2022 DESIGN AND VERIFICATION[™] DVCDN CONFERENCE AND EXHIBITION UNITED STATES

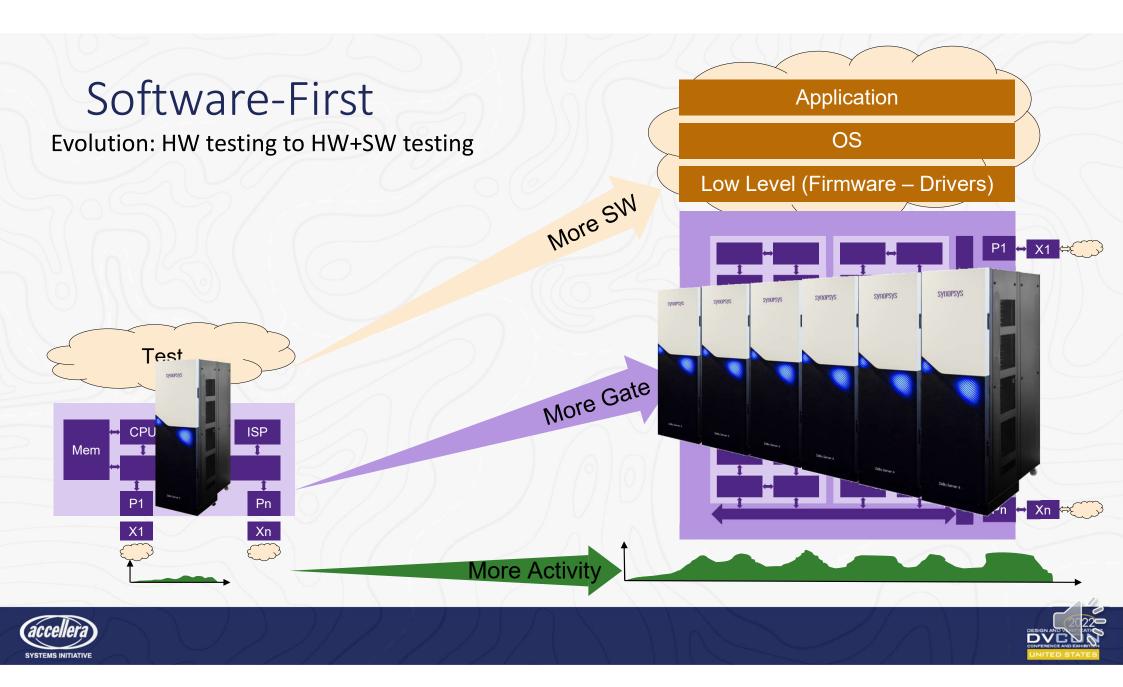
Finding Hidden Bugs In Deep Cycles

Advanced Debug Methodologies for Software-first System Validation

Youcef Qassid & Andy Jolley

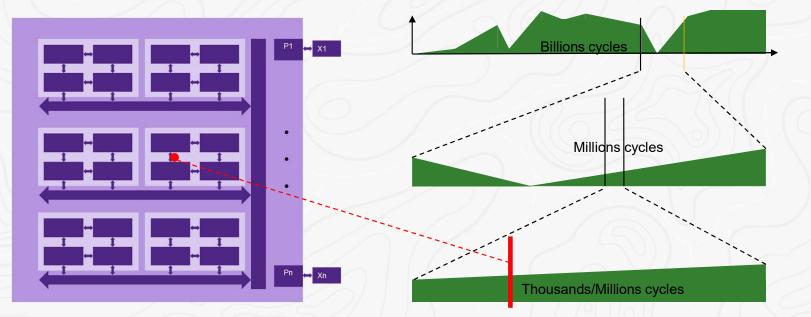
Tutorial Overview & Agenda

- With the complexity of today's software the length of workloads to validate hardware and software has increased to 100s of billions of cycles.
- As teams adopt a software-first validation strategy, modern emulation and prototyping platforms are needed to enable the highest performance as well highly efficient debug technology.
- In this 2-part tutorial, we will use a multi-processor design case study to illustrate how the latest Emulation and FPGA Prototyping Systems are both ideal platforms to achieve S/W first system validation
 - Part 1 : Debug using ZeBu[®] Server emulation system
 - Part 2 : Debug using HAPS[®]-100 FPGA prototyping



