
State SVA fires

Clock
Step

Read
State

Clock
Step

Clock
Step

Read
State

Resume for Next Event Detection

Resume at full speedStop, Capture, Step, Capture over desired range

Event
Detected

Read
State

Waveform Reconstruction Engine

Verdi
Design/RTL

Prototyping Debug Flow : Initial Error Detect Run

• Upload the Boot Code to the external DDR device via the Transactors – “Back Door” approach

– Rocket System DUT is held in a reset state

– Boot Code Uploaded and re-read to allow for off-line check

• Release DUT Reset and check for output from the UART

– See error state occur after cycle 2,485,479 from reset

– 25mS to reach error condition @ 100MHz

Check for Error Condition on Initial Run

UART locked at Cycle 2,485479

Prototyping Debug Flow : Debug Database Capture Run

• Debug run with on-Chip BRAM Debug trigger at Cycle Count minus 50,000 Cycles

• Global State Visibility armed to capture 100,000 cycles on trigger condition

Configure and Initiate the On-Chip Debug and GSV Capture

Condition 0 : DUT Reset de-assert
Condition 1 : Cycle Count = 2,400,000

State Machine Based Triggering
Condition 0 followed by Condition 1

Capture 100,000 Cycles upon Trigger detect

Reset to Cycle Count = 32’h249F00

Run from Reset State to trigger condition

Read
State

Clock
Step

Read
State

Clock
Step

Clock
Step

Read
State

Stop, Capture, Step, Capture over 100,000 cycles

Read
State

Trigger

FSDB +
Verdi Debug CRDB

• Verdi CRDB created using generated scripts

• Complete debug environment exported as fully contained package

– Can be run on any remote network with tool access

– Allows multiple users in all world-wide locations to debug at RTL level with waveform expansion

Off-line Verdi Debug Environment

Complete Debug Environment for Multiple Offline Debug Session

FSDB +
Verdi Debug CRDB

Case Study : RISC-V Based Processor Chip

Debugging the Rocket Chip Implementation

• GSV capture provides full visibility around the error point i.e. Cycle 2,485,479
– Design knowledge is generally required to locate and track the source of the bug

– Deep Cycle Visibility : Real world waveforms with expansion and correlation to RTL throughout DUT hierarchy over 100,000 cycles

Lock Point Capture

Waveform / RTL correlation

DUT / Prototyping
Infrastructure hierarchy

Schematic Browser

Summary

Finding Hidden Bugs In Deep Cycles

ZeBu Server 4
• Large designs
• DPI/Monitors
• Stimuli Replay
• Fast Readback

HAPS-100
• Highest Performance
• Deep Tracing
• Global State Visibility

Verdi
• Industry standard debug
• ZeBu/HAPS outputs natively integrated

HAPS-100

ZeBu Server 4

Verdi