System Validation using ZeBu Server emulation system

Why Software-First



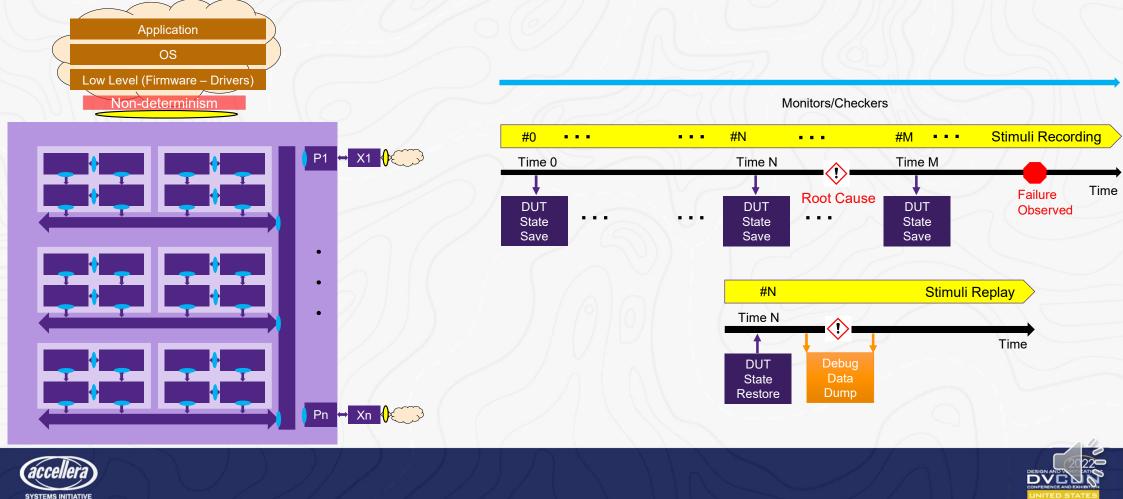
Debug - High Level View

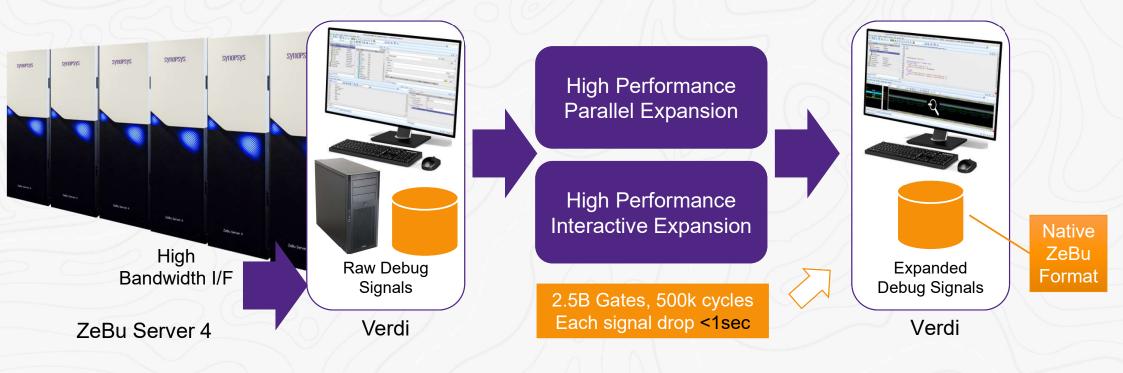
Identify Debug Window

- Monitor and Checker
- Assertions
- Key Signals Waveforms
- Full Visibility Waveforms

General Signals Monitoring – Unlimited Number of Cycles Checkers/Monitor – 1st Level RTL Debug

RTL Debug through Waveform

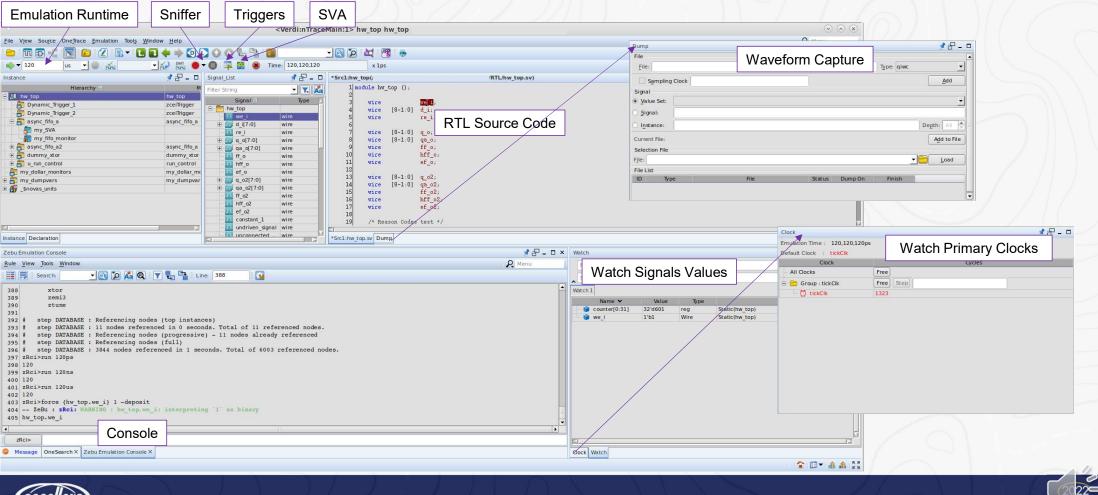

ZeBu Technologies


Monitors/Checkers and Stimuli

Running Emulation for days/weeks & Isolating Window of Debug

Faster Waveform Expansion and Debug with ZeBu and Verdi

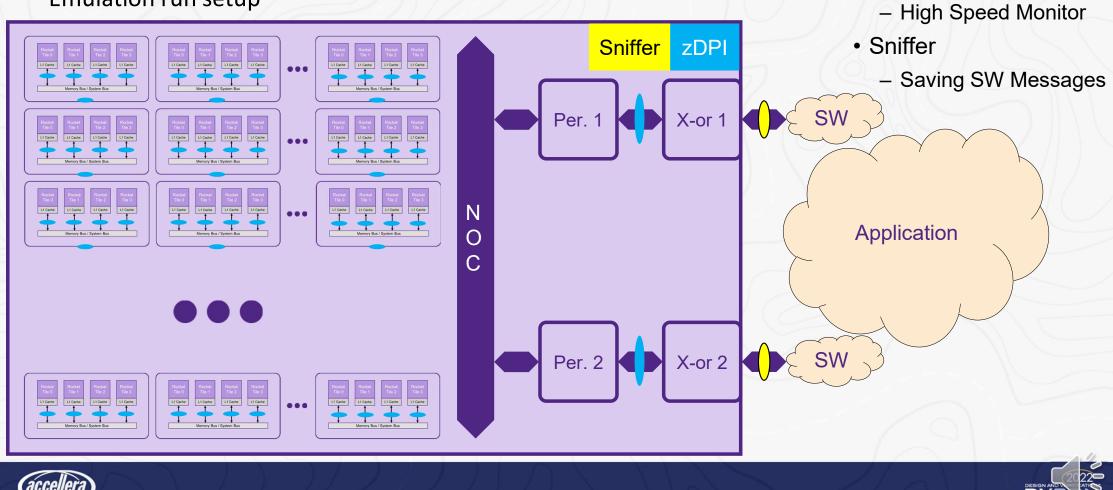
Next generation tools for waveform-level debug



Scalable solution for complex billion gate SoC waveform-level debug with Verdi

Emulation Runtime & DUT Debug with Verdi

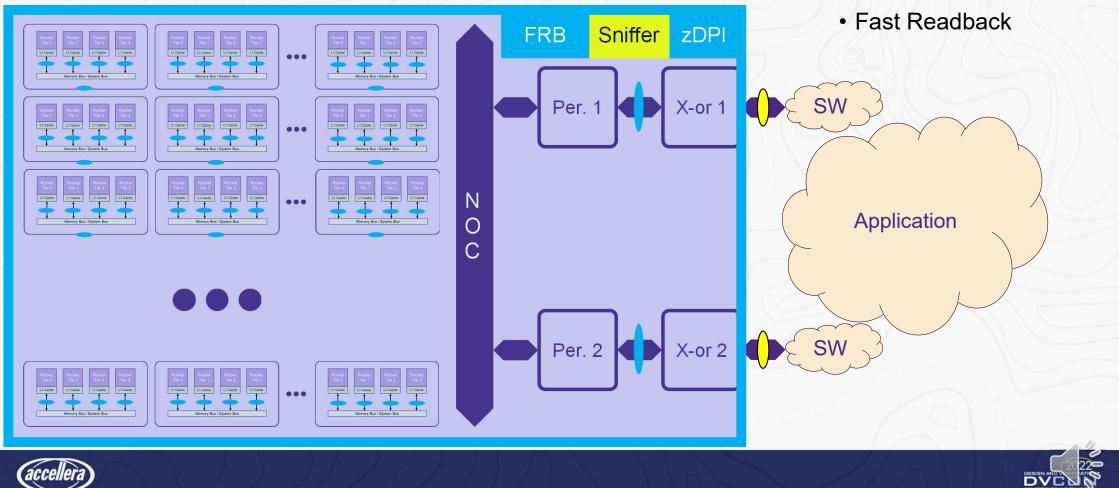
ZeBu Case Study



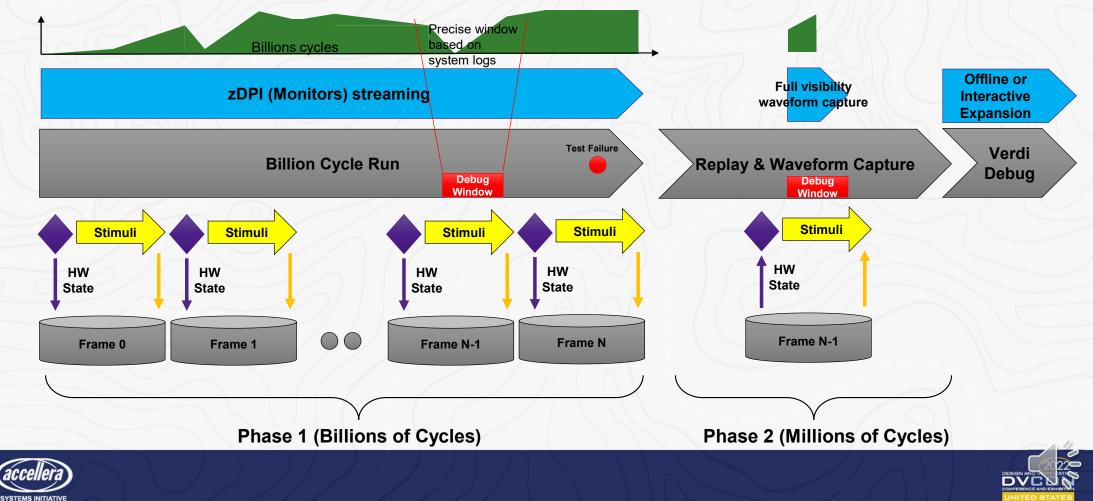
Multi RISC-V Full SOC

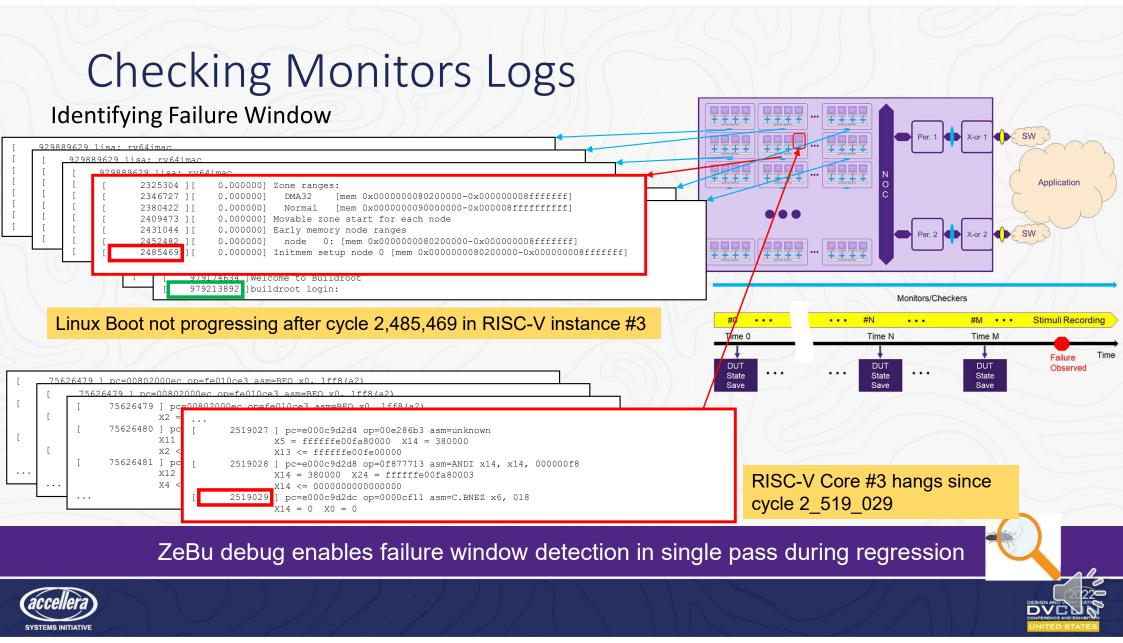
Emulation run setup

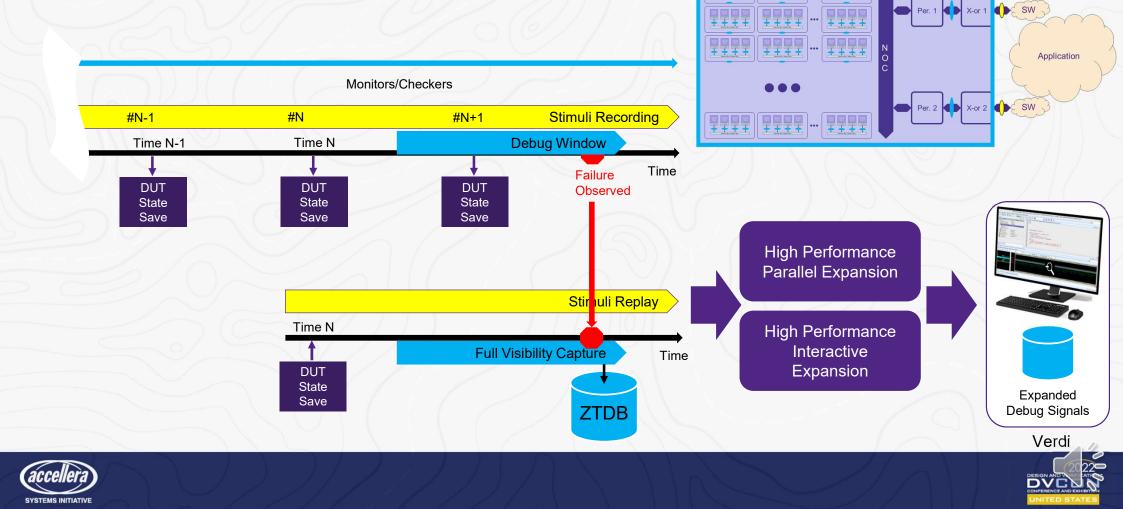
SYSTEMS INITIATIVE



Multi Risc-V Full SOC


Full Visibility


SYSTEMS INITIATIVE


System-level Debug Using Monitors

Using highly efficient trackers/monitors to identify window for waveform level debug

Waveform Capture & RTL Debug

· • • • • •

Debugging Waveforms in Verdi

	File View Source One Trace Simulation Emulation Too	il <u>s W</u> indow <u>H</u> elp		R Menu		
	🗁 🗊 🗗 📲 📁 🖉 🐘 📲 🗑 🔶 🖓 🖧 🐂 🔛 💆 🖄 🖉 👘					
	Instance 🦸 🛃 🗕 🖸	The state	/SRC/RTL/hw_top.sv)	018-		
	Hierarchy Module Hierarchy Module Dynamic_Trigger_1 zceiTrigger Dynamic_Trigger_2 zceiTrigger Dynamic_Trigger_3 async_fifo_a async_fifo_a async_fifo_a my fifo monitor Module	267 else 268 counter_or 269 end 270 wire mix_NC_X 271 wire mix_NC_X 4 272 assign mix_NC		it_1;		
	* <nwave:2></nwave:2>					
Dumped: Captured in ZTDB	Elle Signal View Waveform Analog Tools Window Menu Image: Signal View Waveform Analog Tools Window Image: Signal View Waveform Analog Tools Window Image: Signal View Waveform Analog Tools Window Image: Signal View Waveform Analog Tools Window Image: Signal View Waveform Analog Tools Window Image: Signal View Waveform Analog Tools Window Image: Signal View Waveform Analog Tools Window Image: Signal View Waveform Analog Tools Window Image: Signal View Waveform Analog Tools Window Image: Signal View Waveform Analog Tools Window Image: Signal View Waveform Analog Tools Window Image: Signal View Waveform Analog Tools Window Image: Signal View Waveform Analog Tools Window Image: Signal View Waveform Analog Tools Window Image: Signal View Waveform Analog Tools Window Image: Signal View Waveform Analog Tools Window Image: Signal View Waveform Analog Tools Window Image: Signal View Waveform Analog Tools Window Image: Signal View Waveform Analog Tools Window Image: Signal View Waveform Analog Tools Window Image: Signal View Waveform Analog Tools Window Image: Signal View Waveform Analog Tools Waveform					
Computed: Simulated		ο	12,008 509,000, 12,009,000,000, 12,009,509,000, 12,010	0, 009, 000 , 12, <i>0</i> 10, 509, (
lixed: Bits having different Reason Codes			0			
constant: Optimized at 1 at compile		ped) 1				
Optimized: Useless Reg. removed at compile	- I load_less_signal (Optimiz - IIII load_less_signal (Optimiz - IIIII load_less_signal (Loop) (Loop) - (Loop) - (Loop) - (Loop) - (Optimiz	1 -> x				
oop: Simulated – X when oscillating, 0/1 when stable	Image: Second					
omputed: Simulated – X coming from oscillating loop	Image: Second					
omputed: Simulated – Gate is useless but still simulated nanks to Graphs (model) defined before optimizations	Message OneSearch × * <nwave:2> full_chip_at_repla</nwave:2>	y_zwo ×	12,950,000,000, , , 13,090,000,000, , 13,050),,009,900, , , , 13)		
	Selected:			1 10 - 4 4		

ZeBu Emulation Scripts

my_dumpvars.v

module my_dumpvars();
 initial begin: Full_Chip_VS
 (* qiwc *) \$dumpvars (0, my_top_level)
 end

endmodule

my_vcs_script.csh
vlogan SRC/RTL/my_dumpvars.v

vcs my top level my dumpvars

my UTF script.tcl

vcs_exec_command my_vcs_script.csh architecture_file -filename .../zse_configuration.tcl debug -all true debug -offline_debug_params {INCL_XTORS=true} debug -waveform_reconstruction_params {SIMZILLA=V2}

main_run.tcl

start_zebu main_emulation_run_db
sniffer -auto_create 2000s
ccall -dump_offline dpi.ztdb
run 1000000000ns
sniffer -stop
ccall -disable
finish

full_visibility.tcl config db_path main_emulation_run_db sniffer -restore -at 2000000ns set fid [dump -file full_chip.ztdb -qiwc] dump -enable -fid \$fid replay 1000000ps dump -close -fid \$fid finish

zCui -u my_UTF_script.tcl

zRci main_run.tcl --zebu-work zebu.work

zdpiReport -f list_of_dpi_function -i dpi.ztdb/ -l ./my_fifo_monitor.so -z zebu.work |& tee run.log

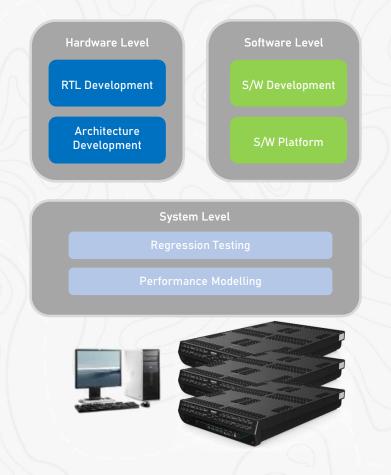
zRci full visibility.tcl --zebu-work zebu.work

zSimzilla --ztdb full chip.ztdb --zwd full chip zwd

verdi -emulation --zebu-work zebu.work -ssf full chip zwd

HAPS Technologies

The Landscape for High Performance FPGA-Based Prototyping

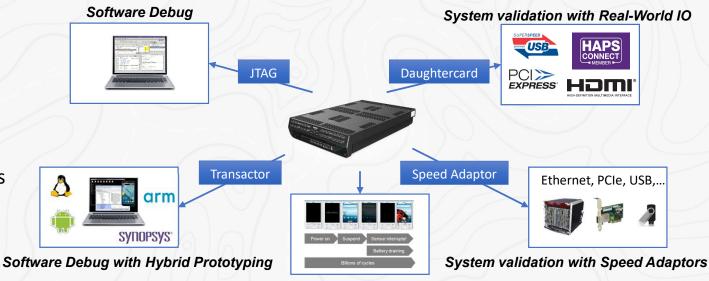

The Widening Scope

Integral Part of IP and SoC verification

• From early RTL debugging to SoC performance modelling and everything in between

Primary requirements for FPGA Prototyping

- High Performance
 - Peta cycles for verification coverage
- High Capacity, Scalable and Flexible
 - Growing IP and SoC sizes
 - Expanded verification tasks
- Visibility Capabilities
 - High capacity and at-speed debug
 - Highest visibility
 - Flexibility to locate the hardest to find bugs



The Landscape for High Performance FPGA-Based Prototyping

The Widening Scope

Prototyping systems offer multiple verification opportunities

- Real-world interfaces for interface validation
 - IP level of SoC level
- Links to software debuggers
 - Software development
- High-speed transactor-based interfaces
 - Hybrid Prototyping
- Speed adaptors for system validation

Software-driven Power Validation

Highest Capacity and Prototyping Performance with HAPS-100

Industries Highest Performance and Most Scalable Prototyping System

Scalable to 1B+ gates at 10MHz

Built-In Debug for High Performance / Capacity Visibility

- Dedicated Debug Circuitry and Memory
 - Minimal Intrusion to the DUT

High Performance Host Interfaces

• High-Capacity Data transfer using USB3 and QSFP Interfaces

Designed for Desktop or Data Center Installations

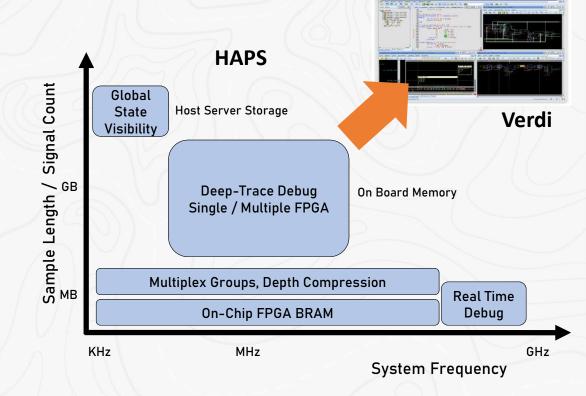
• Single Form Factor suits all scalable requirements

HAPS-100

Debug Capabilities for Deep-Cycle Visibility

Get to the debug window of interest and provide database for Verdi debug

Multiple visibility options

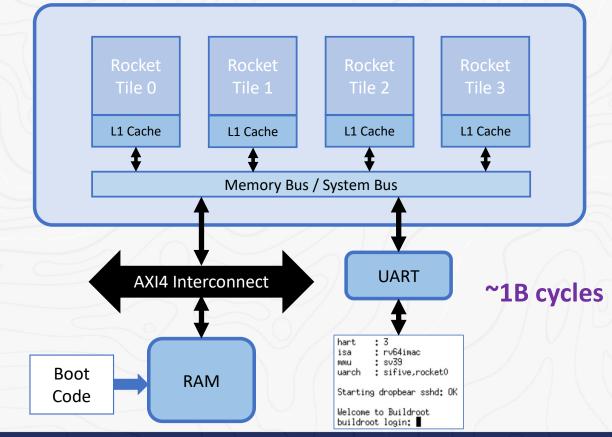

- Performance, capacity and intrusion into the DUT
- Real-time, at-speed debugging, full state capture

Increased visibility capacity and flexibility

- Greater event detection and capture resolution
- Eliminate re-spins to capture the necessary scope

Different technologies combine to great effect

- First event detection at full speed
- Higher capacity visibility at reduced speeds
- Complete state capture at controlled speeds


HAPS Case Study

Case Study : RISC-V Based Processor SoC

Architecture Overview

DUT Architecture

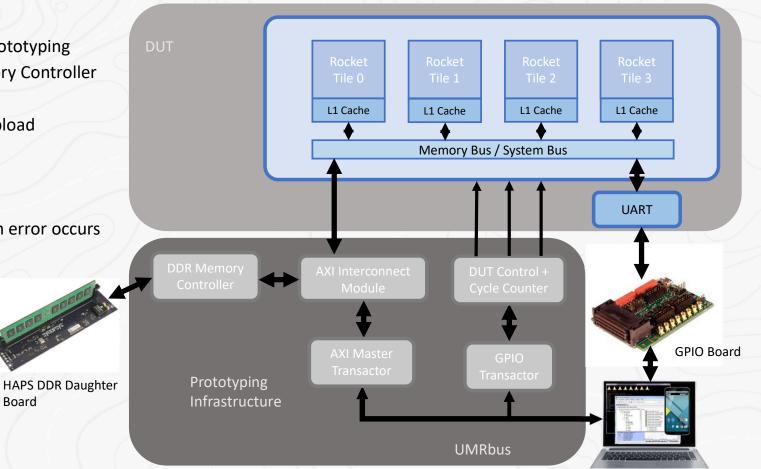
RISC-V Architecture with 4-Core Processor

Software content

• Linux Boot ~ 1 Billon Cycles

Prototyping Requirements

- Single RISC-V In Single Xilinx VU19PFPGA
 - RAM to be replaced with external DDR4
 - Maximum system performance for 1B cycles
- Stand Alone DUT
 - Self stimulating from Boot Code
 - Monitor UART : Real World or Transactor Based
 - Enable debug to detect and capture activity



Prototyping Preparation : Stand-Alone DUT @ 100MHz

FPGA Prototyping Infrastructure

- Addition of modules for standalone prototyping
 - AXI Interconnect and DDR Memory Controller
 - To replace DUT RAM
 - AXI Transactors for Boot Code Upload
 - "Backdoor" Load Approach
 - GPIO Transactor for DUT Control
 - Clocks, Reset and Monitor
 - Cycle counter to track when error occurs
- Addition of HAPS Daughter Boards
 - DDR for Boot Code Store
 - GPIO for UART to Host PC

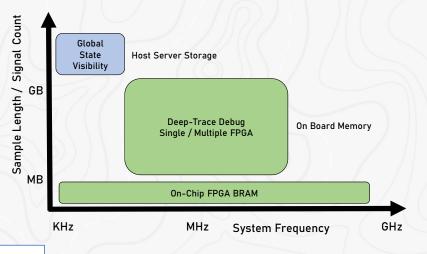
DUT Clocked @ 100MHz

Prototyping Preparation : Debug Enablement

Enable multiple Debug Capabilities

- BRAM and DTD based Debug to monitor AXI Transactions
 - On-Chip BRAM for AXI Traffic between DUT and DDR3 Memory
 - Off-Chip DTD for all AXI Traffic between XTORs, DUT and DDR3 Memory
 - Debug capacity available to maximize visibility

RTL \$dumpvars used to select debug signals


\$dumpvars(1,	rocket_system_HAPS100.M1_AWREADY[0]);
\$dumpvars(1,	rocket_system_HAPS100.M1_AWVALID[0]);
\$dumpvars(1,	rocket_system_HAPS100.M1_AWID[1*AXI_M_ID_WIDTH-1:0]);
\$dumpvars(1,	rocket_system_HAPS100.M1_AWADDR[M_AXI_AW-1:0]);
\$dumpvars(1,	rocket system HAPS100.M1 AWLEN[7:0]);
\$dumpvars(1,	rocket_system_HAPS100.M1_AWSIZE[2:0]);
\$dumpvars(1,	rocket system HAPS100.M1 AWBURST[1:0]);
\$dumpvars(1,	rocket_system_HAPS100.M1_AWLOCK[0]);
\$dumpvars(1,	rocket system HAPS100.M1 AWCACHE[3:0]);
\$dumpvars(1,	rocket system HAPS100.M1 AWPROT[2:0]);
\$dumpvars(1,	rocket system HAPS100.M1 AWQOS[3:0]);
\$dumpvars(1,	rocket system HAPS100.M1 AWREADY[0]);
\$dumpvars(1,	rocket_system_HAPS100.M1_AWVALID[0]);
\$dumpvars(1,	rocket system HAPS100.M1 WDATA[M AXI DW-1:0]);
\$dumpvars(1,	rocket system HAPS100.M1 WSTRB[M AXI DW/8-1:0]);
\$dumpvars(1,	rocket_system_HAPS100.M1_WLAST[0]);
\$dumpvars(1,	rocket system HAPS100.M1 BREADY[0]);
\$dumpvars(1,	rocket system HAPS100.M1 BVALID[0]);
\$dumpvars(1,	rocket_system HAPS100.M1_BID[1*AXI_M_ID_WIDTH-1:0]);
\$dumpvars(1,	rocket system HAPS100.M1 BRESP[1:0]);
\$dumpvars(1,	rocket system HAPS100.M1 ARREADY[0]);
\$dumpvars(1,	rocket system HAPS100.M1 ARVALID[0]);
\$dumpvars(1,	rocket system HAPS100.M1 ARID[1*AXI M ID WIDTH-1:0]);
\$dumpvars(1,	rocket system HAPS100.M1 ARADDR[M AXI AW-1:0]);
\$dumpvars(1,	rocket system HAPS100.M1 ARLEN[7:0]);
\$dumpvars(1,	rocket system HAPS100.M1 ARSIZE[2:0]);
\$dumpvars(1,	rocket system HAPS100.M1 ARBURST[1:0]);
\$dumpvars(1,	rocket system HAPS100.M1 ARLOCK[0]);
\$dumpvars(1,	rocket system HAPS100.M1 ARCACHE[3:0]);
\$dumpvars(1,	rocket system HAPS100.M1 ARPROT[2:0]);
\$dumpvars(1,	rocket system HAPS100.M1 ARQOS[3:0]);
\$dumpvars(1,	rocket system HAPS100.M1 RREADY[0]);
\$dumpvars(1,	rocket system HAPS100.M1 RVALID[0]);
\$dumpvars(1,	rocket system HAPS100.M1 RID[1*AXI M ID WIDTH-1:0]);
\$dumpvars(1,	rocket_system_HAPS100.M1_RDATA[M_AXI_DW-1:0]);
\$dumpvars(1,	rocket system HAPS100.M1 RRESP[1:0]);
\$dumpvars(1,	rocket system HAPS100.M1 RLAST[0]);

Define BRAM and DTD configuration

device jtagport umrbus iice new {idx} -type regular iice controller -iice {idx} none iice controller -iice {idx} -triggerstates 4 iice controller -iice {idx} -triggerstates 4 iice controller -iice {idx} -triggerconditions 8 iice sompler -iice {idx} haps100_DTD_builtin iice sampler -iice {idx} -depth 5000000 iice sampler -iice {idx} -qpip 3 iice sampler -iice {idx} -pipe 3 iice sampler -iice {idx} -pipe 3

device jtagport umrbus lice new {iice_bram} -type regular iice controller -iice {iice_bram} statemachine iice controller -iice {iice_bram} -triggerstates 4 lice controller -iice {iice_bram} -cniggerconditions 8 iice controller -iice {iice_bram} -counterwidth 8 iice sampler -iice {iice_bram} -depth 512 iice sampler -iice {iice_bram} -pipe 3 lice sampler -iice {iice_bram} -always_armed 1

iice clock -iice {idxA} -edge positive {rocket_system_HAPS100.M3_AXI_ACLK}
iice clock -iice {iice_bram} -edge positive {rocket_system_HAPS100.M3_AXI_ACLK}

Check Resource Usage and Sample Rates from Implementation Logs

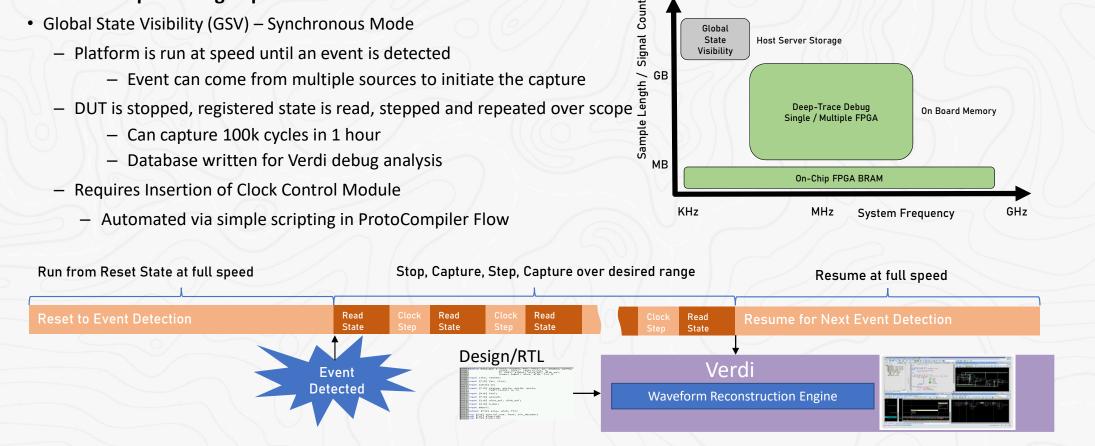
Current instrumentation information: IICE=idxA FPGA=FB1.uA

Total instrumentation in bits: Sample Only 0, Trigger Only 0, Sample and trigger 282 Instrumentation in bits:

Sample Only 0, Sample and trigger 282. All sampled 282 of 8192 signals allowed for DDR4 memory type Maximum sample clock frequency: 160.0000 MHz ITC==ice bram

CE=iice_bram FPGA=FB1.uA

Total instrumentation in bits: Sample Only 0, Trigger Only 0, Sample and trigger 844 Instrumentation in bits:


- Sample Only θ , Sample and trigger 844
- Maximum sample clock frequency is same as maximum user clock frequency (as reported by P&R)

Prototyping Preparation : Debug Enablement

Enable multiple Debug Capabilities

Prototyping Debug Flow : Initial Error Detect Run

Check for Error Condition on Initial Run

- Upload the Boot Code to the external DDR device via the Transactors "Back Door" approach
 - Rocket System DUT is held in a reset state
 - Boot Code Uploaded and re-read to allow for off-line check

Release DUT Reset and check for output from the UART

	[18:59:44] [000002123628][0.000000]	bootconsole [early0] enabled^M
	[18:59:45] [000002148804][0.000000]	Initial ramdisk at: 0x (ptrval) (9929728 bytes)^M
	[18:59:56] [000002325314][0.000000]	Zone ranges:^M
-	[18:59:56] [000002346737][0.000000]	DMA32 [mem 0x000000080200000-0x00000008fffffff]^M
_	[18:59:56] [000002380432][0.000000]	Normal [mem 0x0000000000000000000000000000000000
	[18:59:57] [000002409483][0.000000]	Movable zone start for each node ^M
-	[18:59:57] [000002431054		Early memory node ranges ^M
\leq	[18:59:58] [000002452492		node 0: [mem 0x000000080200000-0x00000008ffffff]^M
	[18:59:58] [000002485479][0.000000]	Initmem setup node 0 [mem 0x000000080200000-0x00000008ffffff]^M

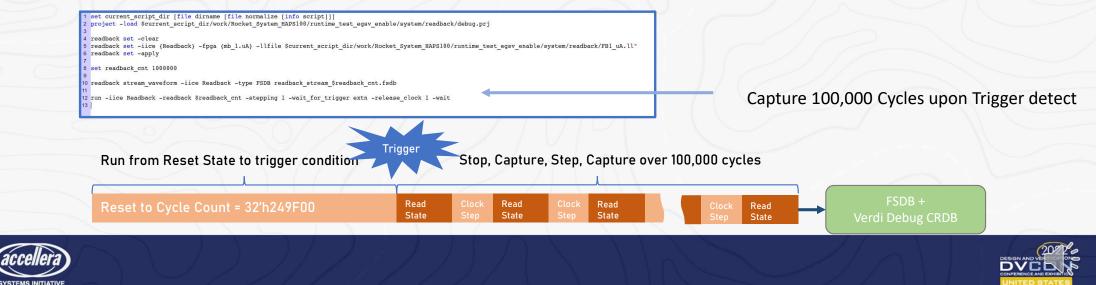
- See error state occur after cycle 2,485,479 from reset
 - 25mS to reach error condition @ 100MHz

UART locked at Cycle 2,485479



Prototyping Debug Flow : Debug Database Capture Run

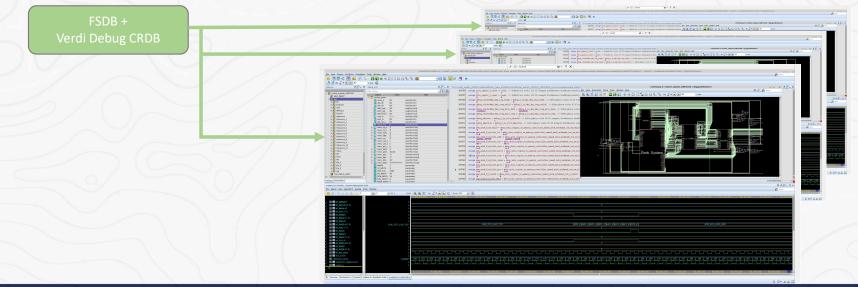
Configure and Initiate the On-Chip Debug and GSV Capture


• Debug run with on-Chip BRAM Debug trigger at Cycle Count minus 50,000 Cycles

Condition 0 : DUT Reset de-assert Condition 1 : Cycle Count = 2,400,000

State Machine Based Triggering Condition 0 followed by Condition 1

• Global State Visibility armed to capture 100,000 cycles on trigger condition

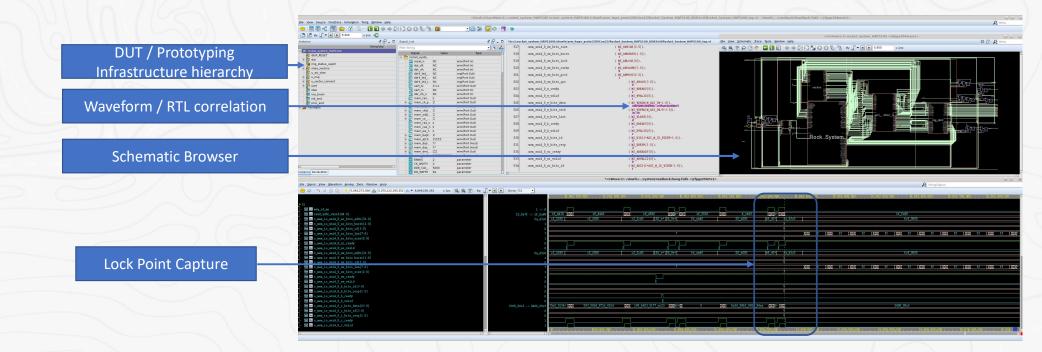

Off-line Verdi Debug Environment

Complete Debug Environment for Multiple Offline Debug Session

• Verdi CRDB created using generated scripts

% rocket_system_HAPS100_run_verdi -crdbgen -rtldbdir \$HAPS_PRJ_DIR/work/Rocket_System_HAPS100/pcs_uc/simv.daidir/ -dtop Rocket_System_HAPS100

- Complete debug environment exported as fully contained package
 - Can be run on any remote network with tool access
 - Allows multiple users in all world-wide locations to debug at RTL level with waveform expansion



Case Study : RISC-V Based Processor Chip

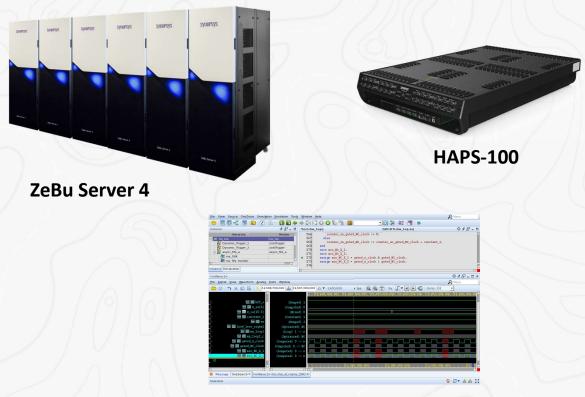
Debugging the Rocket Chip Implementation

- GSV capture provides full visibility around the error point i.e. Cycle 2,485,479
 - Design knowledge is generally required to locate and track the source of the bug
 - Deep Cycle Visibility : Real world waveforms with expansion and correlation to RTL throughout DUT hierarchy over 100,000 cycles

Summary

Finding Hidden Bugs In Deep Cycles

ZeBu Server 4


- Large designs
- DPI/Monitors
- Stimuli Replay
- Fast Readback

HAPS-100

- Highest Performance
- Deep Tracing
- Global State Visibility

Verdi

- Industry standard debug
- ZeBu/HAPS outputs natively integrated

Verdi

